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Abstract. Norms have been used in multiagent systems as a standard de-

scription of agents’ behaviors. A lot of effort has been put in formalizing norms 

and utilizing them in agents’ decision making. Most of this work focuses on 

two types of norms: prohibitions and obligations. Agents may have incomplete 

knowledge about norms in a system for several reasons, such as, deficient 

norms identification techniques or because norms are not fixed and they may 

change and emerge, etc. In this work we argue that, by assuming that agents do 

not have complete knowledge of the norms within a system permission norms 

are fundamental for modeling unknown normative states. Using Event Calculus, 

we propose a formal representation of permission norm and we show how to 

use it in agent normative practical reasoning. A simple mineral mining scenario 

has been used to demonstrate our work, which was implemented in a popular 

agent programming language.  
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1 Introduction 

Open Multiagent Systems often contain agents that are heterogeneous, autonomous, 

self-interested and which can join and leave the system at any time [1][2]. These fea-

tures make interaction, coordination or collaboration in the system challenging prob-

lems. To address such challenges, systems of social norms have been proposed to 

provide a standard description of desirable behaviors within a society. There are two 

major views regarding the integration of norms in multiagent systems. In the regimen-

tation approach where agents must obey norms and do not have choice about violat-

ing norms [3]. In this view the agents’ behaviors are more predictable; however 

agents drastically lose their flexibility and autonomy. In the enforcement approach the 

agents have the choice to comply or violate norms. In order to keep the system stable 

and encourage agents to respect norms, agents who violate norms are subject to pun-

ishment and those who comply with norms are often rewarded [4][5][6]. In this paper, 
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we take the latter view of enforcement, since our approach focuses on agents that plan 

in order to achieve greater runtime flexibility. A substantial amount of recent work 

focuses on practical normative reasoning using a variety of mechanisms. Panagiotidi 

and Vasquez-Salceda focus on planning based normative reasoning [7], in which 

agents form goals from norms; Criado et al. develops an agent architecture that rea-

sons about the agent objectives based on norms [8]; while Meneguzzi et al. develops a 

mechanism to steer existing agent behavior towards norm achievement while execut-

ing plans to achieve agent goals [9]. In these efforts, only two types of norms are 

considered in normative agent decision-making: obligations and prohibitions 

[10][11][12][13]. Thus, in these systems, agents check whether performing a particu-

lar behavior complies with obligations or violate prohibitions, making compromises 

in order perform norm compliant behaviors. In consequence processing permission 

norms are often ignored in agent practical reasoning. Such design choice seems to 

stem from the adoption of the sealing principle: “whatever is not prohibited is permit-

ted” [14]. This principle is sound if agents have complete knowledge about the nor-

mative states of a particular system, so it can always determine whether some action 

violates a norm or not. Such clear-cut division of the state-space is illustrated in Fig1-

a, which depicts an agent’s knowledge of a system’s normative states in case of com-

plete knowledge and sealing principle. In this case, explicit reasoning about permis-

sion norms is not required since permission norms simply represent the absence of 

prohibition. Royakkers [14] calls this kind of permission weak permission where it is 

not enacted by an authority.  

However, when agents do not have complete knowledge, some actions will be 

known as either prohibited, obliged, or permitted (an thus whether they are norm 

compliant), whereas others will be unknown. In order to address this challenge, we 

assume that agents do not have complete knowledge and that such incompleteness is 

explicitly represented, thus, in normative terms, world states can be either obliged, 

prohibited, permitted, or unknown. The resulting division of the state space is illus-

trated in Fig1-b, which depicts the incomplete knowledge of agent about a system’s 

normative states.  Thus, agents do not have complete knowledge and some states will 

be known for agents as prohibited (F), others as obliged (O), while others are permit-

ted (P); the rest of the state space is thus unknown (U). By adding permission norm to 

the reasoning mechanism the agent will be able to reason about preferences over be-

haviors that are known as permitted over unknown ones. For example if the agent 

needs to navigate from A to B and there are two paths X and Y. If the agent identifies 

that taking path Y is permitted and taking X is unknown, then a rational agent should 

take path Y rather than X (assuming X and Y have the same cost).  

Our contributions in this paper are the following: we add the idea of utilizing per-

mission norms in the agents’ practical reasoning; we present a formal representation 

of the permission norm and integrate it in a normative reasoning strategy that also 

reasons about prohibition and obligation norms. We assume that agents have a mech-

anism to discover norms as agents explore the state-space (e.g. Alrawagfeh et al.  

[25], Savarimuthu et al. [26]), thus, we are not concerned about addressing the norm 

identification problem. The organization of this article is as follows: in section 2 we 

briefly present a background. Section 3 discusses norm representation. The normative 

reasoning strategy using permission norms is presented in Section 4. In Section 5 we 



apply our work on the mineral mining scenario. In the last section, we conclude our 

work and suggest for future work. 

 

 

 

 

 

 

2 Background 

2.1 JASON 

Beliefs, Desires and Intentions (BDI) [15] is one of the most widely studied architec-

tures to implement practical reasoning in multi-agent systems. The BDI architecture is 

also widely used in the definition of agent programming languages, such as the 

AgentSpeak(L) programming language [17], arguably, the most widely studied such 

language. Jason [18,19] is a Java-based interpreter for an extended version of 

AgentSpeak(L) [16]. Agents in Jason use a belief-base that represents knowledge 

using logic programming constructs that, unlike traditional AgentSpeak(L) allows 

Prolog-like logical rules in the agent definition. There are two types of goals defined 

in AgentSpeak(L): achievement goal which is represented by a literal prefixed with 

“!” ; and test goal which is represented by a literal prefixed by “?”. Goals and belief 

updates serve as triggers to the execution of hierarchical plans contained in a plan 

library. Since we use the AgentSpeak(L) notation throughout this paper, we briefly 

review the Jason version of its syntax. The most basic syntax element in Jason is the 

predicate, which are represented by alphanumeric strings starting with a lower case 

character. Predicates may have any number of terms, with this number being called 

the arity of a predicate. A predicate represents a fact about the world and may be 

evaluated to either true or false. Predicates with arity greater than 0 have a number of 

terms. Terms are similar to predicates but they represent objects in the domain and 

can be either functions (terms with arity greater than 0); constants (representing spe-

cific objects in the domain); or variables, which follow the Prolog standard and start 

with an upper case letter or the underscore sign, representing an unnamed variable. 

The “+” and “-“ symbols are used to represent changes in the belief base, and thus 

represent belief addition and deletion respectively. A plan is structured as follows: 

Triggering-event: Context <– body. In a plan, the triggering-event part is separat-

ed from the context part by the symbol “:”. In rules, the symbol “:-“separates a rule 

left and right hand sides; the symbols “&” and “|” indicate a conjunction and dis-

Fig. 1.a Complete Knowledge of an agent 

about the norms within a system. Shape F 

represents prohibited states, O represents 

obliged states, P in shape O refer to the 

implicit permission norm. Shape P repre-

sents the permitted states. 

Fig. 1.b Incomplete Knowledge of 

an agent about the norms within a 

system. U refers to unknown norma-

tive states 

 



junction operators are indicated by the symbols “&” and “|” respectively. For more 

details on the semantics of Jason, we refer the reader to [20]. 

2.2 Event Calculus 

Event Calculus (EC) is a logical framework consisting of predicates and axioms to 

represent and reason about actions and their effects. EC was originally proposed in 

logic programming [21] with the purpose to affirm that as a result of executing a par-

ticular sequence of actions some fluents are initiated to be true in a specific time-point 

and no action occurred that terminates this fluents. Event Calculus is well known by 

its simplicity in describing concepts and straightforward implementation, since it is 

based on logic programming. Therefore, several works [22][23] use EC for represent-

ing concepts in multi-agent systems.  

A fluent defined as a property whose value is subject to change at different points 

in time. The basic components of EC are actions A, fluents F and time T.  

Table 1. The predicates of the event calculus 

Predicate Meaning 

happens(A,T) Action A occurs at time T 

holdsAt(F,T) Fluent F is true at time T 

terminate(A,F,T)  Occurrence of action A at time T will make fluent F 

false after time T 

initiates(A,F,T) Occurrence of action A at time T will make fluent F true 

after time T 

clipped(T,F,Tn) Fluent F is terminated between time T and  Tn 

<, >, <=, >=  Standard order relation for time 

 

We define the predicate between(A,T1,T2), which means that action A occurred 

after time T1 and before T2.Sometimes the effect of an action does not appear imme-

diately. Therefore, we modified the event calculus predicates initiates(A,F,T) and 

terminates(A,F,T) as follows: 

 initiatesAt(A,F,T1,T2) : the occurrence of action A at time T1 will make 

fluent F true at T2. 

 terminatesAt(A,F,T1,T2): the occurrence of action A at time T1 will 

make fluent F false at time T2. 

If the occurrence of action A at time T1 initiates the fluent F at T2 where T1 is before 

T2 then, the predicate initiates(A,F,T1) is not sufficient to represent the delayed 

effect. Thus, we replaced the initiates(A,F,T1) predicate by initiatesAt(A,F,T1,T2) 

predicate ,where initiatesAt(A,F,T1,T2), states that the occurrence of action A at T1 

will make fluent F true after T2, when T1≤ T2. However, initiatesAt(A,F,T1,T2) has 

the same semantics of initiates(A,F,T1) when T1=T2. 

Below, we summarize the basic event calculus axioms (with the slight modification 

on the initiates predicate) that are important to our work:  

 EC1: clipped (T1, F, T4) :- happens(A, T2) & terminatesAt(A, F, T2,T3)& 



T1< T2 & T2≤T3 & T3<T4 

This means that fluent F is terminated by the occurrence of action A between time T1 

and T4. In other words, after time T1 if an action A occurred at time T2 and if the 

effect of this action is reflected at time T3 then the fluent F becomes false between T1 

and T4. 

 

 EC3’: holdsAt (F, T3) :- happens(A, T1) & initiatesAt(A, F, T1,T2) & T1≤ T2 

& T2<T3 & not clipped (T2, F, T3) 

This means that the fluent F holds at Time T3 if the action A occurs at time T1 and 

the fluent F holds after time T2 and F has not been terminated between T2 and T3. 

3 Norm Representation 

In this Section, we review the norm representation presented in [23], before we extend 

it by adding permission norms. In [23] three fluents are defined to represent prohibi-

tion and obligation norms. These fluents work like flags that are raised if a prohibition 

is violated, or an obligation norm is either fulfilled or violated. Here we add another 

fluent for permission norm that is true only if a particular permitted sequence of ac-

tions is performed.    

3.1 Norms 

A norm is defined in [24] as a tuple N = <D, C, Seq, S, R> where: 

 D  {F,O,P} is the deontic type of the norm, F for prohibition, O for obligation and 

P for permission. 

 C is the norm’s context. The specified sequence of actions is obliged, prohibited or 

permitted if C is a logical consequence of the agent’s belief base. C is composed of 

(possibly empty) ,  or both.  is composed of holdsAt predicates which describe 

a particular world state.  is an event calculus formula to represent a sequence of 

actions.  

 Seq is a sequence of action(s) that agents are not supposed to perform, have to 

perform or may perform in case of prohibition, obligation1, or permission respec-

tively. Note that Seq is different than , since  is part of the context condition 

(actions that trigger norm activation) whereas Seq is the object of the norm's deon-

tic type (actions that are forbidden, obliged or permitted). 

 S is the sanction that will be applied if the norm has been violated or not fulfilled. 

 R is the reward that agents may get if they fulfill an obligation norm. 

We define the deontic types of norm as follows: 

                                                           
1  If the order of actions was not important in a norm then in the norm representation we omit 

the dependencies among T1,T2..Tn-1. However T1,T2..Tn-1 should be less than Tn. 



─ Prohibition norms: In a particular context, if the occurrence of a sequence 

of action(s) is subject to punishment then this sequence of actions is prohibited in 

that context.  

─ Obligation norms: If the nonoccurrence of prescribed sequence of action(s) 

in a particular context is followed by punishment then this sequence of action(s) is 

obligated in that context. Also, the fulfillment of this sequence might be subjected 

to rewards. 

─ Permission norms: In a particular context, if the occurrence of a sequence 

of action(s) is not subject to punishment then this sequence of actions is permitted 

in that context. 

The punishment and reward in the prohibition and obligation represent an incentive 

for agents to change their behaviors. As we see in the next section, a permission norm 

gives the agents the possibility of preferring the known permitted actions to the un-

known actions (by unknown actions we mean the actions that are not known whether 

prohibited, obliged or permitted). Fluent fPun(Nid,S) has been defined for prohibi-

tion norms, which, if true that means a prohibition norm has been violated. Similarly, 

if oPun(Nid,S) fluent becomes true that means an obligation norm has been violat-

ed, But if the oRew(Nid,R) becomes true this means an obligation norm has been 

fulfilled. For permission norm the story is different, regardless of whether the agents 

act according to a permission norm or not there is no reward or sanction. However, to 

prefer the behavior that acts according to permission norms over other behaviors, we 

define a fluent pRew(Nid). When this fluent becomes true that means a permitted 

sequence of action(s) has been performed. Plan X is preferred over plan Y if X has 

more permitted actions than Y.  

For the purpose of representing the three deontic of norm we adopt the prohibition 

and obligation definition in [23] and introduce the permission definition: 

1. fPun(Nid,S) fluent becomes true if the prohibition norm Nid is violated. The 

sanction of the violation is S. Nid is a unique number of prohibition norm, where S 

is an integer number representing the sanction value. The prohibition norm is rep-

resented as follows: 

initiatesAt(An,fPun(Nid,S),Tn,Tn+1):- C, happens(A1,T1) &…& hap-

pens(An,Tn)& T1<T2< & …& <Tn .  

 D = F.  // fPun refers to prohibition norm’s violation 

 C: the norm’s context.  

 Seq = A1,..An. // the prohibited sequence of actions. 

 S:  the sanction value which will be applied on the violator agent. 

 R is empty. 

This means that, if the actions A1,..An occurred at time T1,..Tn respectively and 

the context C was a logical consequence from the agents belief base, then the sanction 

that might be applied on the actor after Tn is S.  



2. oPun(Nid,S) fluent becomes true if the obligation norm Nid has not been ful-

filled. The punishment issued for this violation is S. Nid is a norm identification 

number and S is the punishment value. 

3. oRew(Nid,R) represents the rewards that may be granted by complying with the 

obligation norm Nid, where R is the reward value. 

Let δ be a sequence of actions, possibly empty, and δ’ is a sequence of prescribed 

non-occurred action(s). An obligation norm violation occurs if in a particular context, 

δ occurred but δ’ did not occur. The obligation norm fulfillment occurs when both δ 

and δ’ occur. Fluent oPun(Nid,S) becomes true if the obligation norm Nid is violat-

ed. The initiates(A,F,T1) predicate is not suitable to represent the violation of obli-

gation norms, because it does not represent the delayed effects of actions. Therefore, 

we replace the initiates(A,F,T1) predicate by the initiatesAt(A,F,T1,T2) predicate. 

Two rules are needed to represent the obligation norm: 

initiatesAt(Ai,oPun(Nid,S),Ti,Tn+1):- C & happens(A1,T1 ) & … & hap-

pens(Ai,Ti) &…& not happens(Aj,Tj) | ... | not happens(An,Tn) & T1< &…& 

<Ti< &…& <Tj< &…& <Tn. 

 D = O. // oPun refers to obligation norm’s violation 

 C: the context. (as specified before) 

 Seq = Aj,….An. // the obligatory sequence of actions 

 S: the sanction. (as mentioned before) 

 R is empty. 

Which means that, if the context C was a logical consequence from agent belief base 

and a sequence of actions (possibly empty) A1,..Ai occurred at time T1,..,Ti respec-

tively, and a sequence of actions Aj,..,An did not occur at Tj,..,Tn, then after Tn the 

sanction that may be applied is S. 

initiatesAt(An,oRew(Nid,R),Ti,Tn+1):- C & happens(A1,T1 ) & … & hap-

pens(Ai,Ti) &…& happens(Aj,Tj) & ... & happens(An,Tn) & T1< &…& <Ti< 

&…& <Tj< &…& <Tn. 

This means that, if C is entailed from agent’s belief base and a (possibly empty) se-

quence of actions A1,..Ai occurrs at time T1,..Ti, and a sequence of actions Aj,..,An 

occurs at Tj,..,Tn, then after Tn the reward that may be granted is R. 

4. pRew(Nid) fluent becomes true if a permitted sequence of actions has been per-

formed. Where Nid is the norm identification number (unique number for each 

permission norm). the permission norm is represented as follows: 

initiatesAt(An,pRew(Nid),Tn,Tn+1):- C, happens(A1,T1) &…& hap-

pens(An,Tn)& T1<T2< & …& <Tn . 

This means that, if C entailed from agent belief base and the sequence of actions 

A1,..An occurred at time T1,..Tn respectively, then after time Tn the fluent 

pRew(Nid,1) becomes true. We illustrate this representation using the blocks world 

scenario in the example below. 

 



Example 1, 

Suppose we have three blocks ; red, blue and green, and that we have the following 

situation:  on(red,blue), on(blue,table) and on(green,table). Now, if we have a permis-

sion norm that states “it is permitted to put green on red if red was not on the table”. 

This permission norm is represented as follows: 

initiatesAt(on(green,red),pRew(Nid),T1,T2):- not holdsAt(on(red,table),T1) & 

happens(on(green,red),T1) & T1<T2.   

4 BDI agent normative reasoning 

In order to develop our normative reasoning strategy, we leverage the normative rea-

soning strategy presented by Alrawagfeh [24], which utilizes prohibition and obliga-

tion norms to find the best plan (in the sense of highest utility). In the context of BDI 

agents, the best plan is found among the applicable plans. Our extension in this sec-

tion is to utilize permission norms in order to find the safest plan among the best 

plans. We argue that using permission norms in practical reasoning within a norma-

tive system is important for at least two reasons when agents have incomplete 

knowledge of normative states; First, if it is the agents’ duty to identify norms, the 

norms identification mechanism may miss some norms; and second, norms are not 

fixed; they may change, emerge or vanish. Hence, presuming that “whatever is not 

prohibited is permitted” is not adequate since it does not account for such missing 

norms.  

We illustrate this argument with the following scenario. Suppose that an agent wants 

to achieve a goal G and there are two plans P1 and P2, of equal and highest utility 

based on prohibition and obligation norms, to achieve G. suppose P1 has some pro-

hibited action(s) but because of incomplete knowledge of agents, the agent does not 

know that these actions are prohibited, then mistakenly the agent will presume them 

as permitted. However, if the agent maintains the permission norms as it does with 

prohibition and obligation then it can prefer between P1 and P2, the plan that has 

more permitted actions than other will be the safest. In Fig.2, the basic BDI interpreter 

overview is illustrated as white boxes, while our proposed additions are presented as 

gray boxes. To deal with dynamic norms, the norm identification process needs to be 

integrated with normative reasoning strategy. The agent discover emerged and abro-

gated norm by the norm identification process. However, the norm identification pro-

cess is beyond the scope of this paper [25][26]. 

 

Fig. 2. BDI Reasoning processes flow 



The execution of plan Plan makes fluent help(Plan) true if it results in more rewards 

than punishments (based on the helpful-rule below). The punishments value comes as 

a result of violating prohibition norms or not fulfilling obligation norms. The rewards 

value comes as a result of achieving the goal that is associated with Plan and ful-

filling obligation norms. Predicate goalpreference(G,Points) here is used to de-

scribe the importance of achieving goal G, where Points is an integer number refer-

ring to the importance of G and the goal importance is determined according to the 

agent’s designed objectives.  

To utilize permission norms in the normative reasoning strategy we define 

safe(Plan) fluent which will be true if the execution of Plan conforms with one or 

more permitted norms (based on the safe-rule below). If we have two plans of same 

utility (based on prohibition and obligation norms) then the plan that conforms to 

more permitted norms is the safest. That because the other actions that are unknown 

might be prohibited. Our agent uses the following application-independent axioms in 

its normative reasoning strategy: 

EC1 & EC3’ from Section 3 

Ax1:  between(A,T1,T2) :- happens(A, T) & T1<T & T<T2  

Ax2: terminatesAt(*,help(P),T1,T2):- happens(*,T1) 

Ax3: terminatesAt(*,safe(P),T1,T2):- happens(*,T1) 

Ax4: terminatesAt(*,fPun(I,S),T1,T2):- happens(*,T1) 

Ax5: terminatesAt(*,oPun(I,S),T1,T2):- happens(*,T1) 

Ax6: terminatesAt(*,oRew(I,S),T1,T2):- happens(*,T1) 

Ax7: terminatesAt(*,pRew(I,S),T1,T2):- happens(*,T1) 

In order to terminate fluents, an application-independent special event * is used. It 
refers to the fact that the associated fluents becomes false after T. These axioms help 
agents find a potential norm violation/fulfillment that may result from executing one 
plan. If we want the agent to find the potential norm’s violation/fulfillment that may 
result not only from executing the current plan, but also the one that may result by 
actions interleaving of current plan and the previous plan, then we need to add to the 
right hand side of Ax2…Ax7 another happens(*,T2) predicate. Here, the * action 
monitors the end point of those fluents that are mentioned in the axioms above. With 
these changes Ax2 will be as follows  

Ax2b: terminatesAt(*,help(P),T1,T2):- happens(*,T1) & happens(*,T2). 
Same thing applies for Ax3, Ax4, Ax5, Ax6 and Ax7. 

using the above application-independent axioms in addition to the following rules (we 
call them helpful-rule and safe-rule) the agent is able to find the set of best plans 
among the applicable plans (using helpful-rule) and out of the best plans find the safest 
plan (using safe-rule). 

helpful-rule: 

 initiatesAt(K,help(Plan_i),T1,T2):- 
                   .findall(V1,holdsAt(oRew(_,V1),T2+1), Wins) &  
                   .findall(V2,holdsAt(fPun(_,V2),T2+1),  Loses1)  &  



                   .findall(V3,holdsAt(oPun(_,V3),T2+1),  Loses2)  &  
                   goalpreference(G,Points) &  
                   Points + sum(Wins)- sum(Loses1) - sum(Loses2)> 0. 

safe-rule: 

 initiatesAt(K,safe(Plan_i),T1,T2):- 
                 .findall(V1,holdsAt(pRew(_,V1),T2+1),Count). 

In the helpful-rule, by asserting action K (see Algorithm 1, lines 3,4 and 5), we simu-
late that K has occurred), and by executing .findall(V,P,S) function we obtain all the 
values of V where predicate P is true and variable S instantiates with the sum of values 
V. Finally, sum(Wins) obtains the rewards that may be granted if Plan_i is executed. 
sum(Loses1) and sum(Loses2) will have the sanctions that may result if the plan 
was executed. Conversely, in the safe-rule .findall(V,P,S) function  we obtain all the 
values of V where predicate P is true and variable S instantiates with the sum of values 
V. Count will have the number of permission norms that are complied with if Plan_i 
is executed. We can now define how our agent finds the set of best plans and then the 
safest plan. We need the following additional definitions: 

─ Let act() be a function that returns the sequence of actions of the plan , 

(A1,A2,…An). Before the agent takes the decision of intending/committing 

plan, it will use the Algorithm 1 to find the most profitable and safe plan. 

─ Let Γ be the set of applicable plans. 

─ Let BestPl be the set of plans with the highest utilities. 

─ Let Bel be a belief base represents the agent’s knowledge about the society along 

with the society’s norms represented in Event Calculus. 

─ Let Ω = EC1, EC3’, Ax1, Ax2, Ax3, Ax4, Ax5,Ax6, Ax7 helpful-rule, safe-

rule and Bel. 

These are used in the following algorithm. 

 

Algorithm 1 //find best plan 

Input: applicable plans.  

Output: safest plan. // the plan with the highest utility and 

the one that conforms with more permission norms. 

 

1: function FindBestPlan(Γ)  

2:  for all  in Γ do 

3:     T current time. 

4:    for all θ  act() do 

5:     Bel  Bel  happens(θ,T++).  

6:     end for 

7:    T current time. 

8:    if Ω  holdsAt(help(),T) then 

9:        utility() Points + sum(Wins) - sum(Loses1)- 

         sum(Loses2).    // see helpful-rule. 

10:    end if 



11:     delete the asserted happens predicates at line 5. 

12:  end for   

13:  BestPl  {max { utility()} }. 

14:  for all  in BestPl do 

15:    T current time. 

16     for all θ  act() do 

17:     Bel  Bel  happens(θ,T++).  

18:    end for 

19:    T current time. 

20:    if Ω  holdsAt(safe(),T) then 

21:      preference() Count.  // see safe-rule. 

22:    end if 

23:    delete the asserted happens predicates at line 17. 

24:  end for   

25:  safestPlan  {max { preference()} }. 

26:End Function 

As shown in Lines 4-6, the predicates happens (see Table 1) are added starting from 

time T1 (the current time). The actions specified in predicate happens have not oc-

curred yet. By adding the plan’s actions, the agent simulates that it has executed them 

in order to reason about whether the current plan  is helpful or not. Plan  is helpful 

if the predicate holdsAt(help(),T) is deduced from current belief base; if that is 

the case, then rewards outweigh losses. The plan of maximum utility is then added to 

the best plan set BestPl. The set BestPl will have the plans of highest equal utilities. 

Lines 14-25 find the safest plan out of BestPl. At Line 20 if the predicate 

holdsAt(safe(),T) is deduced for current belief base then this means that there is at 

least one permission norm being complied with as a result of executing plan . The 

number of times permission norms are complied with results from executing plan  

are saved in variable Count. The plan of maximum count is thus the safest plan. The 

safest plan will be ready for execution by adding it to the intentions. The happens 

predicate for each action of an executed plan will be added to the belief base (same as 

in Lines 4-6). Predicate happens(*,Tn+1) is added to the belief base after executing 

the last action of the chosen plan. The purpose of adding the special event * is to ter-

minate the fluents (help, safe, fPun, oPun, oRew and pRew) after Tn+1. Thus, if 

plans executed in the past were causing norm violation/fulfillment then we do not 

want this violation/fulfillment to be revealed again in the future. However, our strate-

gy is able to reveal the violation/fulfillment that may result from the interleaving of 

the current plan (under investigation) and the previous executed plan. 

5 Experiments 

For experiment purposes, a mineral mining society which has been adapted from the 

Gold Miners scenario2 has been used. We adopt a similar scenario as the one present-

                                                           
2 http://jason.sourceforge.net/Jason/Examples  



ed in [23], that scenario is composed of; a grid-like territory with gold and silver piec-

es which are scattered in; and agents to collect the scattered pieces to their respective 

depot (one for silver and one for gold). In the territory there is a monitor agent who 

plays the role of police in the scenario. The monitor agent is able to observe other 

agents actions and also able to issue sanctions or rewards. There are set of norms 

which govern the society. We assume that agents do not know all the norms. The 

society has three agents, one that uses prohibition and obligation norms in its practical 

reasoning. The other one uses prohibition, obligation and permission norms in its 

practical reasoning. Both of them have the same prohibition and obligation norms. 

The third agent is the monitor agent. Let us call the first agent best-agent and the se-

cond agent best-safest-agent, and call the third agent monitor-agent. The best-agent 

uses in its practical reasoning the axioms Ax1..Ax7 and the helpful-rule. The best-

safest-agent uses the axioms Ax1…Ax7, helpful-rule and safe-rule. The norms 

will be represented in the monitor-agent using EC, monitor-agent uses the Ax1…Ax7 

to check if a violation/fulfillment occurred.   

5.1 Gold and Silver mining society  

In this society the possible actions which agents can perform are: pick(-), drop(-,-) 

and moveto(-,-). The two competitive agents have one continuous goal which is 

!collect(gold), the importance of achieving this goal is obtained by the predicate 

goalpreference(collect(gold), 10), so the importance of values of achieving the 

goal is 10. The grid has two depots one for gold and one for silver. The grid has 10 

pieces of gold and 10 pieces of silver. The two agents compete to collect those pieces 

and the game ends when all the pieces are collected. In this experiment the potential 

violations/fulfillments that may result from the current plan and the previously exe-

cuted plan are taken into consideration.  The two agents have the same plans below: 

@plan1-1 // the agent will collect gold to the silver depot. 

 +!collect(gold): free <– !find(gold,X,Y); moveto(X,Y) ; 

pick(gold); moveto(silver_depotX,silver_depotY) ; 

drop(gold,silver_depot).  

@plan1-2// the agent will collect gold to the gold depot. 

+!collect(gold): free <– !find(gold,X,Y); moveto(X,Y) ;  

pick(gold); moveto(gold_depotX,gold_depotY); 

drop(gold,gold_depot). 

@plan1-3 // the agent will collect gold to the gold depot and 

collect silver to gold depot.  

+!collect(gold): free <– !find(gold,X,Y); moveto(X,Y) ; 

pick(gold); moveto(gold_depotX,gold_depotY); 

drop(gold,gold_depot); !find(silver,X1,Y1); pick(silver); 

moveto(gold_depotX,gold_depotY; drop(silver,gold_depot). 

@plan1-4 // the agent will collect gold to the gold depot and 

collect another gold to the gold depot.  



+!collect(gold): free <– !find(gold,X,Y); moveto(X,Y) ; 

pick(gold); moveto(gold_depotX,gold_depotY); 

drop(gold,gold_depot);  !find(gold,X1,Y1); moveto(X1,Y1) ; 

pick(gold); moveto(gold_depotX,gold_depotY); 

drop(gold,gold_depot). 

@plan1-5 // the agent will collect gold to the gold depot and 

collect silver to silver depot.  

+!collect(gold): free <– !find(gold,X,Y); moveto(X,Y) ; 

pick(gold); moveto(gold_depotX,gold_depotY); 

drop(gold,gold_depot); !find(silver,X1,Y1); pick(silver); 

moveto(silver_depotX,silver_depotY); drop(silver,silver_depot). 

There are set of norms that govern this society; some of them are unknown to best-

agent and best-safest-agent. The common norms among the three agents as follows: 

 It is prohibited to drop gold in the silver’s depot if the gold’s depot is not full, the 

sanction value is 5. 

initiatesAt(drop(gold,silver_depot),fPun(1,5),T1,T2):- not 

holdsAt(full(gold_depot),T1) happens(drop(gold,silver_depot),T1) & 

T1<=T2. 

 It is prohibited to carry more than one gold piece at the same time, the sanction 

value is 10 

initiatesAt( pick(gold),fPun(3,10),T1,T3):- happens(pick(gold),T1) & hap-

pens(pick(gold),T2) & not between(drop(gold,_),T1,T2) & T1<T2 & T2<=T3. 

 It is obligatory to collect silver immediately after collecting gold, the sanction val-

ue is 10. The reward for adhering is 10. 

initiatesAt(pick(gold),oPun(1,10),T1,T4):-happens(pick(gold),T1) & hap-

pens(drop(gold,_),T2)& happens(pick(gold),T3) & not be-

tween(pick(silver),T2,T3) & T1<T2 & T2<T3 & T3<=T4.  

initiatesAt(pick(gold),oRew(1,10),T1,T4):- happens(pick(gold),T1) & hap-

pens(drop(gold,_),T2)& happens(pick(gold),T3) & be-

tween(pick(silver),T2,T3) & T1<T2 & T2<T3 & T3<=T4.  

In addition to the previous norms best-safest-agent is aware of the following permis-

sion norms: 

 It is permitted to drop gold in gold depot                      

initiatesAt(drop(gold,g_depot),pRew(1),T1,T2):- hap-

pens(drop(gold,g_depot),T1)& T1<=T2. 

 it is permitted to drop silver in silver depot 

initiatesAt(drop(silver,s_depot),pRew(2),T1,T2):- hap-

pens(drop(silver,s_depot),T1) & T1<=T2. 



 

The monitor agent aware of the above norms in addition to the following prohibition 

norm: 

 It is prohibited to drop silver in the gold’s depot if the silver’s depot is not full, the 

sanction value is 10. 

initiatesAt(drop(silver,gold_depot),fPun(1,10),T1,T2):- not 

holdsAt(full(silver_depot),T1) happens(drop(silver,gold_depot),T1) & 

T1<=T2. 

The experiment was executed 10 times and the average taken. Two values for each 

agent have been recorded: the calculated-utility which results from the agent’s predic-

tion in case of a particular plan is chosen; real-utility which results from the execution 

of a particular plan.  These two values could be different, if an agent does not know 

that a particular act is prohibited then the sanction value of performing this act will 

not be calculated in the calculated-utility but it will be included in the real-utility (the 

sanction value will be issued by the monitor agent). 

Based on the norms and the 5 plans above, the best-agent finds the two best plans 

(plan_3 and plan_5) with utility equals to 20, then it will choose one of them random-

ly. However, plan_3 violates a prohibition that is not known for the two agents under 

the comparison. The best-safest-agent finds the same best plans (plan_3 and plan_5), 

then, using safe-rule, it chooses the one that conforms with more permissions, which 

is plan_5. In Fig.3 the results show that the average utility for goals achieved for best-

safest-agent is greater than the utility of the best-agent. That is because best-safest-

agent integrates permissions into its normative reasoning and using our preference 

relation over the best plans. We noticed that the best-agent has collected more golds 

and silvers than the best-safest-agent, that could be due to best-safest-agent spending 

more time reasoning about plan selection than the best-plan. The results in Fig.4 

shows that the real utility (after plan execution) of the best-agent is less than the pre-

dicted/calculated utility (before plan execution), this result goes back to best-agent 

using only prohibitions and obligations in its practical reasoning, in addition to its 

incomplete knowledge about the system’s norms. For the best-safest-agent, the real 

and calculated utilities were identical, hence, in Fig.4. the line for the best-safest agent 

calculated utility is not appeared, it is below the best-safest agent real utility. (though 

this is not necessarily always true). However, the ultimate utility of the best-safest 

agent should be the same or better than the ultimate utility of the best-agent.    

  

Fig. 4. Shows the calculat-

ed/predicted utility for the best-

safest-agent and best-agent.  

Fig. 3. Shows the average collected 

gold and silver pieces and the ulti-

mate achievement utilities for best-

agent and best-safest-agent. 



 

 

 

6 Conclusion 

In this paper we presented a formal representation of norms and a normative reason-

ing strategy based on event calculus that, in addition to prohibition and obligation 

norms, takes permission norms into consideration. We demonstrate empirically that 

when agents have incomplete knowledge about the norms of a system then permis-

sions have a significant role in practical normative reasoning. Using permission 

norms gives agents the ability to have preference over plans, i.e, plans containing 

actions that are known to be permitted are preferable over plans that contain actions 

whose normative status is unknown. The experiments compare between two agents: 

one (best-agent) that uses prohibition and obligation norms into its practical reason-

ing; the other one (best-safest-agent) that uses prohibition, obligation and permission 

norms into its practical reasoning. The results demonstrate that adding permission 

norms in the reasoning process may have fundamental benefits. However, by best-

agent, the average number of collected gold and silver pieces is more than the average 

collected pieces by best-safest-agent. This may indicate that the normative reasoning 

in the best-safest-agent needs more time than the case with best-agent. As future 

work, we plan to do further experiments to study the time efficiency of our practical 

normative reasoning mechanism. It will also be interesting to compare our best-safest-

agent with other BDI norm aware agents in the literature. 
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