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Abstract. Recently action recognition has been used for a variety of
applications such as surveillance, smart homes, and in-home elder mon-
itoring. Such applications usually focus on recognizing human actions
without taking into account the different scenarios where the action oc-
curs. In this paper, we propose a two-stream architecture that considers
not only the movements to identify the action, but also the context scene
where the action is performed. Experiments show that the scene context
may improve the recognition of certain actions. Our proposed architec-
ture is tested against baselines and the standard two-stream network.
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1 Introduction

Action recognition is one of the promising tasks in the computer vision area and
has been employed in many tasks such as surveillance and assistance of the sick
and disabled. Although recognizing actions is a trivial task for the human be-
ing, the automation of such task is particularly challenging in the real physical
world, since it involves understanding the not only the movements that are being
performed but also the context in which the action is happening. In this sense,
the contextual information plays an important role, giving cues to disambiguate
actions that are performed with the same movements. For example, observing
a scene context, a human being can easily identify whether a swing movement
is being performed in a tennis or a baseball match. To perform such task au-
tonomously, we need an approach that is able to identify not only the moving
parts of the image, but also the background of the image to identify the scene
context.

In this paper, we address the problem of recognizing actions from videos by
using a two-stream architecture, where two convolutional neural networks run
in parallel, merging their features in a late fusion approach. Inspired by Silva
et al. [12] that improve the object recognition by using the scene context, we
build a two-stream neural network architecture where a stream performs the
action recognition and another stream improves this recognition by identifying
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the context where the action occurs. We perform experiments using our approach
in two datasets for action recognition and compare our results with baselines and
the state-of-the-art approaches.

This paper is organized as follows. Section 2 describes the related work and
introduces the standard two-stream architecture and how it has been employed
so far. Section 3 details our deep neural architecture based on two-stream for
action recognition, whereas Section 4 presents all settings and data we use for
assessing the performance of our proposed approach. Results are presented and
discussed in Section 5 along with a comparison with baselines and the state-of-
the-art results for each dataset. We finish this paper with our conclusions and
future work directions in Section 6.

2 Related Work

Advances in hardware and greater availability of data have allowed deep learning
algorithms such as Convolutional Neural Networks (CNNs) [5] to consistently
improve on the state-of-the-art results when dealing with image-based tasks such
as object recognition [7], detection, and semantic segmentation [3]. Extensions of
CNN representations to the action recognition task in videos have been proposed
in several recent works [8, 13, 15]. For example, Wang et al. [15] apply dynamic
tracking attention model (DTAM), which is composed by a CNN and a Long-
Short Term Memory (LSTM) to perform human action recognition in videos.
Their architecture uses the CNN to extract features from images and the LSTM
to deal with the sequential information of the actions. DTAM uses local dynamic
tracking to identify moving objects, and global dynamic tracking to estimate the
motion of the camera and correct the weights of the motion attention model.

Simonyan and Zisserman [13] propose the two-stream convolutional network
architecture, which is composed by two streams running in parallel with a late
fusion to merge both streams. The idea behind the two-stream is to mimic the
visual cortex, which contains the ventral stream (responsible for object recogni-
tion) and the dorsal stream (responsible for recognizing motion) as two separate
pathways. Thus, videos can be decomposed into spatial and temporal compo-
nents: the spatial one that carries information about scene context, and the tem-
poral one that conveys the motion across frames, indicating the movement of the
observer and objects. Simonyan and Zisserman use the raw images in the spatial
stream and pre-computed optical flow features in the temporal stream. Using
a two-stream architecture with two different CNNs, Monteiro et al. [8] perform
action recognition in a small egocentric dataset. They affirm that a two-stream
architecture achieves better results than a single stream because each stream
extracts different features from the same image. The extracted features are then
merged by a late score fusion using a Support Vector Machine (SVM).

Scene recognition is a fundamental problem in computer vision and recently
has been receiving an increasing attention [12, 16, 17]. As Wang et al. [16] affirm,
a scene provides rich semantic information of the global structure providing a
meaningful context. As scene context, we can understand as the place in which
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Fig. 1. Two-stream architecture composed by a stream to recognize actions and a
stream to recognize the context scene with a late fusion.

the objects seat, i.e., the background environment where actions occur. Unlike
Monteiro et al. [8] and Simonyan and Zisserman [13], in this work, we associate
the identification of the action with the scene context since we believe that the
scene context may give interesting clues about the action that is being performed.

3 Recognizing Actions with Scene Context

To address the contextual awareness on action recognition, our approach aims
to use the context of the scenes by fusing the information of the background
with the information that identifies the action being performed in a two-stream
architecture [13]. Our architecture is composed by a stream containing a CNN
to identify the action happening in the current frame, and a CNN to identify
where (scene context) the action is happening in the current frame, as illustrated
in Figure 1. The idea of this architecture is that the CNN responsible for the
action stream focuses on the movements that are being performed to identify an
action, while the CNN responsible for the scene stream focuses on the background
where the action happens. For example, consider two actions that contain similar
movements, such as baseball swing and tennis swing. While the action stream
may identify the swing performed in the action, the scene stream identifies the
context where the swing is happening, increasing the chance to correctly classify
the action. Features from both streams are connected in a late fusion approach
and a classifier predicts the action performed on the input image.

Although our architecture allows different networks in each stream, we use
two VGG-16 networks [14]. In order to extract features from the background
environment (Scene stream), we use the weights of a CNN pre-trained using the
Places365 [17] dataset, which contains only images with scenes. For the Action
stream, we fine-tune a version of the VGG-16 with the weights pre-trained on the
1.2-million-image ILSVRC 2012 ImageNet dataset [10]. Finally, we train a multi-
class Support Vector Machine (SVM) using the concatenation of both streams
for the final classification.
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Fig. 2. Examples of frames from each class of DogCentric (a) and UCF-11 (b) datasets.

4 Experiments

In this section, we describe the datasets and the main implementation details
applied to our experiments.

4.1 Dataset

Our experiments are performed using two freely available datasets that contain a
single action in each video. We select the datasets because they contain different
characteristics: dataset containing an egocentric viewpoint of actions performed
by dogs and a dataset containing a third-person viewpoint performed by humans.
We detail each dataset as follows.

DogCentric Activity dataset1 [4] consists of 209 videos containing 10 dif-
ferent action performed by 4 dogs as illustrated in Figure 2 (a). The dataset
contains first-person videos taken from an egocentric animal viewpoint, i.e., a
wearable camera mounted on dogs’ back records outdoor and indoor scenes,
which are very challenging due to their strong camera motion. Following Mon-
teiro et al. [9], we randomly select half of the videos of each action to the test set
and the rest of the videos are separated into training and validation sets. Vali-
dation set contains 20% of the videos and the rest is separated to the training
set.

UCF YouTube Action dataset2 (hereafter called UCF-11) [6] consists of
1,600 videos extracted from YouTube containing 11 actions as illustrated in
Figure 2 (b). Each video has 320× 240 pixels and was converted to a frame rate
of 29.97 fps and annotations were done accordingly, containing a single action
associated with the entire video. As performed by Monteiro et al. [9], we divided
the UCF-11 dataset into train, validation and test sets.

4.2 Network settings

In this work, we only train the Action stream, since we use the Scene stream
as a feature extractor from a pre-trained version of the CNN. All deep models

1 http://robotics.ait.kyushu-u.ac.jp/∼hyumi/db/first dog.html
2 http://crcv.ucf.edu/data/UCF YouTube Action.php
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developed in this work (including baselines) are implemented using Keras3 and
TensorFlow4 frameworks. We pre-trained the Action stream CNN using the
ImageNet dataset with weights being directly loaded from Keras core library.
Training phase performs iterations using mini-batches of 128 images, applying
mini-batch stochastic gradient with momentum (0.9), and using rectified linear
unit (ReLU) as the activation of each convolution. We subtract all pixels from
each image by the mean of each pixel from all training images. For all networks,
we perform hyperparameter optimization using a grid search for dropout on
the fully-connected layers and learning rate hyperparameters, since they are
commonly changed when trying to learn a deep model. Due to space constraints,
we show the results only for the setting that achieves the highest results in
validation data. The best configuration for the Action stream contains 0.5 of
dropout and 5e-4 of learning rate for the UCF-11 dataset and 0.95 of dropout and
5e-3 of learning rate for the DogCentric dataset. We limit the number of epochs
to 30 with applying early stopping, where most of our experiments took no longer
than 15 epochs to finish. The Scene stream contains a VGG-16 using weights of a
CNN5 pre-trained in the Places-365 [17] dataset. For the classification phase, we
use the Crammer and Singer [1] implementation of the SVM from scikit-learn6

with the default parameters.

4.3 Baselines

As deep learning approaches have become the state-of-the-art of different com-
puter vision tasks [3, 7, 8, 15], we use as baselines the single stream networks,
i.e., only the Action stream and only the Scene stream, and the standard two-
stream [13] configuration containing the Action stream and a Temporal stream.
For the standard two-stream baseline, the Action stream has the same con-
figuration of the Action stream in our approach. The Temporal stream in the
two-stream baseline contains a dense optical flow representation [2] of adjacent
frames, i.e., vectors containing both horizontal and vertical displacements, re-
garding all points within frames. In order to generate the final image for each
sequence of frames, we combine the 2-channel optical flow vectors and associate
color to their magnitude and direction. Magnitudes are represented by colors
and directions through hue values. The training phase of the Temporal stream
follows the same settings as the Action stream, but the hyperparameters selected
by grid search (dropout and learning rate). The best configuration for the Tem-
poral stream contains 0.5 of dropout and 5e-3 of learning rate for both datasets.
Due to space constraints, we do not insert in the paper the results achieved with
the validation set, but these results, as well as our code, are freely available on
our project’s website7.

3 https://keras.io
4 https://www.tensorflow.org
5 https://github.com/GKalliatakis/Keras-VGG16-places365
6 http://scikit-learn.org/
7 https://github.com/jrzmnt/PlacesInAction
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Table 1. Accuracy (A), Precision (P), Recall (R) and F-measure (F) achieved by the
baselines, our approach and the state-of-the-art results.

A P R F

U
C
F
-1
1

Action stream 0.71 0.70 0.71 0.70
Scene stream 0.69 0.68 0.69 0.67
Two-stream (as in [13]) 0.71 0.73 0.71 0.71
Our approach 0.75 0.78 0.75 0.75
DTAM [15] 0.90 – – –
Visual-DTAM [15] 0.91 – – –

D
o
g
C
e
n
tr
ic Action stream 0.54 0.59 0.54 0.54

Scene stream 0.48 0.54 0.48 0.48
Two-stream (as in [13]) 0.54 0.62 0.54 0.54
Our approach 0.53 0.58 0.53 0.53
PoT+ITF [11] 0.75 – – –
2 CNNs-SVM-PP [8] 0.76 0.74 0.76 0.75

5 Results and Discussion

To evaluate our proposal and compare with baselines, we compared the output
of each network using the test set. Table 1 shows the accuracy (A), precision
(P), recall (R) and F-measure (F) scores for all experiments in each dataset.

In Table 1, we can see that the combination of Scene stream with Action
stream performed by our approach increased the results achieved by the Ac-
tion stream alone in the UCF-11 dataset. The addition of features from the
background (Scene stream) increased the accuracy by 4 percentage points and
the precision by 8 percentage points indicating that the context of the scene is
helpful to identify the action that is being performed. The best results on this
dataset are achieved in Diving and Horse riding actions, with 85% and 81%
of accuracy respectively. On the other hand, the approach achieved the lowest
accuracy for Soccer juggling, indicating that the action may not be dependent
on the background. Checking images of this dataset, we can see that the Soccer
juggling is performed in different places, thus confirming that the scene context
is not relevant to identify this action.

Unlike the results achieved on UCF-11, when testing on the DogCentric
dataset, our approach seems to be ineffective. The results achieved in the Dog-
Centric dataset may be justified since usually the actions performed by a dog are
not related to a fixed background as the actions performed by different sports.
In fact, the actions that have some relation to the background, such as Car,
where the dog is outside waiting for a car to pass by, the precision achieved 90%.
The second highest precision score was achieved by the action Drink, where the
background always contains a water bowl in which the dog drinks water. Actions
that do not depend on the background, such as Look left, Look right or Shake
achieve low precision scores 21%, 14% and 17% respectively.

Above the results achieved by our approach in Table 1, we can see that the
baselines achieved lower scores for all measures when compared with our ap-
proach in the UCF-11 dataset, indicating that the scene context may improve
the action recognition. A comparison with the standard two-stream baseline sug-
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gests that the identification of the scene plays an important role when compared
with the optical flow representation. Due to the camera movement on the back
of the dog in DogCentric dataset, the scene identification is not very effective.
The same problem occurs with the optical flow generation in a standard two-
stream. Therefore, both approaches achieved approximately the same results
when compared with the Action stream alone.

Below our approach in Table 1, we present the results achieved by the state-
of-the-art for each dataset. Values containing a dash are not reported by the
authors. As illustrated in Table 1, the results achieved by our approach are mod-
est when compared with the results achieved by the state-of-the-art. However,
it is important to note that our intention in this paper was not to achieve the
state-of-the-art results, but instead, verify whether the scene context improves
the action recognition. Wang et al. [15] achieved the state-of-the-art results for
UCF-11 dataset using a combination of visual attention with dynamic track-
ing attention model (DTAM). Their approach uses a combination of CNN and
LSTM as an attention mechanism, in order to capture the temporal aspect of an
action. Monteiro et al. [8] uses the DogCentric dataset to apply a two-stream ap-
proach containing two different CNNs and a post-processing step which consists
of smoothing the predicted classes by assigning to a target frame the majority
voting of all frames within a window. This smoothing process intends to elim-
inate a few correctly predicted classes when they are in the middle of other
classes.

6 Conclusions and Future Work

In this work, we developed an architecture for action recognition based on a
two-stream CNN architecture. Unlike the standard two-stream architecture, our
approach includes a stream focusing on recognizing actions and the other stream
focusing on recognizing the context of the scene. Finally, we performed a late
fusion using the concatenation of the features extracted from both streams. We
performed experiments to validate our architecture and showed that our ap-
proach achieves better results when compared with the baselines composed by
the streams separately, and a standard two-stream using optical flow in the tem-
poral stream. A preliminary analysis demonstrates the importance of taking into
account the context where the action occurs. Our intention in this paper was not
to achieve the state-of-the-art results, but check whether the scene identification
plays an important role in the action recognition. Thus, in a future work, we
intend to expand our architecture by changing the action stream by the state-
of-the-art algorithm to recognize actions taking into account the temporal aspect
of the video.
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