
Planning in a Normative System

Guilherme Krzisch?? and Felipe Meneguzzi

School of Computer Science
Pontifical Catholic University of Rio Grande do Sul

Porto Alegre, Brazil

guilherme.krzisch@acad.pucrs.br,felipe.meneguzzi@pucrs.br

Abstract. A social norm describes a standard of behavior expected to
be followed by agents in a given society, and failure to comply results
in sanctioning and loss of utility for the violating agent. Agents need to
take existing norms into account when generating plans to achieve their
goals, to either forestall potential violations if an agent wants to be fully
norm compliant, or understanding the effects on its utility if violations
are acceptable. In this paper we model a normative system in terms of
classical planning, and develop two norm formalizations: the first con-
cerns actions in a given context; while the second concerns sequences of
states and is based on Linear Temporal Logic. We use these norm formal-
izations to develop different planning approaches that take into account
such norms, and empirically evaluate the algorithm’s performance.

Keywords: normative system, classical planning, multi-agent system

1 Introduction

Multi-agent systems allow the design of complex behavior in terms of multiple
autonomous agents that interact in a shared environment, e.g. in e-commerce
systems [18, Ch. 24]. As the agents are assumed to be self-interested, conflicts
may arise, due to agents performing actions that do not consider the impact
on other agents or on the system, which in turn can lead to undesirable overall
system behavior [6]. In this context norms can be used to enforce desirable
system behavior by encoding expected individual agent behavior, whose failure
to comply leads to negative incentives in the form of sanctions [15, Ch. 14]. Such
norm systems aim to maximize individual agent autonomy, as norms can be
violated, but require agents to reason about the consequences of their actions in
terms of norm-compliance.

Much effort has been made towards developing norm-driven reasoning in the
context of agents driven by a plan library [9, 10, 14, 1, 12, 2, 11], however behavior
generation using plan libraries substantially limits the flexibility of an agent’s
behavior to what is explicitly encoded in the library [8]. By contrast, gener-
ating behavior using first principle planners allows greater freedom to achieve

?? This work is partially supported by grant from CNPq/Brazil (132339/2016-1).

goals by exploring the state-space of the environment rather than the space of
plans described in the plan library [8]. Relatively less effort has been made to
develop agents capable of performing first-principles planning while taking into
account the impact of such plans relative to the norms in an environment [17, 16].
Behavior generation via first principles planning poses, in practice [5], a more
computationally intensive problem. Consequently, computing the normative con-
sequences of behaviors generated in such a way is a much harder problem.

In this work we develop a first-principles planning algorithm that takes into
account the consequences of actions in terms of norm compliance and violation1.
We model the system in terms of classical planning, and present two alterna-
tive norm formalizations. Using these formalizations we describe two different
approaches for planning – one using the well-known Graphplan algorithm and
the other based on a forward state-space search. We evaluate these approaches
in a simple illustrative domain and in the blocksworld domain, and discuss the
algorithms with related work.

2 Formalization

In this section we describe the formalization used to describe our problem. We
first we give an overview of classical planning, in order to model the system; and
then formalize two alternative types of norms.

2.1 Classical Planning

We use the classical planning formalism to represent the environment in which
the agent reasons about norms. Specifically we use the Planning Domain Def-
inition Language (PDDL) [7] formalism to describe the domain and the cor-
responding problems. A PDDL domain consist of the available predicates and
actions, while a PDDL problem specifies the initial and goal states, as well as
the objects in the environment. The planning process in this context consist of
finding the sequence of actions that leads the agent from the initial to the goal
state. Subsequent versions of the PDDL allows the attribution costs to actions;
however, in this work, we will assume that all action costs are one.

2.2 Normative Model

Norms specify expected behavior of agents in a system. There are many different
ways to formalize norms and most of them use deontic logic modalities to express
a norm type, i.e. if a norm is an obligation, a permission or a prohibition. In
our work we support two different types of norm formalization. The first one is
adapted from [13], shown in Definition 1.

Definition 1 (Conditional Norm). A conditional norm is a tuple n = 〈µ, χ, ρ, C〉,
where:

1 Source code and data set available at github.com/guilhermekrz/KPlanning.

– µ ∈ {obligation, prohibition} represents the norm’s modality;
– χ is a set of ground predicates that represents the context to which a norm

applies, i.e. a norm is applicable in state s if s |= χ;
– ρ is an action, representing the object of the norm’s modality;
– C is the penalty (cost) incurred to an agent when this norm is violated.

Example 1. The following conditional norm requires an agent to drive on the
left side of the road if they are in England.

cn = 〈obligation, at(England), driveLeft(a, b), 20〉

Definition 2 describes when a conditional norm is violated by an agent.

Definition 2 (Conditional Norm Violation). A norm n = 〈µ, χ, ρ, C〉 is
violated in state s by an agent a iff:

– s |= χ; and
– agent a either: executes action ρ in state s and µ = prohibition; or does not

execute action ρ in state s and µ = obligation.

The second type of norm uses a subset of Linear Temporal Logic formulae
expressed using modal operators of PDDL3 described by Gerevini et al. [4], and
formalized in Definition 3.

Definition 3 (LTL Norm).
An LTL norm is expressed using one of the following modal operators, all

implicitly representing an obligation, where φ and ψ are atomic formulae and t
is a number2:

– (at end φ) - φ must be true in the final state
– (always φ) - φ must be true in all states in the plan
– (sometime φ) - φ must be true in at least one state in the plan
– (at-most-once φ) - φ must be true in at most one state in the plan
– (sometime-after φ ψ) - whenever φ is true in a state s, there must be a state
s′ equal to or after s where ψ is true

– (sometime-before φ ψ) - whenever φ is true in a state s, there must be a
state s′ before s where ψ is true

– (always-within t φ ψ) - whenever φ is true in a state s, there must be a state
s′ at most t steps after s where ψ is true

Although modal operators can be nested, in the current work we simplify the
expressivity of the language consider only flat operators. An LTL norm is violated
if its interpretation is not true in a given plan.

These two norm formalizations have different complexities. While the first
one can be checked in a single state, the second one needs to be checked along
a path (i.e. a sequence of states, a finite trajectory). The next section describes
different methods to find solutions given these norm formalization.

2 For brevity, we use semi-formal descriptions for the modal operators adapted from
PDDL3; for the full formal definitions we refer to [4]

3 Planning with Norms

A planner is responsible for finding a sequence of actions that leads from the
initial to the goal state. When considering norms, this solution can be either
norm-compliant or norm-violating; the planner can also find solutions that min-
imize the cost of both actions and penalty costs relative to norm violations. In
the next subsections we first present a scenario to motivate our problem, and
then describe approaches based on the Graphplan algorithm and using forward
state-space search to find such norm-driven plans.

3.1 Scenario

In this section we describe an example of a scenario with norms in order to
provide a motivation for this work; we call this scenario drinkdriving, and use it
to perform our experiments. In this scenario agents can move between locations;
in some locations there are bars available, where agents can enter, exit, or become
drunk; agents can sleep to become sober again. In order to avoid car crashes due
to agents driving while drunk, there is a norm forbidding agents perform such
behaviors, and an associated arbitrary sanction.

Figure 1 illustrates the state-space graph of a drinkdriving problem with two
locations – a and b – and one bar accessible while in location a. Nodes represent
states while edges represent actions; according to our norm of forbidding agents
to drive while drunk, if they move from state 4 to state 5, or vice-versa, they will
be sanctioned. Therefore, when planning, they need to consider these norms: if
they want to obey the norms, they need to avoid these transitions; if they want to
wilfully disobey the norms, they need to try to find a plan with these transitions;
if they want to minimize their costs, they need to reason if the sanctioning cost
of violating these norms would outweigh the cost to obey the norms. The next
two sections describe two alternative approaches to perform such planning.

3.2 Graphplan

The Graphplan algorithm [3] uses a planning graph data structure to perform
its planning process. The planning graph is a leveled graph, interleaving levels
of predicates and levels of actions; the algorithm uses this graph in order to
perform a backward search. It also encodes information about mutual exclusion
relations between predicates and between actions; in this way it can, during its
extraction solution phase, prune partial solutions that do not lead to a valid
solution.

The simplest way to modify the Graphplan algorithm is to try to discard
solutions if they violate (in the case of norm-compliant planning) or if they do
not violate (in the case of norm-violation planning) the norms. In order to do
this we perform the solution extraction phase of the algorithm to find all possible
solutions at the current level; we then iterate through each solution checking for
norm compliance or violation.

1:at(a) sleep

2:inBar(barA)

enter

6:at(b)

move

exit

3:inBar(barA),drunk()

drink

4:at(a),drunk()

exit

sleep

5:at(b),drunk()

move

move

sleep

move

sleep

Fig. 1. State-space graph of the simple drinkdriving problem

The solution as outlined above does not take advantage of the fact that it
is possible to prune partial solutions during the backward search phase, which
improves the planning process efficiency. Algorithm 1 shows the solution extrac-
tion phase of the Graphplan algorithm, modified to backtrack when the partial
solution cannot be a solution in relation to the set of norms.

In Line 10 of the algorithm we check if we can ascertain if the partial solution
violates a norm; we are able to determine a norm violation if we can check the
truth value of its context. As we only have partial information, the newGoal set
of literals must include the literals of the norm context. For conditional norms,
this is trivial; a norm violation can be checked at a single state, and we can
propagate this information while doing the backward search. However, for LTL
norms, a complex mechanism to keep track of the current norm status is required;
we would need to keep track of the norm activation and deactivation conditions,
propagating this information backwards and backtracking when necessary. The
Graphplan structure and its backward search makes this tracking complex, and
the resulting solution time and space consuming; in the next section we present
another planning approach based on a forward state-space search which is more
suitable to plan with respect to LTL norms.

Having the information that a partial plan partially violates a norm, we can
stop searching and begin to backtrack in two situations. The first, when we are
searching for a norm compliant plan, is when it already occurred a violation
(Line 11). The second, related to norm violation planning, is when we reached
the first level and it has not occurred any violations; in this situation we could
not have backtracked before because a partial plan that has no violations is still

a candidate solution to norm violation planning, as this violation can occur at
a later step (Line 3).

Algorithm 1 Solution Extraction Phase of the Normative Graphplan

1: procedure SolutionExtraction(goal,level,isViolationPlan,type)
2: if level=0 then
3: if type = NormViolating and not isViolationPlan then
4: backtrack

return solution
5: for each literal in goal do
6: nondeterministically choose an action to achieve literal

7: if set of chosen actions are mutex then
8: backtrack
9: newGoal← preconditions of chosen actions

10: newIsViolationPlan← isV iolation(chosen actions, newGoal)
11: if type = NormCompliant and newIsViolationPlan then
12: backtrack
13: SolutionExtraction(newGoal, level − 1,newIsViolationPlan, type)

3.3 Forward state-space search

The second way in which we perform norm-aware planning is using forward
state-space search. We use a Uniform-Cost Search (UCS) as a base algorithm,
and modify it to take norms into consideration; this allows us, for example, to
return solutions that minimize the combined cost of actions and penalties for
norm violations. We choose UCS over A∗ because it does not need any heuristics
for its planning process; calculating heuristics in norm-aware planning is harder
than in classical planning because it has to take into account norm penalties.

Algorithm 2 shows our modifications of the UCS algorithm. To guarantee
norm-compliant or norm-violation solutions, we need to check if the partial plan
violates a norm before testing if the node is a goal node (Lines 5 - 12) and before
adding the childnode to the frontier (Lines 16 - 24). For this, we introduce two
concepts: absolute violation and current violation, which refer to partial plans.
The first one indicates that there is no possibility that the current partial plan
will be norm-complaint again, and the second one means that it is currently
violating some norm, but there is a possibility that, in the future, it will no longer
violate the norm. An example for the first concept is a partial plan where an
atomic-formula φ from a LTL norm (at-most-once φ) is true in two intermediate
states; an example for the second is a partial plan where φ from a LTL norm
(sometime φ) is not true in any intermediate states so far.

If we are interested in norm-compliant plans, we discard nodes whose partial
plans are absolute violations (Line 17); furthermore, we allow current violation
nodes to be added to the frontier (Line 17), but they cannot be tested for goal

Algorithm 2 Uniform-Cost Search with Norms

1: function UCS(problem,type)
2: frontier ← add node with initial state
3: while frontier.hasElements() do
4: node← frontier.pop()
5: if isGoal(node) then
6: if type = NormCompliant and node is not current violation then re-

turn solution(node)
7: else if type = NormViolating and node is current violation then return

solution(node)
8: else if type = MinCost then
9: if node has already the correct cost then return solution(node)

10: else
11: node.cost← cost from actions and norm violation penalties
12: frontier.put(childNode)

13: explored.add(node)
14: for all applicable actions in node do
15: childNode← node.apply(action)
16: if childNode is not in frontier and explored or childNode is in frontier

with higher cost then
17: if type = NormCompliant and childNode is not absolute violation

then
18: frontier.put(childNode)
19: else if type = NormViolating then
20: frontier.put(childNode)
21: else if type = MinCost then
22: if childNode is absolute violation then
23: childNode.cost← cost from actions and norm violation penalties

24: frontier.put(childNode)

condition (Line 6). For norm-violation plans, we allow all nodes to be added
to the frontier (Line 19), but only current violation nodes to be tested for goal
condition (Line 7).

Finally, if we want plans that minimize cost (from actions and norm viola-
tions), we add absolute violation nodes to the frontier with the cost from actions
plus the cost of the penalty of the violated norms (Line 23). Note that the cost of
current violation norms are not counted when adding the respective node to the
frontier, because then the returned solution would not necessarily be optimal;
as these norms can be fulfilled at a later time, we cannot assume their penalties
yet. The cost of current violation norms are indeed counted if they are a goal
node; in this case, this node is added back to the frontier with its cost updated
with the norm penalties (Lines 11 - 12). For example, if there is a goal node g in
the frontier with pending current violations, its cost will be updated to take into
account the norm penalties, and this node will be added back to the frontier.
If another goal node h, with no pending violations, has less cost than node g,
then node h will be the final solution with minimal cost; otherwise, node g will

be removed again from the frontier, this time without pending violations, and
will be the final solution. In this way, the algorithm guarantees the return of the
solution with minimal cost.

In this paper we propose two methods to check if a node is absolute violation
or current violation. The first method builds the current partial plan from the
chosen actions from each node; with this partial plan we can check for norm-
violation. The second method keeps track of norm-violation information in each
node; when a new node is created, we update it with the current action. While
the first approach does not keep information, and always has to rebuild the
partial plan for each node, being more CPU intensive, the second approach
keeps information, and thus it is more memory intensive.

4 Experiments and Results

We performed experiments in the blocksworld domain, from the International
Planning Competition (IPC), and in the drinkdriving domain, described in the
previous section. We ran each planner on problems of increasing complexity and
with an increasing number of norms. In this section we refer to the first version
of the planer using Graphplan in a normative context described in Section 3.2
as Naive Graphplan, and just Graphplan for the second solution described in
Algorithm 1; for the forward-state space planners, described in Algorithm 2, we
refer as Forward 1 the planner using the first method to check node violation
and as Forward 2 the planner using the second method.

-2000

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(m

s)

Problem

Naive Graphplan
Graphplan
Forward 1
Forward 2

Fig. 2. Time performance for norm-compliant planners considering conditional norms,
in the blocksworld domain

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 50 100 150 200 250 300 350 400 450 500

Ti
m

e
(m

s)

Problem

Naive Graphplan
Graphplan
Forward 1

Fig. 3. Time performance for norm-compliant planners considering conditional norms,
in the drinkdriving domain

In Figure 2 we show the results for the four implemented planners, in the
blocksworld domain, considering conditional norms and trying to find norm-
compliant solutions3. Around problem number 50, all but the Graphplan planner
failed to return solutions, either due to timeout or memory constraints. The
Graphplan planner has a relatively low running time compared to the other
approaches, only increasing its time for the largest problems.

In the drinkdriving domain, shown in Figure 3, we obtained different results.
The forward planners4 remained with a lower running time than both Graphplan
planners. There are two possible explanations for this difference: the blocksworld
domain lends itself more to parallelization than the drinkdriving domain or the
problems used in our experiments for the drinkdriving domain are less complex
than the problems from the blocksworld domain.

Figures 4,5 and 6 show the results of experiments using LTL norms. Naive
Graphplan failed to return solutions for all but the small problems in the blocksworld
domain. The Forward 1 and Forward 2 planners achieved a similar time perfor-
mance result, with an advantage to the Forward 2 planner on large problems.
As one of our hypothesis is that the second forward approach uses more memory
than the first one (in order to have a better time performance), we measured
the total memory allocated by each planner and obtained results showing that
indeed the second approach is more memory intensive. However, these results

3 The figures show smoothed results, using a sample of 100 data points interpolated
using splines

4 Forward 2 has a similar time performance than Forward 1, and was omitted for
clarity

were not conclusive, as this measure is only approximate, and the data obtained
exhibited high variance.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(m

s)

Problem

Naive Graphplan
Forward 1
Forward 2

Fig. 4. Time performance for norm-violation planners considering LTL norms, in the
drinkdriving domain

-2000

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 20 40 60 80 100 120 140 160

Ti
m

e
(m

s)

Problem

Naive Graphplan
Forward 1
Forward 2

Fig. 5. Time performance for norm-compliant planners considering LTL norms, in the
blocksworld domain

-2000

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 20 40 60 80 100 120 140 160

Ti
m

e
(m

s)

Problem

Forward 1
Forward 2

Fig. 6. Time performance for minimum cost planners considering LTL norms, in the
blocksworld domain

5 Related Work

Previous work have considered the problem of planning in a normative environ-
ment. In Panagiotidi et al. [17] they formalized norms with activation, deactiva-
tion, maintenance and repair conditions; in order to find a plan they introduced a
special action responsible to check norm compliance at each intermediate state.
In this way, they can take advantage of the well-established PDDL language
while being able to use existing planners to find norm-compliant plans. The
main drawback of this work is the use of the forall command in PDDL to it-
erate through each possible combination of predicates in order to check norm
compliance; this makes the number of possible combination of predicates scales
exponentially for larger problems, and thus make the proposed approach feasible
only for small problems.

In Panagiotidi et al. [16] norms are specified in Linear Temporal Logic (LTL),
and they use TLPlan as their base planner. As in the above work, the resulting
planner is only able to return norm-compliant plans and lacks the ability to
minimize violations in case no norm-compliant plan is possible.

6 Conclusion

In this work we developed different approaches to planning in a normative sys-
tem; more specifically, two based on the Graphplan algorithm and two based on
forward state-space search. The normative system consists of classical planner
and either conditional norms or norms based on Linear Temporal Logic. We
performed experiments using two domains, with different problems and norms,

and analyzed the results. While existing work performs norm-compliant plan-
ning, our approach is also able to perform norm-violating and minimizing cost
planning.

For future work we intend to perform experiments with different domains,
and problems with increasing complexity, in order to get a better understanding
of the advantages and disadvantages of the different proposed approaches. We
want to support more expressive norms, namely LTL norms with nested modal
operators. We also intend to investigate whether a Graphplan-based approach
can support the full spectrum of LTL-based norms, and to propose modifications
on different search algorithms, e.g. Iterative deepening depth-first search or A∗.
Finally, we aim to develop a translation schema to allow us to compare our
approach to the related work of Panagiotidi et al. [17, 16].

References

1. Alechina, N., Dastani, M., Logan, B.: Programming norm-aware agents. In: Pro-
ceedings of the 11th International Conference on Autonomous Agents and Multi-
agent Systems, International Foundation for Autonomous Agents and Multiagent
Systems (2012) 1057–1064

2. Alrawagfeh, W., Meneguzzi, F.: Utilizing permission norms in bdi practical norma-
tive reasoning. In: 16th International Workshop on Coordination, Organizations,
Institutions, and Norms. (2014)

3. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artificial
intelligence 90(1) (1997) 281–300

4. Gerevini, A., Long, D.: Plan constraints and preferences in PDDL3. The Language
of the Fifth International Planning Competition. Tech. Rep. Technical Report,
Department of Electronics for Automation, University of Brescia, Italy 75 (2005)

5. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: theory and practice.
Elsevier (2004)

6. Jennings, N.R.: Commitments and conventions: The foundation of coordination in
multi-agent systems. The knowledge engineering review 8(3) (1993) 223–250

7. McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld,
D., Wilkins, D.: Pddl-the planning domain definition language. (1998)

8. Meneguzzi, F., De Silva, L.: Planning in bdi agents: a survey of the integration of
planning algorithms and agent reasoning. The Knowledge Engineering Review 30
(1 2015) 1–44

9. Meneguzzi, F., Luck, M.: Norm-based behaviour modification in BDI agents. In:
Proceedings of the Eighth International Conference on Autonomous Agents and
Multiagent Systems. (2009) 177–184

10. Meneguzzi, F., Oren, N., Vasconcelos, W.: Using constraints for norm-aware BDI
agents. In: The Fourth Annual Conference of the International Technology Al-
liance, London, UK (2010)

11. Meneguzzi, F., Rodrigues, O., Oren, N., Vasconcelos, W.W., Luck, M.: {BDI}
reasoning with normative considerations. Engineering Applications of Artificial
Intelligence 43(0) (2015) 127 – 146

12. Meneguzzi, F., Vasconcelos, W., Oren, N., Luck, M.: Nu-bdi: Norm-aware bdi
agents. In: European Workshop on Multiagent Systems. (2012)

13. Oren, N., Panagiotidi, S., Vázquez-Salceda, J., Modgil, S., Luck, M., Miles, S.:
Towards a formalisation of electronic contracting environments. In: Coordination,
organizations, institutions and norms in agent systems IV. Springer (2009) 156–171

14. Oren, N., Vasconcelos, W., Meneguzzi, F., Luck, M.: Acting on norm constrained
plans. In: Computational Logic in Multi-Agent Systems, 11th International Work-
shop. Number 6814 in LNCS (2011) 347–363

15. Ossowski, S.: Agreement technologies. Volume 8. Springer Science & Business
Media (2012)

16. Panagiotidi, S., Alvarez-Napagao, S., Vázquez-Salceda, J.: Towards the norm-
aware agent: Bridging the gap between deontic specifications and practical mech-
anisms for norm monitoring and norm-aware planning. In: International Work-
shop on Coordination, Organizations, Institutions, and Norms in Agent Systems,
Springer (2013) 346–363

17. Panagiotidi, S., Vázquez-Salceda, J.: Norm-aware planning: Semantics and im-
plementation. In: Proceedings of the 2011 IEEE/WIC/ACM International Con-
ferences on Web Intelligence and Intelligent Agent Technology-Volume 03, IEEE
Computer Society (2011) 33–36

18. Van der Hoek, W., Wooldridge, M.: Multi-agent systems. Foundations of Artificial
Intelligence 3 (2008) 887–928

