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Abstract Assessing whether an agent has abandoned a goal is important
when multiple agents are trying to achieve joint goals, or when agents
commit to achieving goals for each other. Making such an inference for
a single goal by observing only plan traces is not a trivial task because
agents often deviate from the optimal plans for various reasons, including
the pursuit of multiple goals or the inability to act optimally. In this paper,
we develop an approach that uses plan optimality monitoring techniques
to determine whether an agent will honour a commitment. Specifically,
to determine commitment abandonment, we use these techniques with
planning fact partitions (e.g., dead-ends). We empirically show, for a
number of representative domains, that our approach yields very high
accuracy and detects commitment abandonment in nearly all cases.

Keywords: Commitment, Goal, Abandonment, Plan Execution

1 Introduction

Autonomous agents generate and execute plans in pursuit of goals, which can
be intrinsic to the agent or acquired through cooperative exchanges with others.
However, when carrying out its plans, an agent may execute actions that are not
optimal with regards to an individual goal due to factors including indecision
(e.g., interleaving actions from two plans for the same goal); an imperfect planning
mechanism; interleaving concurrent plans for multiple goals; and — in the most
extreme case — goal or plan abandonment. Determining whether such actions
have occurred is often important, especially when goal delegation has taken place;
where one agent is obliged or committed to achieve a goal; and where agents
are coordinating plan execution in pursuit of a joint goal. In all these cases,
determining that an agent is acting sub-optimally allows other agents to re-plan,
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apply sanctions, or otherwise mitigate against the effects of the failure to achieve
a certain state-of-affairs in a timely fashion.

We define commitment abandonment as a situation in which an agent switches
from executing the actions of one plan that achieves the consequent it is committed
to, to executing actions from another plan. To monitor agent behaviour and
detect which actions do not contribute (i.e., sub-optimal steps) to achieve a
monitored goal, and hence indicate commitment abandonment, we use plan
optimality monitoring techniques from the literature [14]. These techniques
exploit domain-independent heuristics [4] (to analyse plan deviation at every plan
step by estimating the distance to the monitored goal) and planning landmarks [7]
(properties or actions that cannot be avoided to achieve a goal from an initial
state). Like [14], we assume that during plan execution, all actions performed
by an agent are visible, and that a goal hypothesis and a domain definition are
available.

The main contribution of this paper is twofold. First, we apply plan optimality
monitoring techniques to compute whether a plan is sub-optimal (which actions
in this plan are sub-optimal). Second, we leverage these techniques to identify
whether an agent is individually committed to achieve a particular goal, allowing
us to identify whether this agent will honour a social commitment [18]. We bring
these techniques together in Section 4, formalising the problem of commitment
abandonment and its relation to an individual’s commitment to a plan (in the
BDI sense), and using it to detect whether an agent has abandoned a social
commitment. In this latter context, our technique assumes that a debtor agent
agrees to a certain abstract quality of execution (that some action steps might
not be optimal) when they accept a commitment towards a creditor agent. This
allows the creditor to ascertain, at runtime, whether and at what point in time
the debtor fails to honour the commitment. Experiments over several domains
(Section 5) show that our approach yields high accuracy at low computational
cost to detect, in nearly all cases, whether a debtor abandoned a commitment.

2 Background

2.1 Planning

Planning is the problem of finding a sequence of actions (i.e., a plan) that
achieves a particular goal from an initial state. We adopt the terminology of
Ghallab et al. [4] to represent planning domains and instances (also called
planning problems). A state is a finite set of facts that represent logical values
according to some interpretation in an environment. Facts can be either positive
or negated instantiated predicates. A predicate is denoted by an n-ary predicate
symbol p applied to a sequence of zero or more terms (τ1, τ2, ..., τn). An operator

is represented by a triple a = ⟨name(a), pre(a), eff (a)⟩ where name(a) represents
the description or signature of a; pre(a) describes the preconditions of a — a set
of facts or predicates that must exist in the current state for a to be executed;
eff (a) = eff (a)+ ∪ eff (a)− represents the effects of a, with eff (a)+ an add-list of
positive facts or predicates, and eff (a)− a delete-list of negative facts or predicates.
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Figure 1: Logistics problem example.

When an operator is instantiated over its free variables, it is called an action. A
planning instance is represented by a triple Π = ⟨Ξ, I, G⟩, in which Ξ = ⟨Σ, A⟩
is a planning domain definition; Σ consists of a finite set of facts and A a finite
set of actions; I ⊆ Σ is the initial state; and G ⊆ Σ is the goal state. A plan is
a sequence of actions π = ⟨a1, a2, ..., an⟩ that modifies the initial state I into one
in which the goal state G holds by the successive execution of actions in a plan π.
While actions have an associated cost, as in classical planning, we assume that
this cost is 1 for all actions. A plan π is considered optimal if its cost, and thus
length, is minimal.

Automated planners often exploit heuristics which estimate the cost to achieve
a specific goal from some state [4]. In this work, as done in classical planning,
we consider that all actions have equal cost, making the cost of a plan equal
to its length. When a heuristic never overestimates the cost to achieve a goal,
it is called admissible and guarantees optimal plans when used with certain
planning algorithms. A heuristic h(s) is admissible if h(s) ≤ h*(s) for all states,
where h*(s) is the optimal cost to the goal from state s, otherwise it is called
inadmissible. Here, we use both admissible and inadmissible domain-independent
heuristics for estimating the distance to a particular goal.

2.2 Landmarks

Planning landmarks are necessary properties (actions) that must be true (exe-
cuted) at some point in every valid plan1 to achieve a particular goal. Landmarks
are often partially ordered by their pre-requisite dependencies. Hoffman et al. [7]
define landmarks as follows.

Definition 1 (Fact Landmarks). Given a planning instance Π = ⟨Ξ, I, G⟩,
a formula L is a landmark in Π iff L is true at some point along all valid plans

that achieve a goal state G from an initial state I.

1 A valid plan to achieve a goal is a successive execution of actions (ordered) that
modifies an initial state into a state that contains the goal state
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Listing 1.1: Fact landmarks (conjunctive and disjunctive) extracted from the
Logistics example.
Fact Landmarks :

( and ( at BOX1 A2 ) )

( and ( at PLANE1 A2) ( in BOX1 PLANE1) )

( and ( at PLANE1 A1 ) ( at BOX1 A1 ) )

( and ( at PLANE1 A2 ) )

( and ( at TRUCK1 L3 ) )

( and ( in BOX1 TRUCK1) ( at TRUCK1 A1 ) )

( and ( at BOX1 L2 ) ( at TRUCK1 L2 ) )

( or ( at TRUCK1 L1 ) ( at TRUCK1 A1 ) ( at TRUCK1 L3 ) )

Hoffmann et al. [7] describe both conjunctive and disjunctive landmarks. A
conjunctive landmark is a set of facts that must be true together at some state
in every valid plan to achieve a goal. A disjunctive landmark is a set of facts in
which one fact must be true at some state in every valid plan to achieve a goal.
The process of landmark extraction both identifies conjunctive and disjunctive
landmarks, and determines the temporal ordering between them (i.e., identifies
which landmark occurs before which). As an example of landmarks and their
orderings, consider an instance of the Logistics2 planning problem shown in
Figure 1. This example shows two cities: the city on the left contains locations
L1, L2, L3 and an airport (A1), and the city on the right that contains another
airport (A2). The goal within this example is to transport an item (box1) at
location L2 to airport A2. Listing 1.1 shows the resulting fact landmarks, while
Figure 2 show their ordering (edges show that a source formula must hold after
its target). Note that a goal is considered to be a conjunctive landmark. From
Figure 2, we see that the second landmark (stating that any valid plan must
have box1 within plane1, and that plane1 must be at airport A2) must occur
before the goal is achieved, and that before the box is within the plane, plane1
must be at A1, and so must box1. In this paper, we use landmarks to monitor a
set of ordered facts (or actions) that cannot be avoided to achieve a goal, and
therefore, if such ordered facts are not being achieved according to their ordering
in a plan execution, we might infer that this plan execution is not contributing
towards goal achievement.

2.3 Fact Partitioning

Pattison and Long [13] classify facts into mutually exclusive partitions to reason
about whether certain observations are likely to be goals for goal recognition. Their
classification relies on the fact that, in some planning domains, predicates may
provide additional information that can be extracted by analyzing preconditions
and effects in operator definition. We use this classification to infer whether
certain observations are consistent with a particular goal. The fact partitions we
use are defined as follows.
2 The Logistics domain consists of airplanes and trucks transporting packages between

locations (e.g., airports and cities).
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at BOX1 A2

at PLANE1 A2 in BOX1 PLANE1

at BOX1 L2 at TRUCK1 L2

at TRUCK1 L1 at TRUCK1 A1 at TRUCK1 L3

at PLANE1 A1 at BOX1 A1

at TRUCK1 L3

at PLANE1 A2 in BOX1 TRUCK1 at TRUCK1 A1

Figure 2: Ordered fact landmarks extracted from the Logistics example in
Figure 1. Fact landmarks that must be true together are represented by connected
boxes and represent conjunctive landmarks. Disjunctive landmarks are represented
by octagonal boxes connected by dashed lines.

Definition 2 (Strictly Activating). A fact f is strictly activating if f ∈ I
and ∀a ∈ A, such that f /∈ eff(a)+ ∪ eff(a)−. Furthermore, ∃a ∈ A, such that

f ∈ pre(a).

Definition 3 (Unstable Activating). A fact f is unstable activating if f ∈ I
and ∀a ∈ A, f /∈ eff(a)+ and ∃a ∈ A, f ∈ pre(a) and ∃a ∈ A, f ∈ eff(a)−.

Definition 4 (Strictly Terminal). A fact f is strictly terminal if ∃a ∈ A,

such that f ∈ eff(a)+ and ∀a ∈ A, f /∈ pre(a) and f /∈ eff(a)−.

A Strictly Activating fact appears as an operator’s precondition, and does not
appear as an add or delete effect in any operator definition. Therefore, unless
defined in the initial state, this fact can never be added or deleted by an operator.
An Unstable Activating fact appears as both a precondition and a delete effect
in two operator definitions, so once deleted, this fact cannot be re-achieved.
The deletion of an unstable activating fact may prevent a plan execution from
achieving a goal. A Strictly Terminal fact does not appear as a precondition of
any operator definition, and once added, cannot be deleted. For some planning
domains, this kind of fact is the most likely to be in the set of goal facts, because
once added in the current state, it remains true until the final state.

The fact partitions that we can extract depend on the planning domain
definition. For instance, from the Driver-Log domain3, it is not possible to
3 Driver-Log domain consists of drivers and trucks that can transport and stack

packages between locations.
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extract any fact partitions. However, it is possible to extract fact partitions
from the Easy-IPC-Grid domain4, such as Strictly Activating and Unstable

Activating facts. We exploit fact partitions to obtain additional information on
fact landmarks. For example, consider an Unstable Activating fact landmark Lua,
so that if Lua is deleted from the current state, then it cannot be re-achieved. We
can trivially determine that goals for which this fact is a landmark are unreachable
(and consequently detect that there is no available optimal or sub-optimal plan
to achieve this goal), because there is no available action that achieves Lua again.

3 Monitoring Plan Optimality

Pereira et al. [14] have developed a plan optimality monitoring approach that
uses landmarks and domain-independent heuristics. Intuitively, this approach
aims to detect which actions in the execution of an agent plan do not contribute
to the plan for achieving the monitored goal.

Analysing Plan Execution Deviation: We now describe an algorithm that
Pereira et al. [14] have proposed to analyse plan execution deviation. This
algorithm uses domain-independent heuristics to estimate the distance to the
monitored goal for every observed action in an observation sequence (Definition 5),
and infer whether there is any deviation between them. To do so, we leverage this
algorithm and compute the estimated distance to the monitored goal for every
state resulting from the execution of an observed action. Note that we assume full
plan observability in the sense that no actions are missing from the observations
from the initial state up to a time point. For example, if the optimal plan to goal
G has 10 action steps, and we observe just 2 actions in the observation sequence,
then OG = ⟨o1 ≺ o2⟩ corresponds exactly to the two first actions in the plan.

Definition 5 (Observation Sequence). Let O be a sequence ⟨o1, o2, ..., on⟩ of

observations of a plan’s execution with each observation oi ∈ O corresponding to

an action in the set of actions A in domain definition Ξ.

Given a state s, a heuristic h returns an estimated distance h(s) to the goal
state. If the action corresponding to observation oi results in state si, we consider
a deviation from a plan to occur if h(si−1) < h(si). A deviation here may indicate
that the agent behaviour is unstable, or that the agent is performing concurrent
plans. The up-tick shown in Figure 3 illustrates a deviation detected using the
Fast-Forward heuristic [6] for two different plan executions. These two plan
executions (an optimal plan – blue, and a sub-optimal plan – red) are plans that
achieve the goal state from the initial state in Figure 1. During the execution of
the sub-optimal plan (red), deviations occur for actions leading at the observation
time 2 and 3. By analysing this plan deviation, we conclude that these actions do
not contribute to achieve the goal because they increase the estimated distance
4 Easy-IPC-Grid domain consists of an agent that moves in a grid from cells to others

transporting keys to open locked locations.



A Plan Optimality Approach to Detect Commitment Abandonment 7

to the goal state. However, since heuristics may be inaccurate, we use landmarks
to build a further condition of sub-optimality, predicting actions that achieve
next landmarks, and consequently the monitored goal state.
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Figure 3: Plan execution deviation example using the Fast-Forward heuristic.

Predicting Non-regressive Actions via Landmarks: Ordered landmarks
effectively provide way-points towards the monitored goal, identifying what
cannot be avoided on the way to achieving the goal. Since all valid plans that
achieve a goal state from an initial state should pass through a landmark, we
can exploit their presence to predict what actions might be executed next, either
to reach the landmark, or to move towards a goal. Like Pereira et al. [14], we
use such predictions to check the set of observed actions of a plan execution to
determine which actions do not contribute to the monitored goal.

To predict which actions could reasonably be executed in the next observation,
Pereira et al. [14] have developed an algorithm that estimates the distance to
the closest landmarks from the current state. This algorithm uses an admissible
domain-independent heuristic to estimate these distances, namely the Max-

Heuristic5, which we denote as hmax. We use the Max-Heuristic because it is
admissible and only a short distance must be estimated. Pereira et al. [14] consider
that the closest fact landmarks (either conjunctive or disjunctive landmarks)
are those in the set of extracted landmarks L that return estimated distance
hmax(l) = 0 and hmax(l) = 1, namely:

– For every fact landmark l ∈ L in which the estimated distance is 0, we select
those actions a ∈ A such that l ∈ pre(a); and

– For every fact landmark l ∈ L in which the estimated distance is 1, we select
those actions a ∈ A such that pre(a) ∈ current state and l ∈ eff(a)+;

5 Max-Heuristic (hmax) is an admissible heuristic proposed by Bonet and Geffner
in [2], and is based on delete-list relaxation, in which delete-effects of actions are
ignored during calculation of the heuristic cost to a goal. This calculation is the cost
of a conjunctive goal, which represents the maximum cost to achieve each of the
individual facts.
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Listing 1.2: Predicted upcoming actions for the Logistics example.
( and ( at BOX1 A2 ) ) = 7

( and ( at PLANE1 A2) ( in BOX1 PLANE1) ) = 6

( and ( at PLANE1 A1 ) ( at BOX1 A1 ) ) = 5

( and ( at PLANE1 A2 ) ) = 0

- An a p p l i c a b l e a c t i o n i s :

( f l y PLANE1 A2 A1 )

( and ( at TRUCK1 L3 ) ) = 0

- An a p p l i c a b l e a c t i o n i s :

( d r i v e TRUCK1 L3 L2 CITY1 )

( and ( in BOX1 TRUCK1) ( at TRUCK1 A1 ) ) = 3

( and ( at BOX1 L2 ) ( at TRUCK1 L2 ) ) = 1

( or

( at TRUCK L1 ) = 1

( at TRUCK A1 ) = 1

( at TRUCK L3) = 0

- An a p p l i c a b l e a c t i o n i s :

( d r i v e TRUCK1 L3 L2 CITY1 ) )

These actions obtained from the closest landmarks may reduce the distance
to the monitored goal and next landmarks. We call these actions as predicted
actions, actions that could move towards the monitored goal and next landmarks.

To exemplify how this algorithm predicts upcoming actions, consider the
Logistics problem in Figure 1. If the current state is the initial state, then
the algorithm predicts upcoming actions that might be executed as the first
observation in the plan execution. As output for this example, Listing 1.2 shows
fact landmarks (on the left); the estimated distance from the initial state to fact
landmarks (after the symbol =); and on the bottom of the fact landmarks, which
applicable actions this algorithm predicts to be the first observation. Note that
there are fact landmarks for which the estimated distance is hmax(l) = 1 and
there is not any predicted actions for these fact landmarks, it happens because
there is no applicable action in the initial state to achieve these fact landmarks.

Detecting Sub-Optimal Steps: We now describe how Pereira et al. [14]
uses the approaches described above to detect sub-optimal actions during a
plan execution. As input, their plan optimality monitoring approach takes as
input a planning domain definition, an initial state, a monitored goal, and
an observation sequence (i.e., set of observed actions) as the execution of an
agent plan (Definition 5). The approach initially computes landmarks using the
algorithm proposed by Hoffman et al. [7]. Afterwards, the algorithm iterates over
the set of observed actions O and applies them, checking which actions do not
contribute to achieve the monitored goal. Any such action is then considered to be
sub-optimal. Basically, Pereira et al. [14] combines the techniques described above
(Analysing Plan Execution Deviation and Predicting Non-regressive Actions via

Landmarks), by labelling an observed action step as sub-optimal according to
the following condition:

– An observed action o in O is considered sub-optimal if: o /∈ set of predicted
actions AND (h(si−1) < h(si)).
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4 Detecting Commitment Abandonment

Commitments have been used in multi-agent systems to enable autonomous
agents to communicate and coordinate successfully to achieve a particular goal
[10,19,1]. A commitment C(DEBTOR, CREDITOR, antecedent, consequent)

formalizes that the agent DEBTOR commits to agent CREDITOR to bring
about the consequent if the antecedent holds. Here, the antecedent and conse-
quent conditions are conjunctions or disjunctions of events and possibly other
commitments. In this work, we aim to monitor the DEBTOR’s behaviour (i.e.,
sequence of actions) to detect if this agent is individually committed to carrying
out a plan to achieve the consequent for the CREDITOR.

In this section, we apply our approach for plan optimality monitoring to
infer when agents are likely to abandon commitments to each other. We formally
define the commitment abandonment problem and then develop an approach
to efficiently solve this problem using fact partitions (Subsection 2.3) and the
techniques from Section 3.

4.1 Commitment Abandonment Problem

We define commitment abandonment as a situation in which an agent switches
from executing the actions of one plan that achieves the consequent it is committed
to, by executing actions from another plan. This plan may achieve other goals,
including the consequent of other commitments. Actions in a plan that do not
contribute to achieve the consequent of a commitment may indicate that the
debtor agent is likely to abandon the commitment that it is committed to its
creditor. Reasons why an agent abandons a commitment can include dealing
with conflicting commitments, in this case, the agent decides which commitment
is more important given its current situation.

Here, we take inspiration in earlier work [1,10] that connects commitments to
planning, so the domain definition Ξ represents the environment where agents
can interact and act, i.e., Σ is the set of environment properties and A is a set of
available actions. Now, consider a commitment C(DEBTOR, CREDITOR, At,

Ct): in order for a DEBTOR to achieve the consequent Ct from the antecedent
At we define that: the antecedent At must be in the initial state I, i.e., At

⊆ I; and the consequent Ct is the goal G. Thus, a plan π for C(DEBTOR,

CREDITOR, At, Ct) is a sequence of actions [a1, a2, ..., an] (where ai ∈ A) that
modifies the state At ⊆ I into one where Ct holds by the successive (ordered)
execution of actions in a plan π.

To decide if a debtor agent will abandon a commitment, we monitor its
behaviour in an environment by observing its successive execution of actions. This
successive execution of actions represents an observation sequence (Definition 5)
that should achieve a consequent from an antecedent. When a DEBTOR settles to
commit to an agent CREDITOR to bring about the consequent of a commitment,
the DEBTOR should individually commit to achieving such a consequent state,
and to achieve such state, the DEBTOR has to execute a plan. An observer does
not have access to the DEBTOR’s internal state, and consequently to what plan
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it has committed to. Therefore, when there are multiple optimal plans, we need
to be able to determine which of those plans the DEBTOR is pursuing. Thus, in
Definition 6, we formally define an individual commitment from an observer’s
point of view.

Definition 6 (Individual Commitment). Given a set of plans, a DEBTOR
agent is individually committed to a plan π if, given a sequence of observations

o1, . . . , on: i) ok ∈ π where (1 ≤ k ≤ n); and ii) if ok = aj, then ∀i = 1 . . . j − 1,

ai ∈ O and ai occurs before ai+1 in O. An observation op does not contribute

to achieve a consequent Ct if the DEBTOR agent is committed to plan π and:

op /∈ π; or if op = aj, ak has not yet been observed where k < j.

Finally, using the notion of individual commitment, we formally define a
commitment abandonment problem over a planning theory in terms of a large
enough deviation from such an individual commitment in Definition 7. Note
that with Definition 6, we can now think of deviations from observations that
constitute a strict sub-sequence of any optimal plan that start with the initial
state, allowing an agent to infer abandonment at any point in a partial plan
execution.

Definition 7 (Commitment Abandonment Problem). A commitment aban-

donment problem is a tuple CA = ⟨Ξ, C, I, O, θ⟩, in which Ξ is a planning domain

definition; C is the commitment, in which C(DEBTOR, CREDITOR, At, Ct),

DEBTOR is the debtor, CREDITOR is the creditor, At is the antecedent condi-

tion, and Ct is the consequent; I as the initial state (s.t., At ⊆ I), the state we

start the monitoring process; O is an observation sequence of the plan execution

with each observation oi ∈ O being an action from domain definition Ξ; and θ is

a threshold that represents the percentage of actions (in relation to an individually

committed plan, Definition 6) in an observation sequence that do not contribute

to achieving Ct from At ⊆ I in which the DEBTOR can execute in O.

The solution for a commitment abandonment problem is whether an observa-
tion sequence O has deviated more than θ from the optimal plan to achieve the
consequent Ct of commitment C.

4.2 Detecting Commitment Abandonment via Plan Optimality

Monitoring

We now bring together the techniques developed in Section 3. To detect com-
mitment abandonment, we infer sub-optimal steps using the techniques from
Section 3 and use the concept of fact partitions from Section 2.3. Once we observe
evidence of such fact partitions in the observations we can determine that a goal
can no longer possible be achieved.

Algorithm 1 formalizes our approach to solve a commitment abandonment
problem. The algorithm takes as input a CA tuple and returns whether a commit-
ment has been abandoned, based on whether one of the following occurs during
plan execution: (1) if Strictly Activating facts that we extracted are not in the
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initial state (Line 3); (2) if we observe the evidence of any Unstable Activating

and Strictly Terminal facts during the execution of actions in the observations
(Line 8); or (3) if the number of sub-optimal steps are greater than the threshold
θ (i.e., the percentage of actions away from optimal execution that the credi-
tor allows the debtor to deviate in achieving the consequent state) defined by
the creditor (Line 10). Note that the DetectSubOptimalSteps(Ξ, I, Ct, O)
function corresponds to the approach described in Section 3. If none of these
conditions hold, the debtor is considered to remain committed to achieving the
consequent state of the commitment. Note that in condition (2), the presence
of predicates from two of the fact partitions can determine that the monitored
goal (or consequent) is unreachable, because there is no available action that can
make the facts hold.

Algorithm 1 Detecting Commitment Abandonment.
Input: Ξ = ⟨Σ, A⟩ planning domain, At antecedent condition (At ⊆ I), Ct consequent
condition, I initial state, O observation sequence, and θ threshold.

1: function HasAbandoned(Ξ, At, Ct, I, O, θ)
2: ⟨Fsa, Fua, Fst⟩ ← PartitionFacts(Σ,A)
3: if Fsa ∩ (At ⊆ I) = ∅ then
4: return true ▷ Ct is no longer possible.
5: δ ← I ▷ Initialasing current state δ.
6: for each observed action o in O do
7: δ ← δ.Apply(o) ▷ Executing the observed action o in the current state δ,

i.e., (δ − eff(o)−) ∪ eff(o)+.
8: if (Fua ∪ Fst) ⊆ (δ) then
9: return true ▷ Ct is no longer possible.

10: ASubOptimal ← DetectSubOptimalSteps(Ξ, I, Ct, O)
11: if ASubOptimal > (θ ∗ |O|) then
12: return true ▷ Debtor has abandoned the commitment.
13: return false ▷ Debtor may still be committed to achieve Ct.

4.3 Working Example

To exemplify how our approaches detect sub-optimal steps and determine commit-
ment abandonment, consider the Logistics problem example shown in Figure 4.
This example formalizes two commitments: C1 represents that the debtor agent
TRUCK1 is committed to the creditor agent PLANE1 to bring about the con-
sequent (at BOX3 L1) when the antecedent (at BOX3 A1) becomes true; and
C2 represents that the debtor agent PLANE1 is committed to the creditor agent
TRUCK1 to bring about the consequent (and (at BOX1 A3) (at BOX2 A4))

when the antecedent (and (at BOX1 A1) (at BOX2 A1)) becomes true. Assum-
ing that for C1 the threshold θ is 0%, and for C2 the threshold θ is 30%, Tables 1
and 2 show observed actions that we observe for C1 and C2, respectively. Rows in
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Figure 4: Logistics working example.

grey represent sub-optimal actions, and rows without a number (i.e., -) represent
actions executed by the creditor agent, actions that are going to achieve the
antecedent state.

From the observation sequence shown in Table 1 and the threshold θ = 0%,
our approach returns that the observations at time 1 and 2 are sub-optimal
actions, and therefore debtor agent TRUCK1 has abandoned commitment C1,
since θ = 0% (i.e., the creditor does not allow any deviation), and the agent
has executed two actions that do not contribute to achieve the consequent state
of C1. The observed action at time 3 is an optimal action because the agent is
moving towards the location L1, where it must unload BOX3.

Now consider the observation sequence in Table 2 and a threshold θ = 30%.
While our approach returns that the observations at time 3 and 4 are sub-
optimal actions, the threshold (which allows 2.7 sub-optimal actions) means that
the debtor agent PLANE1 is considered to remain committed to achieve the
consequent of C2.

5 Experiments and Evaluation

We empirically evaluated our approaches (plan optimality monitoring and com-
mitment abandonment) over several widely used planning domains, most of
which are inspired by real-world scenarios. The Driver-Log domain consists
of drivers that can walk between locations and trucks that can drive between
locations, and goals consist of transporting packages between locations. Depots

combines transportation and stacking, in which goals involve moving and stacking
packages by using trucks and hoists between depots. Easy-IPC-Grid consists
of an agent that moves in a grid from cells to others by transporting keys to
open locked locations for releasing agents that are at isolated cells. The Ferry
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- (loadAirplane BOX3 PLANE1 A2)

- (fly PLANE1 A2 A1)

- (unloadAirplane BOX3 PLANE1 A1)

0 (loadTruck BOX3 TRUCK1 A1)

1 (drive TRUCK1 A1 L4 CITY1)

2 (drive TRUCK1 L4 L2 CITY1)

3 (drive TRUCK1 L2 L1 CITY1)

Table 1: Observation sequence (1), mon-
itoring TRUCK1.

- (drive TRUCK1 L2 A1 CITY1)

- (unloadTruck BOX2 TRUCK1 A1)

- (unloadTruck BOX1 TRUCK1 A1)

0 (fly PLANE1 A2 A1)

1 (loadAirplane BOX2 PLANE1 A1)

2 (loadAirplane BOX1 PLANE1 A1)

3 (fly PLANE1 A1 A2)

4 (fly PLANE1 A2 A1)

5 (fly PLANE1 A1 A3)

6 (unloadAirplane BOX1 PLANE1 A3)

7 (fly PLANE1 A3 A4)

8 (unloadAirplane BOX2 PLANE1 A4)

Table 2: Observation sequence (2),
monitoring PLANE1.

domain consists of set of cars that must be moved to desired locations using a
ferry that can carry only one car at a time. Logistics, described previously,
consists of air-planes and trucks transporting packages between locations (e.g.,
airports and cities). Satellite involves using one or more satellites to make
observations by collecting data and down-linking the data to a desired ground
station. Sokoban involves pushing a set of boxes into specified locations in a grid
with walls. Finally, Zeno-Travel is a domain where passengers can embark and
disembark onto aircraft that can fly at two alternative speeds between locations.

For each of these domains we selected 10 non-trivial problem instances, in
which we translated to commitment abandonment problems (10 problems for each
threshold value: 0%, 5%, and 10%). Each commitment abandonment problem
contains a planning domain definition, a commitment, an initial state, a set of
observations (i.e., plan executions), and a threshold value. For these problems,
we generated plans (optimal and sub-optimal) using open-source planners, such
as BlackBox, Fast-Downward, FF, and LAMA [15]. We generated plans
that either abandoned (ultimately went to a different goal) or did not abandon
their corresponding goals/consequent, varying the number of abandoned actions.

Since the plan optimality monitoring approach we use (Pereira et al. [14])
can exploit any domain-independent heuristic to compute whether an action
contributes to goal achievement, we evaluated our commitment abandonment
detection approach using several admissible and inadmissible heuristics. Sum

(hsum) is an inadmissible heuristic proposed by Bonet and Geffner in [2], and works
in a similar manner to Max-Heuristic, but is more informative. Adjusted-Sum

(hadjsum) is an inadmissible heuristic [12] that improves Sum by considering both
negative and positive interactions among facts; Adjusted-Sum2 (hadjsum2) is
an inadmissible heuristic [12] that improves the Adjusted-Sum by combining
the computation of the Set-Level6 heuristic and the relaxed plan heuristic.

6 The Set-Level heuristic estimates the cost to a goal by returning the level of the
planning graph where all facts of the goal sate are reached without any mutex free [11].
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Adjusted-Sum2M (hadjsum2M ) is an inadmissible heuristic [12] that improves
Adjusted-Sum2. Combo (hcombo) is an inadmissible heuristic [12] that combines
the computation of the Adjusted-Sum and Set-Level heuristics. Finally,
Fast-Forward (hff ) is a well-known inadmissible heuristic in the planning
community [6] that relies on state-space search and estimates the goal distance
by using delete-list relaxation.

We evaluated our approach using the following metrics. Precision is the ratio
between true positive results, and the sum of true positive and false positive results.
True positive results represent the number of plans that actually did abandon
their expected commitments that our approach has detected correctly. False
positive results represent the number of plans that actually eventually achieved
the commitment consequent that our approach has detected as having abandoned
the commitment. Precision provides the percentage of positive predictions that
is correct. Recall is the ratio between true positive results, and the sum of
the number of true positives and false negatives. Here, False negative results
represent the number of plans that would not eventually reach the commitment
consequent that our approach has not detected as abandonment. Recall provides
the percentage of positive cases that our approach has detected. The F1-score is
a measure of accuracy that aims to provide a trade-off between Precision and
Recall.

Domain |O| T
Precision

θ (0% / 5% / 10%)
Recall

θ (0% / 5% / 10%)
F1-score

θ (0% / 5% / 10%)

Driver-Log (30)
hadjsum2M

20.0 0.83 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0

Depots (30)
hadjsum2

18.6 1.79 1.0 / 1.0 / 1.0 1.0 / 1.0 / 0.8 1.0 / 1.0 / 0.88

Easy-IPC-Grid (30)
hff

17.3 0.95 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0

Ferry (30)
hadjsum2

13.5 0.38 1.0 / 1.0 / 1.0 1.0 / 0.8 / 0.8 1.0 / 0.88 / 0.88

Logistics (30)
hadjsum2

21.0 0.56 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0

Satellite (30)
hadjsum2M

23.5 5.4 0.8 / 1.0 / 1.0 0.8 / 0.6 / 0.6 0.8 / 0.75 / 0.75

Sokoban (30)
hcombo

22.8 5.2 0.83 / 1.0 / 1.0 1.0 / 0.6 / 0.6 0.91 / 0.75 / 0.75

Zeno-Travel (30)
hadjsum2

10.0 1.1 1.0 / 1.0 / 1.0 0.8 / 0.8 / 0.8 0.88 / 0.88 / 0.88

Table 3: Experimental results for detecting commitment abandonment. |O|
represents the average number of observed actions in a plan execution. T is the
average monitoring time (in seconds) that has been taken to detect commitment
abandonment. θ is threshold value varying at 0%, 5%, and 10%.

Table 3 shows experimental results of our commitment abandonment approach
over the selected domains using the heuristics that yield best results to detect
sub-optimal steps. Each table row details results for a different domain showing
averages for the number of observations |O| across problem instances; T monitor-
ing time (in seconds); Precision, Recall, and F1-score. The high average number of
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observations made (|O|), ranging between 10.0 and 23.5, indicating that all plans
we analyze are non-trivial in complexity. For three domains (Driver-Log, Easy-

IPC-Grid, and Logistics) our approach yields perfect predictions to detect
commitment abandonment. Apart from the domains Satellite and Sokoban,
that yield poor results (for threshold values 5% and 10%), for other domains we
have near perfect prediction in detecting commitment abandonment.

6 Related Work

In [3], Geib and Goldman develop a formal model of goal and plan abandonment
detection. This formal model is based on plan libraries and estimates the proba-
bility that a set of observed actions in a sequence contributes to the goal being
monitored. Unlike our work, which requires no prior knowledge of an agent’s plan
library, they assume knowledge about possible plan decompositions available to
each observed agent.

Proposed by Kafali et al. [8], Gosu is an algorithm that uses commitments
to regulate agents’ interactions in an environment for achieving their goals. By
using commitments as contractual agreements, this algorithm allows an agent to
decide whether it can achieve his goals for a given set of commitments and the
current state. Gosu does not use any planning approach to reason about agents’
goals, it uses a depth-first search algorithm.

Most recently, in [9], Kafali and Yolum propose a monitoring approach
called PISAGOR that can determine whether a set of business interactions are
progressing as expected in an e-commerce system. These business interactions are
represented as commitments with deadlines. The authors also propose a set of
operational rules for the observed agent in order to create expectations based on
its commitments. Thus, PISAGOR monitors and detects whether the observed
agent is progressing well, and therefore it identifies what is the problem during
the interactions.

7 Conclusions

In this paper, we have developed an approach for detecting commitment abandon-
ment that uses plan optimality monitoring techniques. As we show in experiments
and evaluation, our approach yields very accurate results for detecting commit-
ment abandonment, dealing with realistic well-known deterministic planning
domains. As future work, we intend to explore partial observability (i.e., missing
observations), interleaving plans, more modern heuristics [5,16], and explore other
planning techniques, such as symmetries in planning [17].
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