
Acting on Norm Constrained Plans

Nir Oren1, Wamberto Vasconcelos1, Felipe Meneguzzi2, and Michael Luck3

1 School of Computing Science, University of Aberdeen
Aberdeen AB24 3UE, UK

wvasconcelos@acm.org and n.oren@abdn.ac.uk
2 Robotics Institute, Carnegie Mellon University

Pittsburgh PA 15213, USA,
meneguzz@cs.cmu.edu

3 Department of Informatics , King’s College London
London WC2R 2LS, UK
michael.luck@kcl.ac.uk

Abstract. The behaviour of deliberative agents is often guided by a plan
library designed to achieve goals given certain environmental conditions.
Plans in these plan libraries are designed to achieve individual goals, and
cannot possibly account for all possible variations of restrictions in the
societies within which these agents must operate. These restrictions, cap-
tured through norms, include obligations, prohibitions, and permissions.
Unlike traditional planning restrictions, norms can often be contradic-
tory and impossible to achieve simultaneously, necessitating some form
of compromise. In this paper we describe a technique for taking norms
into consideration when deciding how to execute a plan. Our norms are
constraint based, allowing for fine-grained control over actions. Our tech-
nique allows for reasoning about the interactions between norms, and re-
solves conflict by selecting actions where the cost of violating one set of
norms is outweighed by the reward obtained in complying with another.

Keywords: Norms, BDI, Constraints

1 Introduction

Most agent architectures (e.g. BDI based approaches such as AgentSpeak(L)
[11]) make use of offline planning, where a plan library is created before execution
in the environment begins. An agent utilising an offline plan library selects a
plan for execution based on the state of the environment. A problem when
using pre-generated plan libraries involves how to select plans appropriate to
the current situation. A pre-generated plan is often conditional, identifying the
environmental context in which it is applicable. However, it is difficult for the
plan designer to envisage all the situations in which a plan could be considered
for execution at design time. In particular, the society in which an agent operates
may impose a given set of norms, which restrict the acceptable behaviour of the
agent in that society. Norms do not have to be fixed, and those which apply to
the agent may vary over time, and even emerge from multi-agent interaction, so

it is often infeasible for the designer to take account of them in pre-generated
plans. For example, consider a plan to build a refugee camp following some
disaster. Such a plan may take the terrain in which the refugee camp is to be
located into account, but may not have considered some other logistical, social
or operational restrictions, such as fuel availability. If the original plan assumed
that fuel is freely available, then in the context of fuel limits, the original plan
may be unusable. However, by limiting the amount of fuel use, for example
by introducing a prohibition on driving large distances once the camp is built
(assuming that long drives are necessary for setting up the camp), the plan can
still be used.

An advantage in taking norms into account when selecting a plan for exe-
cution involves the possibility of norm violation. In some situations, an agent
may ignore a norm in order to achieve a critical goal. By basing plan selection
not only on some context and invocation condition, but also on the norms that
would be complied with and violated during plan execution, more flexible (and
robust) behaviour can be achieved.

Clearly, the ability to adapt an existing plan library to cater for norms, and
thus function in a variety of different situations, greatly promotes plan reuse.
Given this, the main contribution of this paper lies in specifying how an agent
should execute a plan, while deciding which norms to adhere to, in such a way
so as to maximise its utility.

[13] created a constraint and predicate based norm representation, and we
extend this representation to actions found within plans. Constraints allow for
fine-grained control of the value of variables, increasing the expressiveness of
our notation, and the sophistication of the mechanisms to manipulate them.
In order to act in the presence of norms, we adopt a utility based approach.
Informally, given a plan represented as an AND/OR tree, with actions specified
as constrained predicates, we recursively compute the effects of executing the
next action from the plan, identifying what constraints would appear given that
the agent decides to comply, or violate a set of norms. Such norm compliance
or violation affects the ultimate utility of the plan. Executing an action with
specific bindings can trigger rules creating, or deleting additional norms, further
constraining future action. Therefore, different sets of constraints may lead to
plans with different utilities, and we must consider all possible sets of constraints.
Our goal is thus to identify the set of constraints on action that result in maximal
utility. These constraints are then used to guide plan execution.

The plans we consider for our approach are similar to a Hierarchical Task
Network (HTN) [5]. However, the exploration of these plans by our approach
differs from HTN planning with preferences [12] in that active norms, unlike
preferences, change dynamically during planning. The defeasible nature of norms
further complicates the determination of an optimal plan.

The remainder of this paper is structured as follows. Section 2 describes our
approach’s underlying data structures. Sections 3 and 4 then detail how these
components are combined to reason about plans in the context of normative
restrictions. We evaluate our approach in Section 5, and place our approach

in the context of existing work in Section 6, before concluding and identifying
future work in Section 7.

2 Plans and Norms

We begin this section by describing the basic building blocks of our system.
We then explain how plans, built up of actions, are represented. Section 2.3 then
provides details regarding the specification of norms, following which we describe
normative rules that identify when norms begin, and when they cease, to affect
the scope of an action. Finally, we describe enactment states, which denote the
norms affecting execution at a single point in time. In the remainder of this
paper, we denote first-order terms generically as τ ; variables are represented as
X,Y, . . . and constants as a, b etc.

2.1 Constraints, Substitution and Unification

Our system makes extensive use of constraints to limit agent action. A constraint
γ is an atomic formula of the form τ ./ τ ′, where ./∈ {=, 6=, >,≥, <,≤} and
τ, τ ′ are first order terms. We write Γ to denote a generic, possibly empty, set
of constraints. We employ the predicate satisfy(Γ) for a set of constraints Γ ,
which holds if and only if the constraints allow at least one solution, i.e. if they
are satisfiable.

We also make use of unification and substitution relationships, usually ap-
plied to a first order formula and/or a constraint. The application of a substitu-
tion σ, which consists of a set of pairs X/τ to some structure β is written β · σ,
and consists of replacing all instances of X in β by τ . Finally, two structures
β, β′ unify according to substitution σ (abbreviated unify(β, β′, σ)) if and only
if β · σ = β′ · σ.

2.2 Actions and Plans

To affect its environment, an agent executes actions, which we represent as
ground atomic first order formulae. Plans identify groups of actions that must
be taken, and are applicable in different situations. Plans are thus represented
using partially ground actions. Applying a plan to a specific situation occurs via
the grounding of variables. We call partially ground actions action specifications.

Definition 1. (Action Specifications, Actions and Entailment) An action specification
α is defined as ψ ◦ Γ , where ψ is a first order atomic formula, and Γ is a set
of constraints over a subset of the variables in ψ. Act is the set of all action
specifications.

Given an action specification α = ψ ◦ Γ and a substitution σ, we say that
ψ′ is an action iff ψ′ = ψ · σ such that ψ′ contains no free variables. An action
specification α = ψ ◦ Γ entails an action specification β = ψ′ ◦ Γ ′ if and only
if for all σ such that unify(ψ,ψ′, σ), whenever satisfy(Γ · σ), satisfy(Γ ′ · σ).

Two norms, ω1 = Xψ ◦ Γ, ω2 = Xψ′ ◦ Γ ′, where X is some modality, can also
entail each other in an analogous manner to action specifications. If α entails
β, we write α ⊃ β.

Where obvious, we abbreviate action specifications such as a(X,Y) ◦X = τ1 ∧
Y = τ2, with τ1, τ2 terms, as a(τ1, τ2). Similarly, we write ψ ◦ ∅ simply as ψ.

We represent plans as AND/OR trees, with nodes in the tree generically
specifying the actions that must be taken in order to execute the plan. Leaf
nodes are associated with primitive actions (that is, those actions that an agent
executes in order to affect the environment), while other nodes represent com-
pound actions, made up of all of the node’s children in the case of the node being
an AND node, or of any one of the node’s children in the case of an OR node.

Definition 2. (Plan) A Plan P is one of

1. α, where α is an action specification.
2. andN(P1, . . . , Pn) where P1 . . . Pn are plans.
3. orN(P1, . . . , Pn) where P1 . . . Pn are plans.

The α node represents a primitive action within the plan. A node of the form
andN(P1, . . . , Pn) represents an AND node in the plan. This node is a compound
action, requires all of the actions specified within P1, . . . , Pn to be executed. Plan
nodes of the form orN(P1, . . . , Pn) represent OR nodes in the plan tree; for this
compound action to be executed, one of P1, . . . , Pn must have been executed 4.

As an example of such a plan, consider the requirement to establish a refugee
camp at position (X,Y). In order to do so, intelligence must first be collected
(via a intel(X,Y) action). The area must then be cleared, either by the agent
executing the plan (using a selfClear(X,Y) action, or through some other organ-
isation (via the outsourceClear(X,Y) action). Finally, the camp itself must be
built by executing the b camp and b roads primitive actions. This plan contains
both AND, and OR nodes, and any constraints on the actions themselves (e.g.
stating that X < 5) act as hard constraints on variable values. Such a plan (with
no hard constraints) can be written as follows

andN(intel(X ,Y),
orN(selfClear(X ,Y),outsourceClear(X ,Y)),
b camp(X ,Y), b roads(X ,Y))

2.3 Norms

Within our system, norms are obligations, prohibitions and permissions on the
possible values of specific variables, in the context of specific actions. An obli-
gation can thus, for example, specify exactly where the refugee camp must be

4 Compound actions can be associated with an action specification, but this yields no
additional representative power.

placed in the previous example, by restricting X and Y to specific values for
the build(X,Y) action. In order to create this restriction, norms make use of
constraints.

Definition 3. (Norms and Constraints) A norm is an obligation, permis-
sion or prohibition, written respectively as Oα, Pα and Fα, where α = ψ◦Γ is an
action specification. A norm is interpreted as obliging, permitting, or prohibiting
the execution of ψ according to constraints Γ .

A generic norm is represented by the symbol ω.
Norms are intended to constrain the values assigned to some variables within

an action specification. Critically, and unlike most work on norms (e.g. [1],[6]),
an obligation Oψ ·Γ thus does not specify that ψ should be executed, but instead
states that if action ψ is executed, it should be done in a way that is consistent
with constraints Γ . Given an action specification α = ψ ·Γ and a norm ω = Xβ,
where β = φ · Γ ′, we say that α is in the scope of ω if ψ = φ. Furthermore, if
unify(ψ, β, σ), X ∈ {O,P}, and satisfy(Γ ′ ·σ), then we say that α complies with
ω. Alternatively, if X = F, then the norm is complied with if, for all σ such that
unify(ψ, β, σ), ¬satisfy(Γ ′ · σ).

A norm ω = Xψ ◦ Γω is said to be applicable for an action specification
α = φ ◦Γ , written applicableNorm(ω, α) if and only if unify(φ, ψ, σ) for some σ.

Consider a norm ωc = OselfClear(X ,Y)◦X ≤ 8∧Y = 2. An action specifica-
tion selfClear(A,B)◦Γ for any Γ is in the scope of ωc . Similarly, selfClear(5, 2)
complies with ωc.

2.4 Permissions and Conflicts

We treat permissions as exceptions to obligations and prohibitions, so they do
not have meaning in isolation. Thus, for example, the norm OselfClear(X ,Y) ◦
{X < 30, Y = 20} imposes an obligation, when executing the selfClear action,
that X is bound to a value less than 30, and Y is equal to 20. The permission
PselfClear(X ,Y) ◦ {X < 40} allows X to be less than 40 if the obligation is
present, while still complying with the obligation.

Violations apply in specific cases where an obligation or prohibition is not
complied with, and no permission exists that permits this non-compliance to
occur. Given a norm ω = Xψ◦Γ where X ∈ {O,F}, and a permission ω′ = Pψ◦Γ ′,
we refer to ω′ as a mitigating permission. An action specification β violates an
obligation or prohibition ω if β is in the scope of ω, it does not comply with ω
and there is no mitigating permission Pφ ◦ Γ ′ such that satisfy(Γ ′ · σ). Norm
violation must thus be considered with regards to a set of permissions.

Finally, multiple obligations or prohibitions may conflict, requiring contra-
dictory behaviour. Informally, a set of norms over an action is in conflict if
no substitution of variables can be made that is consistent with the obliga-
tions and prohibitions found within the norm set, and no mitigating permissions
exist allowing this substitution. Given a set of norms Ω, let ΩO, ΩP , ΩF repre-
sent the subsets of obligations, permissions and prohibitions within Ω. Similarly,

R ::= LHS ⇒ RHS
LHS ::= α|NLHS

NLHS ::= ω|NLHS ∧NLHS
RHS ::= RHS ∧ RHS | ⊕ ω| 	 ω

Fig. 1. BNF for normative rules.

ΓO/ΓP /ΓF represents the set of constraints found in ΩO/ΩP /ΩF . Then, given
a set of norms Ω of the form ωi = Xψ ◦ Γi (i.e. referring to the same action ψ),
the set Ω is in conflict, iff there is no substitution σ such that the following holds∧

γO∈ΓO

γO · σ
∧

γF∈ΓF

¬γF · σ
∨

γP∈ΓP

γP · σ (1)

When conflicting norm sets occur, a reasoner must choose which subset of norms
to comply with, and which to ignore.

2.5 Normative Rules

The norms imposed on agents are situation dependent, and we make use of a
simple rule language to specify normative rules that identify the cases in which
a norm starts, and ceases, to exist. Normative rules are written in the form
LHS ⇒ RHS , where LHS contains conjunctions of actions and norms, and RHS
identifies which obligations, permissions and prohibitions should be added to,
or removed from, the set currently affecting the agent. Informally, if an action
in the LHS of such a rule has been executed, then the set of norms must be
modified according to the RHS of the rule. Similarly, if a norm ω exists in a
rule’s LHS , then the set of norms is modified as per the rule’s RHS . The LHS
is formed of a maximum of one action specification, together with a conjunctive
combination of zero or more norms. The RHS of the rule then identifies the
norm to be added or removed. The BNF for normative rules is shown in Figure
1.
⊕ω denotes the addition of ω to the set of currently active norms, while 	ω

denotes the removal of ω from this set. Rules represents the set of all normative
rules in the system.

Thus, the rule intel(20 , 5) ⇒ ⊕ωc states that if action intel(20 , 5) is exe-
cuted, norm ωc will come into force. Normative rules containing a norm in the
LHS can represent norms that come into force due to the presence of other
norms, allowing contrary-to-duty obligations to be modelled. For example, an
obligation to build a camp, represented by ωbc, might create an obligation to
build a road, represented as ωbr. The normative rule ωbc ⇒ ⊕ωbr captures this
situation.

Before discussing the semantics of norms, we describe the structure used to
track the normative status of an executing system. This structure, referred to as
an enactment state, identifies the norms that exist at any point in time due to
the application of normative rules in a previous time point.

2.6 Enactment States

By executing actions, an agent changes the state of the world around it. Under
the influence of normative rules, such changes cause new norms to be instanti-
ated, or existing ones to be lifted, affecting future actions. Similarly, past actions
can limit future action, by binding values to some of the future action’s variables.
Following [4], we represent the environment affecting the agent as a transition
system between individual enactment states, each of which represent the system
at a single time point. By executing an action, the system is transitioned to a
new enactment state. Such a transition system, starting at an initial state, and
transitioning to new enactment states until all agent actions have been executed,
represents an entire run of the system.

To capture the portion of the environment affecting the agent, enactment
states must track the obligations, permissions and prohibitions that are in force,
and the constraints on variable values that have already been committed to.

Definition 4. (Enactment State) ∆ = (Ω∆, Γ∆) is an enactment state, with
Ω∆,a set of norms, and a constraint Γ∆.

We have now described the basic data structures used by an agent in de-
termining how to act in the presence of norms and normative rules. Next, we
describe the rules that govern transitions between enactment states in more de-
tail. These rules are then extended to provide an algorithm for acting in the
presence of normative rules.

3 Transitioning Between Enactment States

The previous section described the data structures used in our framework, and we
now assign an operational semantics to these structures, using them to describe
legal transitions between enactment states. Our approach modifies that taken
by [4] in two ways. First, we allow only norms and actions in the LHS of a
rule, simplifying our semantics. Second, [4] was concerned with identifying a
new enactment state following the execution of an action. We are concerned
with determining the possible enactment states following the execution of some
action specified by an action specification. Thus, multiple enactment states are
possible. For example, consider the rules

intel(X,Y)⇒ ⊕ω1 intel(5, 6)⇒ ⊕ω2 intel(7, 8)⇒ ⊕ω3

Executing action intel(2 , 2) results in norm ω1 added to the resulting en-
actment state. Executing intel(5 , 6) leads to both ω1 and ω2 appearing in the
new enactment state. If it is known that the intel action is executed, but its
parameters are unknown (e.g. due to the action appearing in a partially ground
plan), three possible enactment states can be transitioned to, namely one in
which ω1 exists, one where ω1, ω2 exist, and one in which ω1, ω3 exists. Since our
approach considers the possible enactment states resulting from the execution
of the action specifications, our semantics, unlike those of [4], must identify a
set of possible enactment states rather than a single enactment state.

Algorithm 1 Computing all possible enactment states.

1: function PosEnactStates(∆,α,Rules)
2: ∆ = (Ω∆, Γ∆)
3: α = ψ ◦ Γα
4: ∆N = {}
5: P = 2R s.t. R = {r|r ∈ Rules and potApp(r , Ω∆, α)}
6: for all p ∈ P do
7: Γ = Γ∆ ∧ Γα

∧
r∈p actionConstraints(r)∧
s∈R\p ¬actionConstraints(s)

8: if satisfy(Γ) then
9: Ω = Ω∆

10: for all RHS ⇒ ⊕ω ∈ p do
11: Ω = Ω ∪ {ω}
12: for all RHS ⇒ 	ω ∈ p do
13: Ω = Ω\ω
14: ∆N = ∆N ∪ {(Ω,Γ)}
15: for all (Ω,Γ) ∈ ∆N do
16: if ∃(Ω′, Γ ′) ∈ ∆N s.t. Ω ⊂ Ω′ and Γ ′ → Γ then
17: ∆N = ∆N\(Ω,Γ)

18: return ∆N

Rules are applied when they are consistent with the action being executed,
and the norms found in the system. Since an action specification can encapsulate
a large range of actions, we must identify when a rule is potentially applicable.
This situation occurs when the action specification found in the rule entails the
action specification being entailed, and all norms found in the rule are entailed
by norms found within the current enactment state. Formally,

Definition 5. (Potentially Applicable Rule) A rule R ≡ β ∧ ω1, . . . , ωn ⇒
RHS is potentially applicable with respect to a set of norms Ω and an action
specification α if and only if α ⊃ β∧∀ωi∃ω ∈ Ω such that ω ⊃ ωi. The predicate
potApp(R,Ω, α) holds if R is potentially applicable with respect to Ω and α.

Given an enactment state, an action specification, and a set of normative
rules, Algorithm 1 returns the possible enactment states that can result from
executing all possible actions represented by the action specification. Within this
algorithm, the actionConstraints function returns the constraint associated with
the action specification found within the rule (or true if no action specification
exists).

The algorithm operates by first identifying all combinations of potentially
applicable rules, and then evaluating each of these combinations individually
(Line 5). Line 7 computes the constraints imposed due to the action specification
and the norms under consideration, together with those constraints imposed to
ensure that the remaining norms are not applied. If these constraints can be
satisfied, the set of rules under consideration will result in a new enactment
state, and Lines 9–14 create this new enactment state, based on the old one, by

adding the appropriate norms, and the constraints imposed by the applied rules.
Finally, starting at Line 15, we remove all enactment states obtained due to the
application of non-maximally consistent sets of potentially applicable rules.

Algorithm 1 provides us with an operational semantics for normative rules5.
In the next section, we investigate what action specification should be executed
given that the current enactment state contains some set of norms.

4 From Plans to Norm Constrained Actions

When executing an action specification, we must reason about the constraints
that should be imposed on it. These constraints are obtained from the norms
found within the current enactment state. For example, when executing action
a(X), given the norm Oa(X) ◦X < 5, the agent could constrain the value of X
to less than 5 if it decides to comply with the norm. Now, consider a sequence
of action specifications, such as a(X), b(Y), c(X,Z). Constraints on the value of
X, selected due to a(X), could affect norm compliance when executing c(X,Z).
Thus, compliance with norms at one time point can affect later norm compliance
choices.

We adopt a utility based model of norm compliance. More specifically, we
assume that the execution of a plan results in some base utility, and that different
types of norms are associated with different utility measures. Obligations and
prohibitions are associated with a a utility gain for compliance, and a utility loss
for violation. Permissions are associated with a utility loss for utilisation (for
example, obtaining permission to construct the refugee camp further away than
is normally allowed might incur a loss of trust within the society, reflected by
loss of utility). Actions also have a utility cost. Formally, we represent this via a
utility function cost : Act ×2Norms ×2Norms → R. The cost function is a partial
function, and its first parameter represents obligations and prohibitions that are
complied with, while its second parameter is those obligations and prohibitions
that are not complied with, together with the permissions that have been utilised.
Thus, if a norm appears in the set passed in as one parameter, it may not appear
within the other parameter. Under this model, the problem we are addressing
reduces to selecting a path through the plan, and a set of norms (created by the
rules as actions are executed) with which to comply, that is conflict free, and
which lead to maximal utility.

Our approach undertakes a best-first incremental search in the enactment
state space created by selectively expanding plans and selecting a subset of
norms for compliance. We define a data structure 〈∆,Actions,Utility〉 to track
the execution of a plan. Here, ∆ is an enactment state, Actions is a sequence
of action specifications, and Utility is the current utility of the plan. Using this
data structure Algorithm 2 describes the process of identifying an optimal plan.

The algorithm first creates a initial structure Υ containing a single element
representing the plan with no actions having yet been executed. It also initialises

5 Note that our algorithms do not explicitly manipulate substitutions, as these are
applied to variables during the computations.

Algorithm 2 Finding the optimal plan.

Require: A plan Plan, utility function cost and set of rules Rules
1: for all Action ∈ first possible actions of Plan do
2: Let Υ = {〈({},>), [Action], 0〉}
3: Best = ∅
4: while Υ ! = ∅ do
5: 〈(Ω,Γ),Actions, U〉=removed highest utility element of Υ
6: Let α = The last element of Actions
7: if α = ∅ & U > utility of Best then
8: Best = 〈(Ω,Γ),Actions, U〉
9: break

10: AN = applicableNorms(Ω,α)
11: for all ΩAN ∈ 2AN do
12: ΓN = Γ ∧ constraint(α)
13: for all Xψ · Γψ ∈ ΩAN do
14: if X = O then ΓN = ΓN ∧ Γψ
15: if X = F then ΓN = ΓN ∧ ¬Γψ
16: if X = P then ΓN = ΓN ∨ Γψ
17: if satisfy(ΓN) then
18: Un = U + cost(α,ΩAN , AN\ΩAN)
19: ∆N = posEnactStates((Ω,ΓN), α,Rules)
20: for all δ ∈ ∆N do
21: for all β=next possible action of Plan do
22: insert 〈δ, [Actions, β], Un〉 into Υ

the currently found solution (represented by Best) to the empty set. The heart
of the algorithm starts at Line 4. We begin by selecting the current best action
sequence (Line 5) and checking if it satisfies the plan in a manner better than
the current best solution. If so, this action sequence replaces the current best
solution. Otherwise, all applicable norms are identified. For each possible com-
bination of applicable norms, the constraint of those norms that are applied are
added to any existing constraints (Lines 11–16). ΓN is analogous to (1) from Sec-
tion 2.4, and if it is satisfiable, then this combination of norms is not in conflict,
and can thus executed. The utility for complying with this subset of applicable
norms is thus computed (Line 18), and all possible enactment states resulting
from this action are then created (Line 19). Finally, all possible next action spec-
ifications are obtained from the plan, and the updated action sequences, utilities,
and enactment states are added back to Υ (Lines 20–22) allowing the process to
continue.

We do not describe how to extract the next actions from an AND/OR tree,
as standard algorithms exist to do so [5]. It should be noted that our algorithm
can easily be extended to reason over multiple plans by associating each plan
with its own base utility, and storing the plan in Υ . Also, note that a fully norm-
compliant reasoner (that is, one that will only act if it can comply with all its

norms) can be obtained from Algorithm 2 by modifying Line 11 to consider the
set of applicable norms rather than its powerset.

While our algorithm is guaranteed to terminate, and is sound and complete
if left to run to termination, its worst case complexity is clearly exponential.
However, this complexity is mitigated by two factors. First, our algorithm is
anytime, storing incrementally better solutions in Best (if they exist) as time
progresses. Second, it is possible to use heuristics to improve the algorithm’s
performance. Before discussing such heuristics, we evaluate our algorithm in a
simple domain.

5 Evaluation

We implemented our system in SWI-Prolog 6, and evaluated it on a simple
bomb clearing scenario, as shown in Figure 2. The domain consists of a tile
world with a single agent. Each tile could be empty, or contain a bomb that is
either moderately (grey), or very (black), dangerous. The bomb clearing agent
has only one plan available to it, abstractly represented as follows:

andN(scanC ,moveC ,orN(nothing , pickup, explodeC))

All except the nothing and pickup actions are in fact compound actions, made
up of a orN of primitive actions. For example, the moveC action is defined as
follows:

moveC ≡ orN(move(X,Y,A,B) ·A = X ∧B = Y,
move(X,Y,A,B) ·A = X + 1 ∧B = Y,
move(X,Y,A,B) ·A = X − 1 ∧B = Y,
move(X,Y,A,B) ·A = X ∧B = Y + 1,
move(X,Y,A,B) ·A = X ∧B = Y − 1)

This action thus allows the agent to move to a neighbouring tile, or stay in
its current position (X and Y are replaced by the current position in our imple-
mentation). Similarly, the scanC action scans all four compass points around it
to a range of 2, identifying the contents of the tile and its associated scan threat
level. The explodeC action consists of an orN composed of 8 primitive actions,
allowing the agent to trigger an explosion up to 2 tiles away from it. The pickup
action, used to clear a bomb from the square occupied by the agent, is defined
as

pickup(C,D), C = A ∧D = B

Note that this action makes use of A and B, whose values are constrained by
the moveC action.

We defined 10 normative rules for the system. Due to space constraints, we
describe most of these only informally. The first normative rule is designed to
prevent an agent from wandering out of the area in which bombs may exist.

6 http://www.swi-prolog.org

http://www.swi-prolog.org

Fig. 2. A scenario in which norm aware and norm compliant agents will behave dif-
ferently.

Additional normative rules are designed to prohibit an agent from moving onto
a dangerous bomb, oblige the agent to explode such dangerous bombs, and also
to oblige the agent to pick up low threat level bombs. Another rule prohibits
explosions within 1 tile of the agent, and is defined as follows:

move(R4XO,R4Y O,R4X,R4Y) · > ⇒
⊕Fexplode(R4A,R4B)·(R4A = R4X ∧R4B = R4Y)∨

(R4A = R4X − 1 ∧R4B = R4Y)∨
(R4A = R4X + 1 ∧R4B = R4Y)∨
(R4A = R4X ∧R4B = R4Y − 1)∨
(R4A = R4X ∧R4B = R4Y + 1)))

A similar rule removing this obligation was also created. The order of rule
evaluation (removal and then addition) allows these rules to operate correctly.
Finally, 4 rules were defined to remove any obligations associated with bombs
that have been removed from the environment. Finally, we associated a utility
gain of 10 with exploding a bomb, and 5 with picking it up. We associated a
utility cost of 100 with exploding a bomb too close to the agent, and a cost of 1
for moving into a square containing a dangerous bomb.

In this environment, an agent using the algorithms described in this paper
will perform differently to a fully norm compliant agent. Consider the situation
illustrated in Figure 2, where the agent is surrounded by dangerous bombs. A
fully norm compliant agent will not move from its starting position as doing so
would violate one of the norms imposed by its normative rules. An agent ca-
pable of violating norms will move into one of the dangerous squares (violating
a less important norm) and explode the bomb opposite it from 2 squares away
(complying with a more important norm), thereby freeing it to continue moving
around the environment. It should be noted that this is the only situation (out-
side similar cases when the agent is in a corner or edge of the world) where norm
awareness allows an agent to select a different action to one that would be chosen
by a norm compliant agent. Given this, we saw only a small improvement in the

performance of the former agent over the latter when evaluated over randomly
generated worlds.

Now norm-aware and norm-compliant agents should be contrasted with clas-
sic (norm unaware) BDI type agents. The latter type of agent, when operating
in the sample domain, would execute some version of the plan at random, of-
ten moving into dangerous squares, randomly triggering explosions in tiles near
them, and so on, and ultimately perform poorly. The difference between this
type of agent, and the ones described previously does not lie in their plans, but
rather in their norms. The ability to assign and modify norms in this way thus
changes the behaviour of an agent without requiring any modification to its plan
library.

The improved performance in bomb clearing comes at the cost of additional
time; the norm aware and norm compliant agents both took approximately 13
seconds to select an action on a 2.4 GHz computer. This occurs as all possible
executions of the plan are evaluated by the system. In the next section, we
discuss a number of possible techniques for improving the performance of our
algorithms.

6 Discussion

Algorithms such as A* have shown that the addition of a heuristic to estimate the
remaining utility gained by executing the rest of a plan can improve the speed
at which good solutions can be found. Making use of such a heuristic within
our framework is simple, requiring only a change to to Line 18 of Algorithm
2. However, identifying an appropriate heuristic is more difficult. [12] suggests
several heuristics usable in HTN planning with preferences, and inspired by
these, possible heuristics include assuming that no more norm violations will
occur; that all norms will be complied with; or that some norms will be ignored.
More complex heuristics include Monte-Carlo sampling of a plan.

Pruning low utility elements from Υ can also improve algorithm runtime.
This is achieved by modifying Line 22 of Algorithm 2 to not run if the candidate
addition’s utility is much worse than the current best solution’s. However, this
speedup comes at the cost of completeness unless the cost function is monotonic.

The focus of this paper is on the role of norms within plans. While our work
can be viewed as a form of HTN planning, the presence of norms provides a differ-
entiator for our work. Norms provide guarantees to open large-scale distributed
systems, establishing limits to the autonomy of components/agents [1]. There
have been attempts at connecting the computational behaviours of individual
components/agents and norms, whether to detect norm violation [4], or with a
view to verify if a set of norms can ever be fulfilled by a society of autonomous
software agents [13], or to inform agents about changes in their behaviour so as
to make the behaviours norm-compliant [10]. However, our problem is distinct,
and our approach novel: autonomous agents, with access to a library of plans to
choose from, but subject to norms, can make use of our mechanism to choose a
plan that will achieve individual and global goals while attempting to abide by

these norms. Our approach was inspired by [13], which presents a mechanism to
detect potential normative conflicts before they arise. However, that approach
is overcautious, detecting conflicts that may never arise in actual system execu-
tion. In contrast, the work in this paper adopts a more accurate representation
of agent behaviour, represented as a plan (with non-determinism in the choices
of values for variables and choices for OR branches). Finally, Dignum et al. [2]
propose the idea of an action having potential deontic effects. When reasoning
about action execution, the norms resulting from the action are computed, and
the norms resulting from those norms (e.g. contrary to duty obligations) are
recursively identified. If normative conflict is detected, the action would not be
executed. Dignum et al. focus on the deontic effects of a single action in the
context of contrary to duty obligations, while we concentrate on the effects of
norms on an entire plan.

Additionally, there is some similarity with work pursued by Governatori
and others (e.g. [7,8]), in that both use an initial specification of possible be-
haviours, and check the norm-compliance of these behaviours. [7] presented an
early form of Governatori’s model, which concentrated on manually constructed
plans, while [8] appears to be the most fully developed version of their approach.
Both our approach and theirs contain conditional norms, which are represented
as rules. However, there are also many differences. For example, while they utilise
business process descriptions and informally define a mix of predicate and first
order logic for their underlying representation, we use a more abstract, and sim-
pler (but fully formalised) plan description. Furthermore, [8] addresses a specific
class of norms, namely, reparational obligations, in which violated norms can be
repaired or compensated via other norms, but does not address, for instance,
the violation of prohibitions, as we have done. Furthermore, the propositional
nature of their work makes handling deadlines difficult, and their approach does
not support norm removal.

[9] also considered norm compliance. However, this work was at a more ab-
stract level, and while the interaction between an agent’s goals and norms was
discussed, no computational mechanism for deciding whether to comply with a
norm was proposed. Like us, [3] attempts to maximise utility based on the con-
sequence of complying with or violating a norm, with future world states repre-
sented as MDPs. However, while norms in our framework act as constraints on
the values of parameters, Fagundes consideres norms as affecting the ability to
perform an action in a given space. Thus, the space of actions to be considered,
and the effects of norm compliance and violation, are very different.

Our work can be compared with the work of Sohrabi et al. [12] on the
HTNPlan-P planner. This planner uses an extended version of PDDL that
allows preferences on the decompositions and actions employed in HTN plan-
ning in a similar way to which we use norms to restrict action execution. Their
extended preferences include temporally extended preferences regarding when a
particular action (or goal) should or should not be executable, conditional on
a subset of linear temporal logic (LTL). Preferences in LTL do not interact in

the same way as permissions affect obligations and prohibitions, limiting the
applicability of their techniques to our domain.

7 Conclusions and Future Work

When utilising offline planning, a plan is selected for execution from a pre-
generated plan library, with the selection being based on the goal to be met,
and on the current state of the environment in which the plan is to be executed.
However, such a plan cannot easily be adapted to operate under normative
constraints which were not originally anticipated by the plan designer. By making
use of a utility based approach, we have shown how a reasoner can act in an
optimal manner, violating, and complying with norms as needed.

We can identify a number of avenues of future work. Our current focus in-
volves investigating the heuristics discussed in Section 6. Additionally, as men-
tioned previously, the our obligations, prohibitions and permissions can be viewed
as a specific type of conditional norm, imposing constraints on the manner in
which an action should, should not, or may be executed, but only in the case
that the action is executed. We intend to extend our framework to cope with
more general norms, for example, obliging an action to be executed subject to
some specific constraints. Such an extension would allow us to apply our work to
areas outside the practical reasoning domain, such as electronic contracts, where
the contracting parties can analyse the contract, and their plans, in order to de-
termine whether they can achieve their own goals in a satisfactory manner while
following the contract. We also intend to enrich our representation language in
order to allow for constraints over finite sets and inference over rules. Finally, we
intend to investigate how our approach can be adapted to domains containing
uncertainty.

References

1. Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., van der Torre, L.: The BOID
architecture. In: Proc. 5th Int’l Conf. on Autonomous Agents. pp. 9–16 (2001),
citeseer.nj.nec.com/broersen01boid.html

2. Dignum, F., Morley, D., Sonenberg, E.A., Cavedon, L.: Towards socially sophisti-
cated BDI agents. In: Proc. ICMAS-2000. pp. 111–118 (2000), citeseer.nj.nec.
com/dignum00towards.html

3. Fagundes, M.S., Billhardt, H., Ossowski, S.: Reasoning about norm compliance
with rational agents. In: Proc. ECAI-10. pp. 1027–1028 (2010)

4. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: Con-
straint rule-based programming of norms for electronic institutions. JAAMAS
18(1), 186–217 (2009)

5. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice.
Morgan Kauffman (2004)

6. Governatori, G., Hulstijn, J., Riveret, R., Rotolo, A.: Characterising deadlines in
temporal modal defeasible logic. In: Proc. AI-2007. LNAI, vol. 4830, pp. 486–496
(2007)

citeseer.nj.nec.com/broersen01boid.html
citeseer.nj.nec.com/dignum00towards.html
citeseer.nj.nec.com/dignum00towards.html

7. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business
processes and business contracts. In: 10th Int’l Enterprise Distributed Object Com-
puting Conf. pp. 221–232 (2006)

8. Governatori, G., Rotolo, A.: How do agents comply with norms? In: Proc. NorMAS.
No. 09121 (2009), http://drops.dagstuhl.de/opus/volltexte/2009/1909

9. López y López, F., Luck, M., d’Inverno, M.: A normative framework for agent-
based systems. In: Boella, G., van der Torre, L.W.N., Verhagen, H. (eds.) Proc.
NorMAS. No. 07122 (2007)

10. Meneguzzi, F., Luck, M.: Norm-based behaviour modification in BDI agents. In:
Proc. AAMAS 2009. pp. 177–184 (2009), http://portal.acm.org/citation.cfm?
id=1558013.1558037

11. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Proc. MAAMAW 1996. pp. 42–55 (1996)

12. Sohrabi, S., Baier, J.A., McIlraith, S.A.: HTN planning with preferences. In: Proc.
IJCAI-09. pp. 1790 –1797 (2009)

13. Vasconcelos, W., Kollingbaum, M., Norman, T.J.: Normative conflict resolution in
multi-agent systems. JAAMAS 19(2), 124–152 (2009)

http://drops.dagstuhl.de/opus/volltexte/2009/1909
http://portal.acm.org/citation.cfm?id=1558013.1558037
http://portal.acm.org/citation.cfm?id=1558013.1558037

	Acting on Norm Constrained Plans

