A Plan Optimality Monitoring Approach to Detect Commitment Abandonment

Ramon Fraga Pereira[†], Nir Oren[‡], and Felipe Meneguzzi[†]

> ‡University of Aberdeen, United Kingdom n.oren@abdn.ac.uk

> > COIN@AAMAS, 2017

May, 2017

Introduction

- Determining whether an agent is actually executing steps towards a goal (or has abandoned it), is important when:
 - multiple agents are trying to achieve joint goals, or
 - agents are committed for achieving goals for each other.
- **Commitment abandonment**: situation in which an agent switches from executing the actions of one plan that achieves the consequent it is committed to, to executing actions from another plan;
- We develop a **domain-independent** approach based on **planning techniques** to:
 - detect sub-optimal steps; and
 - infer whether an agent will honour a commitment

- 4 同下 - 4 同下 - 4 同下

- A commitment C(DEBTOR, CREDITOR, antecedent, consequent) formalizes that the agent DEBTOR commits to agent CREDITOR to bring about the consequent if the antecedent holds;
- The antecedent and consequent conditions of a commitment are conjunctions or disjunctions of events and possibly other commitments;
- In this paper, we aim to **monitor** the DEBTOR's behaviour (i.e., sequence of actions) to **detect** if this agent is **individually committed to carrying out a plan to achieve** the consequent for the CREDITOR.

・ 何 ト ・ ヨ ト ・ ヨ ト

Definition (Planning)

A planning instance is represented by a triple $\Pi = \langle \Xi, \mathcal{I}, G \rangle$, in which:

- Ξ = (Σ, A) is the domain definition, and consists of a finite set of facts Σ and a finite set of actions A (action costs = 1);
- *I* and *G* represent the planning problem, in which *I* ⊆ Σ is the initial state, and *G* ⊆ Σ is the goal state.
- **Heuristics** are used to estimate the cost to achieve a particular goal. In this work, we use **domain-independent heuristics**;

Definition (Landmarks)

Given a planning instance $\Pi = \langle \Xi, \mathcal{I}, G \rangle$, a fact (or action) *L* is a landmark in Π iff *L* must be satisfied (or executed) at some point along all valid plans that achieve *G* from \mathcal{I} .

イロト 不得 トイヨト イヨト 二日

Pattison and Long ("**Domain Independent Goal Recognition**". In STAIR, 2010) classify facts into a set of mutually exclusive fact partitions. We use such partitions to infer whether certain observations are consistent with a particular goal state, as follows:

- **Strictly Activating** is a type of fact that can never be added by any action unless defined in the initial state;
- **Unstable Activating** is a type of fact that that once deleted, cannot be re-achieved;
- **Strictly Terminal** is a type of fact that once added, cannot be deleted.

- 4 伺 ト 4 ヨ ト 4 ヨ ト

Background: Commitment Abandonment Problem

Definition (Commitment Abandonment Problem)

- Domain definition (Properties and Actions) $\Xi=\langle \Sigma, \mathcal{A} \rangle;$
- Commitment C, in which C(DEBTOR, CREDITOR, At, Ct), DEBTOR is the debtor, CREDITOR is the creditor, At is the antecedent condition, and Ct is the consequent;
- Initial state \mathcal{I} , *s.t.*, At $\subseteq \mathcal{I}$ (when begins the monitoring process);
- An observation sequence $O = \langle o_1, o_2, ..., o_n \rangle$, representing a full observable plan execution; and
- Threshold *θ*, representing the percentage of sub-optimal actions that the DEBTOR agent can deviate to achieve the consequent state Ct.
- The solution for a commitment abandonment problem is whether an observation sequence O has deviated more than θ from the optimal plan to achieve the consequent ct of commitment c.

Pereira, Oren, and Meneguzzi

- We use plan optimality monitoring techniques from the literature to detect sub-optimal steps (Pereira *et al.* "Monitoring Plan Optimality using Landmarks and Domain-Independent Heuristics". In PAIR@AAAI, 2017.);
- This approach combines **planning techniques**, *i.e.*, landmarks and domain-independent heuristics.
 - It uses **landmarks** to obtain information about **what cannot be avoided** to achieve a goal *G*; and
 - It uses heuristics to analyse possible plan execution deviation.

Analyzing Plan Execution Deviation

If an observation o_i results a state s_i, we consider a deviation from a plan to occur if h(s_{i-1}) < h(s_i).

- To predict which actions could be executed in the next observation, we **estimate the distance to the closest landmarks** (using h_{max}) from the current state to the extracted landmarks \mathcal{L} , and select the following actions:
 - For every fact landmark $l \in \mathcal{L}$ with $h_{max}(l) = 0$, we select actions $a \in \mathcal{A}$ such that $l \in pre(a)$; and
 - For every fact landmark $l \in \mathcal{L}$ with $h_{max}(l) = 1$, we select actions $a \in \mathcal{A}$ such that $pre(a) \in \text{current state and } l \in eff(a)^+$;
- Predicted actions may reduce the distance to the monitored goal and next landmarks.

- To detect sub-optimal steps (actions) in observation sequence *O* for a monitored goal *G*, we combine the techniques we developed and filter with the following condition:
 - An observed action $o \in O$ is considered sub-optimal if:
 - $o \notin$ set of predicted actions AND $(h(s_{i-1}) < h(s_i))$.

A (10) A (10)

Commitment Abandonment Detection Approach

- We monitor the sequence of actions of a DEBTOR to infer whether it will abandon a commitment
 - Observed sequence should achieve the consequent from a state in which the antecedent holds
- We use a threshold θ, representing the percentage of sub-optimal actions that the DEBTOR agent can deviate to achieve the consequent it is committed to, *i.e.*, a percentage of actions that CREDITOR agent agrees to deviate from the optimal.

Determining Commitment Abandonment using Plan Optimality Monitoring and Fact Partitioning

Our approach determines that a DEBTOR agent has abandoned a commitment it is committed to if any one of three conditions is true:

- Strictly Activating facts that we extracted are not in the initial state;
- ② we observe the evidence of any Unstable Activating and/or Strictly Terminal facts during the execution of actions in the observations; or
- 3 the number of observed sub-optimal steps is greater than θ defined by the CREDITOR.

Experiments and Evaluation (1 of 2)

- We evaluate our approach over 8 planning domains, most of which are inspired by real-world scenarios;
 - **Precision:** percentage of the abandoned commitments inferred that were actually abandoned (quality);
 - **Recall:** percentage of actually abandoned commitments inferred by the approach (quantity);
 - F1-score: harmonic mean between Precision and Recall.
- We use 6 domain-independent heuristics:
 - h_{adjsum} , $h_{adjsum2}$, $h_{adjsum2M}$, h_{combo} , h_{ff} , and h_{sum} ;
- We manually generated the dataset from medium and large planning problems, generating plans that either abandoned (ultimately went to a different goal) or did not abandon their corresponding goals/consequent, varying the number of sub-optimal actions.

Experiments and Evaluation (2 of 2)

Domain		т	Precision	Recall	F1-score
Domain		•	θ (0% / 5% / 10%)	θ (0% / 5% / 10%)	θ (0% / 5% / 10%)
DRIVER-LOG (30)	20.0	0.02	10/10/10	10/10/10	10/10/10
h _{adjsum2M}	20.0	0.05	1.0 / 1.0 / 1.0	1.0 / 1.0 / 1.0	1.0 / 1.0 / 1.0
DEPOTS (30)	19.6	1 70	10/10/10	10/10/08	10/10/099
h _{adjsum2}	10.0	1.79	1.0 / 1.0 / 1.0	1.0 / 1.0 / 0.8	1.0 / 1.0 / 0.88
EASY-IPC-GRID (30)	173	0.95	10/10/10	10/10/10	10/10/10
h _{ff}	11.5	0.95	1.0 / 1.0 / 1.0	1.0 / 1.0 / 1.0	1.0 / 1.0 / 1.0
Ferry (30)	13.5	0.38	10/10/10	10/08/08	10/088/088
h _{adjsum2}	13.5	0.50	1.0 / 1.0 / 1.0	1.0 / 0.0 / 0.0	1.0 / 0.00 / 0.00
LOGISTICS (30)	21.0	0.56	10/10/10	10/10/10	10/10/10
h _{adjsum2}	21.0	0.50	1.0 / 1.0 / 1.0	1.0 / 1.0 / 1.0	1.0 / 1.0 / 1.0
SATELLITE (30)	23.5	54	08/10/10	08/06/06	08/075/075
h _{adjsum2M}	23.5	5.4	0.0 / 1.0 / 1.0	0.0 / 0.0 / 0.0	0.0 / 0.15 / 0.15
Sokoban (30)	22.8	5.2	0.83 / 1.0 / 1.0	10/06/06	0.01 / 0.75 / 0.75
h _{combo}	22.0	5.2	0.03 / 1.0 / 1.0	1.0 / 0.0 / 0.0	0.91 / 0.75 / 0.75
ZENO-TRAVEL (30)	10.0	11	10/10/10	08/08/08	0.88 / 0.88 / 0.88
h _{adjsum2}	10.0	1.1	1.0 / 1.0 / 1.0	0.0 / 0.0 / 0.0	0.00 / 0.00 / 0.00

• |O| is the average number of observed actions in a plan execution;

- T is the average monitoring time (in seconds); and
- θ is threshold value varying at 0%, 5%, and 10%.

Pereira, Oren, and Meneguzzi

- Geib and Goldman. "Recognizing Plan/Goal Abandonment". In IJCAI, 2003;
- Kafali *et al.* "GOSU: Computing GOal SUpport with Commitments in Multiagent Systems". In ECAI, 2014; and
- Kafali and Yolum. "PISAGOR: A Proactive Software Agent for Monitoring Interactions". In Knowledge and Information Systems, 2016.

- 4 同 1 - 4 回 1 - 4 回 1

Conclusions

• Contribution:

- We formalized the commitment abandonment problem using planning;
- Our approach is domain-independent and require minimal domain knowledge; and
- We show that our approach has high accuracy (very good results) in almost all domains (apart from SATELLITE).

Limitations:

- We only deal with full observability;
- Our approach assumes a centralized monitor;

• Future Work:

- Detect commitment abandonment using multiple monitors; and
- Deal with partial observability (*i.e.*, missing observations).

Thank you! Questions?

Pereira, Oren, and Meneguzzi

Detecting Commitment Abandonment

May, 2017 17 / 17