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Abstract: Dyslexia is a developmental reading disorder 
characterized by a persistent difficulty to learn how to 
read fluently, despite normal cognitive abilities. This 
study aims at investigating the neural underpinnings of 
this reading disorder in children and teenagers by 
applying existing machine learning techniques that 
identify cognitive states based solely on one’s brain 
activation. The technique is used to identify whether 
participants were performing a reading task (identifying 
whether a word exists or not) or simply resting. The 
results show above 90% accuracy for classifying 
whether a participant was performing a reading task. 
The technique and results are discussed in turn.  
Keywords: Feature Selection, Classifier, Dyslexia, 
Functional MRI, Words and Pseudowords 
 
Introduction 
 

The aim of the present study is to identify cognitive 
states in dyslexic readers based solely on their brain 
activation. The study is part of an umbrella project, 
named ACERTA, in Portuguese, which stands for 
Evaluation of Children at Risk for Reading Difficulties. 
The goal of the project is to understand the differences 
that underpin the inability of dyslexic children to learn 
to read fluently, in comparison to their normal reading 
peers. To achieve this goal, the project applies 
Functional Magnetic Resonance Imaging (fMRI) to 
obtain brain-imaging data from children with dyslexia. 

Functional MRI (fMRI) is an imaging method that 
indirectly measures neural activity over time. Some 
neural activity patterns are known to indicate a person's 
cognitive state or the presence of a neuropsychological 
disorder. Cognitive disorders are known to have been 
successfully identified using fMRI data [1]. Moreover, it 
has been shown that fMRI data, in combination with 
machine learning techniques, can be used to predict the 
cognitive state of subjects [2]–[4] ]. Additionally, given 
its non-intrusiveness to patients, fMRI is widely 
recognized as a powerful diagnostic tool for conditions 
with a neurological basis. In this sense, learning 
disabilities such as dyslexia may be investigated using 
fMRI to identify the differences in brain function that 
may underlie such developmental difficulty [5]–[7].  

The diagnosis of dyslexia involves a complex, 
multidisciplinary evaluation of reading performance, 
cognitive abilities and intelligence, and school and 
medical history. It is necessary to wait for two years of 
regular schooling before a child is diagnosed with 
dyslexia (see DSM-5 criteria); in general, that would 

mean a child might be diagnosed between ages 8-9. 
However, the diagnosis is generally made at a much 
later time. Unpublished data from the Reading Clinic 
that evaluates children for project ACERTA show an 
average 10.5 years of age of children at diagnosis of 
dyslexia (with the range extending to 15 years). In this 
sense, identifying early indicators of children at risk for 
learning disabilities, such as dyslexia, may help 
understand early signs of reading impairment. . In this 
paper, we take the first steps towards our overarching 
objective, which is to use brain imaging data to identify 
specific cognitive states associated with reading 
impairment; as a first challenge, in this study we set out 
to identify whether participants were at rest or 
performing a word reading task. 

fMRI data presents a methodological challenge for 
the unveiling of brain activation patters that may 
identify early signs of risk for dyslexia. For instance, 
fMRI data presents a significant amount of information 
that needs to be analyzed at once. An fMRI scan can 
generate more than 100,000 voxels of data. 
Furthermore, the difference between an active portion of 
the brain and a much less active portion is often 
minimal.  Thus, there is significant potential for using 
machine learning algorithms to find complex brain 
activation patterns [5][8]. Machine learning techniques 
allow for the investigation of significant amounts of 
data about the brain, and they are sensitive to minimal 
changes in the fMRI test. 

In this paper, we report on our initial efforts to use 
classification techniques on fMRI data as a diagnostic 
tool for dyslexia. The goal is to apply machine-learning 
to identify whether a participant is performing a word-
reading task or not. We used a classification technique 
to predict whether a single patient is performing a task, 
or resting at any given time during the fMRI scan. 
Specifically, we trained a Support Vector Machine 
(SVM) learning algorithm with fMRI data from single 
patients whose data were partitioned into discrete time 
points of the fMRI scan. We show that the resulting 
classifier has an average of 92% accuracy on the final 
test partition of the dataset.  
 
Methods 
  

Participants – The study included 4 participants (1 
female) who were diagnosed with dyslexia or were 
identified as having reading difficulties (poor readers). 
Participants age ranged from 9 to 13 years (Mean = 
10.5; SD = 1.9); they had to be regularly enrolled in 
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elementary school, aged eight to 16 years, and have 
formal complaints from parents and/or the school that 
indicate persistent below-average reading performance. 
In other words, participants had to have at least two 
years of formal elementary schooling during which they 
showed persistent below-average performance. 
Participants who met the inclusion criteria were 
evaluated at a Reading Clinic (RC), a pro-bono service 
set up by the ACERTA project. The RC evaluation and 
research protocol included evaluation with a medical 
doctor (medical history; exclusion criteria: history of 
psychiatric illness), a psychologist (nonverbal IQ; WISC 
- Wechsler Intelligence Scale III; exclusion criteria: IQ 
< 80), and a speech therapist (standard reading and 
writing tasks for the Brazilian population). After 
diagnosis, participants were scanned at our facility 
according to the protocols described below. This study 
was approved by the PUCRS Research and Ethics 
Committee (process #3629513.0.0000.5336), and each 
participant’s parent or guardian signed an informed 
consent form approved by the Committee. 

Study Design – An event-related experiment was 
conducted using a word and pseudoword reading task. 
Stimuli were selected from Salles et al. [9] single 
word/pseudoword reading task. The set of stimuli is 
controlled for regularity of letter-sound association, 
word length (long and short words), and frequency 
(frequent and infrequent). The reading tasks consist of 
20 regular words, 20 irregular words, and 20 
pseudowords. The 60 stimuli were divided into two 30-
item presentation sets. The division was made to give 
participants a break in the middle of the task. Words and 
pseudowords were presented in separate trials on the 
screen, for seven seconds; a question was presented to 
participants together with each word (is this a real 
word?) to which they had to select “Yes” or “No” by 
pressing response buttons. Mapping of left -hand button, 
for “Yes,” and right-hand button, for “No” matched left-
right presentation of “Yes” and “No” on the screen.  

Stimulus presentation was offset by jittered inter-
vals; i.e. variable interstimulus interval. The jitter 
ranged from 1 to 3 seconds. The jitter was inserted after 
each trial. After 10 trials (10 words) either a baseline 
condition or rest was inserted in the study. The baseline 
condition consisted of presentation of a crosshair in the 
middle of the screen; each baseline lasted 30s. There 
were two 30-s baseline conditions. The rest period also 
consisted of presentation of a crosshair, but lasted only 
seven seconds. Rest was not a condition and was not 
explicitly modeled in the analysis; the goal of inserting 
rest between a set of trials is to give participants a short 
break after 10 trials. A six-second dummy scan was 
inserted at the beginning of each 30-word set of tasks to 
ensure T1 magnetization reaches an equilibrium state.   

Data Collection – All data was collected on a GE 
HDxT 3.0T MRI scanner with an 8-channel head coil. 
Initially, patients underwent a T1 structural scan (TR/TE 
= 6.16/2.18ms, isotropic 1mm3 voxels). Subsequently a 
two 5min 26sec functional FMRI EPI sequences were 
performed with the following parameters: TR = 

2000ms, TE = 30ms, 29 interleaved slices, slice thick-
ness = 3.6mm matrix size = 64x64, FOV = 216x216mm, 
voxel size = 3.4x3.4x3.6mm3.  

Processing – Initially, functional data was upsam-
pled to have a TR=1 time resolution. The first 6 seconds 
of each functional run was discarded to eliminate T1 
equilibrium effects and subsequently concatenated. 
Data was then despiked, slice-time and motion correct-
ed, blurred with a 6mm full-width-half-max Gaussian 
kernel, and aligned to a standard space (MNI152) using 
the T1 structural volume for improving the registration. 
Finally, in order to further remove noise from the data, a 
general linear model was calculated using the motion 
estimation parameters as nuisance variables. All prepro-
cessing was performed using the AFNI software1. 

Feature Selection – The data of each patient is 
composed of over 100,000 voxels, most of which are 
not involved in the neural activity regarding the pseudo 
word task. Since such irrelevant voxels have activation 
values, which can interfere with the training of the clas-
sifier, we want to remove these voxels from the dataset 
before training the classifier to generate cleaner results. 
Thus, instead of using all of the voxels, we follow 
Buchweitz's [8] approach to select a fixed number of 
most stable voxels. By stable voxel we mean a voxel 
that has a minimal standard deviation value for its acti-
vation over the times when patients are seeing words 
within the time series, i.e. that these voxels are consist-
ently activated throughout the tasks. Furthermore, we 
want the selected voxels to be more or less evenly dis-
tributed throughout the brain instead of being clustered 
in just a few brain locations (otherwise, activation tends 
to cluster around the occipital lobe, due to the nature of 
a visual task). Therefore, we partition the brain into 4 
lobes (frontal, temporal, occipital, parietal) and find the 
200 most stable voxels in each lobe, resulting in 800 
most voxels distributed over the brain which will be 
used as features for the classification algorithm. 

Classification – Before applying a classification al-
gorithm, it is necessary to extract the discrete training 
examples from the time series of voxel activation values 
extracted from the MRI scan. The study included 4 
patients who performed a task during a scan session; the 
task had 4 conditions (regular word, irregular word, 
pseudoword and baseline). Patient data is analyzed 
individually: the training and testing of the classifier is 
carried out using data from the same patient. Thus, we 
can separate a patient’s data between the task condition 
(when patients are seeing words) and when they are 
resting (baseline), comprising the task and rest exam-
ples. For the task examples, the following procedure 
was observed for selection of which portion of the brain 
imaging data would be used for classification of the task 
and of rest: (1) Task: each word was remained on the 
screen for seven seconds. The brain imaging data used 
included the average activation of a voxels for images 
collected two seconds after the beginning of the presen-
tation of a word and the images in the following four 

                                                 
1 http://afni.nimh.nih.gov/ 
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seconds; (2) Rest: the rest/baseline condition lasted 30 
seconds; images for the training of the classifier includ-
ed those four seconds after the baseline block began, 
with seven four-second examples in sequence for the 
remaining 26-second block; where each example is the 
average brain activation for four seconds. The result of 
this data processing is 20 examples of regular words, 20 
of irregular words, 20 of pseudowords (one example per 
word), and 14 examples of baseline (7 examples per 
block). After the examples are generated, the final step 
in the preparation for the classifier algorithm is to ma-
nipulate the examples, by performing feature scaling 
using the scikit-learn [10] package. 
 

 Cortical location Coordinates 
(x,y,z) 

Number 
of 

Voxels

Left Superior temporal Gyrus -47, -41, 25 473

Right Superior Frontal Gyrus 18, 24, 38 379

Left Cuneus -9, -80, 25 263

Right Cuneus 14, -79, 24 160

Left Fusiform Gyrus -24, -79, -4 129

Right Superior Temporal Gyrus 51, -28, 5 121

 
Table1: Regions where the most stable voxels across 
subjects, considering only clusters that contain more 
than 100 voxels. Results shown in Figure 1. 
 

SVM [11] is a classification algorithm that repre-
sents the input space as a cartesian plane, mapping each 
example into a point in this space. It splits the state 
space in two using a hyperplane: one side contains the 
positive examples, that we label as 1, and the other side 
contains the negative examples, that we label as −1. 
Consequently, the SVM algorithm focus on finding the 
hyperplane that better splits the state space.  One of its 
key parameters include a kernel, which is the function 
that creates this hyperplane, an example of which is the 
Radial Basis Function (RBF) kernel. From all classifica-
tion algorithms, Although Buchweitz et al. [8] uses a 
Gaussian Naive Bayes along with the feature selection 
described in this paper, we opted for using SVM, as it 
seems promising for fMRI studies, where it has been 
successfully used elsewhere[5]. Particularly, SVM with 
an RBF kernel is interesting because previous work 
shows more accurate results than other algorithms when 
working with a small number of examples and a rela-
tively large number of features [12]. Consequently, 

because our data contains only a few examples of each 
class (20 examples of each word type task and 14 ex-
amples of baseline), we use the libsvm [12] implemen-
tation with the RBF kernel. 

For the classification, we partitioned the examples in 
the training set and the test set. In the training set, we 
use 16 from the 20 examples of each type of word, and 
11 from the 14 baseline examples. The remaining 4 
word examples and 3 baseline examples are in the test 
examples. When acquiring the results, first we perform 
a cross validation grid search with the training data in 
order to find the best parameters for the SVM (C and 
gamma). Second, we use these parameters to train the 
classifier with the training data. Finally, we test the 
classifier with the training set. Notice that there is no 
across-subject experiment. 

Results – Our first experimental result of note is 
the selection of the most stable voxels by the feature 
selection algorithm for each patient (and an analysis of 
the overlap of voxels among all patients), which we 
illustrate in the three pictures of Figure 1.  

We generated multiple classifiers for each patient, 
each classifier is trained with the examples of pairs of 

conditions, each pair consisting of 6 combinations of 4 
classes of condition (see Study Design): regular word 
(regular), irregular word (irregular), pseudo word (pseu-
do) and baseline. Thus, for each patient, we train 6 clas-
sifiers to recognize the 6 possible condition combina-
tions we selected: regular x baseline; irregular x base-
line; pseudo x baseline; regular x irregular; regular x 
pseudo; and irregular x pseudo). The set of classifiers 
for each patient yielded different results for the classifi-
cation tasks. These results are summarized in Figure 2, 

Figure 1: Location of most stable voxels across patients. Blue voxels were chosen in the data of only one patient, yellow voxels 
were chosen in the data of 2 patients, red voxels were chosen in the data of 3 patients, and pink voxels were chosen in the data of 
all 4 patients. Notice that only one voxel was chosen in the data of 4 patients, shown in the right image. The regions where pixels 
clustered are listed in Table 1. 

Figure 2: Average classifier accuracy in the 6 experiments. Each 
bar represents result the average accuracy of 4 patients for each 
experiment. 
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which shows the average classification accuracy for the 
6 experiments using data from 4 patients.  

Discussion – The results show that the classifiers 
successfully identify the cognitive state (performing a 
task versus resting) in all 6 experiments; they also show 
that the classifiers generalize the examples correctly 
with 92% average accuracy in all experiments. The 
lowest accuracy was 75% in irregular x pseudo experi-
ment using data from patient 4 (well above chance). It is 
expected that identifying baseline from task would be 
more accurate than identifying 2 different task types. 
Alternatively, identifying brain activation patterns for 
irregular words versus pseudo words shows the worst 
results, as irregular words and pseudowords may present 
additional reading difficulty for dyslexic readers [13].  

The locations of the most stable voxels include a 
voxel cluster in the right superior frontal gyrus. Activa-
tion of frontal-lobe networks, including right-
hemisphere areas, is a characteristic of dyslexic readers; 
it is hypothesized that dyslexics may activate more areas 
of the frontal lobe than normal readers to compensate 
for their decoding and reading fluency difficulties [13]. 
Two left-hemisphere clusters identified are also part of 
the traditional language network of the brain: the left 
fusiform gyrus and the left superior temporal gyrus [14]; 
even though dyslexics are known to underactivate an 
area in the vicinity of the left superior temporal gyrus 
(i.e. the angular gyrus) [5][7], in the classification of 
reading versus rest it is expected that these two areas 
would be reasonably stable. Interestingly, there is also a 
significant cluster of voxels in the right-hemisphere 
homologue (right superior temporal gyrus), which may 
suggest a spillover activation mechanism; that is, as a 
task shows a certain level of difficulty, one of the mech-
anisms of brain adaptation is recruitment of cortical 
tissue in homologue areas [15]. The question remains of 
whether a control group would have more stable voxels 
in this network, or in the right-hemisphere as well.  

From the feature selection results shown in Figure 1, 
we observe that the most stable voxels chosen for each 
patient are sparse. Although most of the chosen voxels 
cluster when seeing each patient individually, they do 
not cluster across subject. Figure 1 shows a much larger 
number of stable voxels selected for a single patient 
than voxels, which were selected across multiple pa-
tients. Finally, only one voxel was chosen in the data of 
4 all patients. Thus, as the features to train the classifier 
are sparse, and the feature selection process picked 
completely different voxel locations for each patient, we 
believe it will be difficult for a classifier algorithm to 
generalize across multiple patients.   
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