
Acting on Norm Constrained Plans

Nir Oren, Wamberto Vasconcelos, Felipe Menguzzi, Michael Luck
n.oren@abdn.ac.uk, wvasconcelos@acm.org,

meneguzz@cs.cmu.edu, michael.luck@kcl.ac.uk

University of Aberdeen
Carnegie Mellon University

King’s College London

Nir Oren et al. (Univ. Aberdeen) Acting on Norm Constrained Plans 1 / 21

Overview

How can a BDI-like agent decide which plan to execute within an
environment containing norms?

System Components
Constraints
Actions and Plans
Norms, Permissions and Conflicts

Putting it all Together
Environment
Executing Actions
From Plans to Norm Constrained Actions

Nir Oren et al. (Univ. Aberdeen) Acting on Norm Constrained Plans 2 / 21

Constraints

We utilise constraints to describe, and restrict actions.
A set of constraints is viewed as a conjunction of individual
constraints.

X < 4, Z ≥ Y M = R + 4
Notation: Γ is a set of constraints. Standard definitions for
unification, satisfaction etc.

Nir Oren et al. (Univ. Aberdeen) Acting on Norm Constrained Plans 3 / 21

Action

An action (ψ ◦ Γ) consists of a predicate and a constraint binding
values to the variables in the predicate.
Abstract actions have unground variables.

move(A,B,X ,Y) ◦ A = X ∧ B = Y

One action, α can entail another, β iff whenever the constraints of
α are satisfied, so are those of β.

Nir Oren et al. (Univ. Aberdeen) Acting on Norm Constrained Plans 4 / 21

Plans

We treat a plan as a AND/OR tree (c.f. simple HTN planning).
Leaf nodes represent primitive actions.

relief(X,Y)

intel(X,Y) cleanup(X,Y) build(X,Y)

b_camp(X,Y) b_roads(X,Y)selfClear(X,Y) outsourceClear(X,Y)

andN(intel(X ,Y),
orN(selfClear(X ,Y),outsourceClear(X ,Y)),
b_camp(X ,Y),b_roads(X ,Y))

Actions in plans can have constraints.

Nir Oren et al. (Univ. Aberdeen) Acting on Norm Constrained Plans 5 / 21

Obligations

Oα,Pα,Fα where α = ψ ◦ Γ

Like actions, we define entailment between norms, representing a
specialisation relationship over norms.
What does ω = Oψ ◦ Γ mean? Two choices:

It is obligatory to execute ψ as constrained by Γ
If executing action ψ, it is obligatory to adhere to constraints Γ

Nir Oren et al. (Univ. Aberdeen) Acting on Norm Constrained Plans 6 / 21

Permissions and Prohibitions

Permissions are exceptions to obligations and prohibitions.
They have no meaning in isolation.

OselfClear(X ,Y)◦{X < 30,Y = 20} PselfClear(X ,Y)◦{X < 40}

Allows X to be less than 40 when the obligation is present without
violating the obligation.
The permission thus mitigates the obligation/prohibition.
Prohibitions forbid an action to take place with the values specified
in the constraint.
A set of norms is in conflict if there is no consistent way to satisfy
all its constraints (given the presence of mitigating permissions).

Nir Oren et al. (Univ. Aberdeen) Acting on Norm Constrained Plans 7 / 21

Normative Rules

Norms are typically situation dependent.
A simple normative language identifies when a norm starts or
ceases to exist.

R ::= LHS ⇒ RHS
LHS ::= α|α ∧ NLHS|NLHS

NLHS ::= ω|NLHS ∧ NLHS
RHS ::= RHS ∧ RHS| ⊕ ω| 	 ω

The language allows norm modification on action or conditional on
the existence of another norm.
Based on the work of Garcia-Camino et. al.

Nir Oren et al. (Univ. Aberdeen) Acting on Norm Constrained Plans 8 / 21

Enactment States

The execution of an action
Modifies the physical environment.
Can cause new norms to be instantiated, or existing ones to be
removed.
Might place constraints on future actions (via variable bindings).

We represent the domain as a transition system between
individual enactment states.
Each enactment state captures the system at a single time point.

∆ = (Ω, Γ) where Ω = {ω1, . . . ωn}

An enactment state identifies the (hard) constraints that exist, and
the norms that are in force.

Nir Oren et al. (Univ. Aberdeen) Acting on Norm Constrained Plans 9 / 21

Transitioning Between States

Garcia-Camino et. al. defined rules for (unambiguously)
transitioning between enactment states.
Our focus is different; we want to identify the possible enactment
states that can result from the execution of an action.

intel(X ,Y)⇒ ⊕ω1 intel(5,6)⇒ ⊕ω2 intel(7,8)⇒ ⊕ω3

intel(2,2) results in ω1 within the new enactment state.
intel(5,6) results in ω1, ω2 within the new enactment state.
intel(A,B)?

{ω1}, {ω1, ω2}, {ω1, ω3}, constrained appropriately.

Nir Oren et al. (Univ. Aberdeen) Acting on Norm Constrained Plans 10 / 21

Transitioning Between States

Given an enactment state, an action and a set of normative rules,
we identify a set of potentially applicable rules. I.e. rules for which
the LHS holds w.r.t the action and enactment state.
We check for consistency in the constraints computed from the
action executed, existing constraints and each element in the
powerset of potentially applicable rules.
Small subtlety: we need to include the constraints of the
potentially applicable rules that are not applied.

r1 = intel(X ,Y) ◦ X < 5⇒ ⊕ω1 r2 = intel(X ,Y) ◦ Y > 2⇒ ⊕ω2

〈{X < 5,Y > 2}, {ω1, ω2}〉, 〈{X < 5,Y ≤ 2}, {ω1}〉,
〈{X ≥ 5,Y > 2}, {ω2}〉, 〈{X ≥ 5,Y ≤ 2}, {}〉

We remove all enactment states obtained due to the application of
non-maximally consistent sets of potentially applicable rules.

Nir Oren et al. (Univ. Aberdeen) Acting on Norm Constrained Plans 11 / 21

Transitioning Between States

We place an ordering constraint on norm modification, adding
norms before removing them.
For any given path through the tree of enactment states, Γ is
monotonic, tracking all constraints that have been imposed to that
point in time.
Note: constraints are only added due to the LHS of a rule, not its
RHS.

Nir Oren et al. (Univ. Aberdeen) Acting on Norm Constrained Plans 12 / 21

Where are we?

Given a partially or fully ground action, an enactment state and a
current set of norms we can now identify all possible enactment
states that can be generated from that state.
This enactment state identifies the constraints affecting the agent,
and the “active” norms at that point in time.
How can we decide what actions to execute within some
enactment state?
A few assumptions

We have a plan library with each plan containing partially
constrained actions.
Achieving a plan yields utility.
Violating a prohibition or an obligation, executing an action or
utilising a permission, costs utility.
Complying with norms yields utility.

cost : Act × 2Norms × 2Norms → R

Nir Oren et al. (Univ. Aberdeen) Acting on Norm Constrained Plans 13 / 21

Plan Selection

We can select a plan for execution from a set of plans by
Computing an enactment state tree for each possible path through
the plan.
Identifying the tree with the maximal associated utility.

Rather than do all of this up front, we can perform a best first
incremental search in the enactment state space

Select a subset of norms for compliance.
Minimally constrain the action to comply with those norms.

Nir Oren et al. (Univ. Aberdeen) Acting on Norm Constrained Plans 14 / 21

Plan Selection

It is easy to modify the basic approach to represent a fully norm
compliant agent.
The algorithm is guaranteed to terminate and is sound and
complete.
But of exponential complexity.
It does however have anytime properties as we always track the
best action sequence to date.

Nir Oren et al. (Univ. Aberdeen) Acting on Norm Constrained Plans 15 / 21

Heuristics and Planning Complexity

It’s possible to modify our basic plan selection algorithm to act as
an A* search. It’s more difficult to find an admissible heuristic.

Assume no more norm violations will occur
That all norms will be complied with
Monte-Carlo plan sampling

It’s also possible to prune plans which appear bad when
compared to the current best plan.

Removes completeness guarantee, unless the utility gain function
is monotonic.

Nir Oren et al. (Univ. Aberdeen) Acting on Norm Constrained Plans 16 / 21

An Example

Nir Oren et al. (Univ. Aberdeen) Acting on Norm Constrained Plans 17 / 21

An Example

andN(scanC,moveC,orN(nothing,pickup,explodeC))

moveC ≡ orN(move(X ,Y ,A,B) · A = X ∧ B = Y ,
move(X ,Y ,A,B) · A = X + 1 ∧ B = Y ,
move(X ,Y ,A,B) · A = X − 1 ∧ B = Y ,
move(X ,Y ,A,B) · A = X ∧ B = Y + 1,
move(X ,Y ,A,B) · A = X ∧ B = Y − 1)

pickup(C,D),C = A ∧ D = B

Nir Oren et al. (Univ. Aberdeen) Acting on Norm Constrained Plans 18 / 21

An Example

10 normative rules
Preventing wandering out of the area
Stepping on dangerous bombs
Exploding bombs, . . .

move(R4XO,R4YO,R4X ,R4Y) · > ⇒
⊕Fexplode(R4A,R4B)·(R4A = R4X ∧ R4B = R4Y)∨

(R4A = R4X − 1 ∧ R4B = R4Y)∨
(R4A = R4X + 1 ∧ R4B = R4Y)∨
(R4A = R4X ∧ R4B = R4Y − 1)∨
(R4A = R4X ∧ R4B = R4Y + 1)))

Nir Oren et al. (Univ. Aberdeen) Acting on Norm Constrained Plans 19 / 21

Example

We evaluated a norm aware agent, fully norm complaint agent
and a norm unaware agent (following the basic plan).
Results were unsurprising...
One difficulty we encountered was representing the sensing
action in the plan.

Nir Oren et al. (Univ. Aberdeen) Acting on Norm Constrained Plans 20 / 21

Future Work

Identify the effects of heuristics on the algorithm.
Generalise our representation of obligation.
Enrich the language

Richer constraints
multiple actions in a rule

Integrate sensing/action effects into the model.
Integrate uncertainty into the approach (MDPs)?

Nir Oren et al. (Univ. Aberdeen) Acting on Norm Constrained Plans 21 / 21

