
Utilizing Permission Norms in BDI Practical Normative

Reasoning
*

 Wagdi Alrawagfeh Felipe Meneguzzi

Computer Science Department School of Computer Science

Memorial University of Newfoundland Pontifical Catholic University

 St.John’s, NL, Canada of Rio Grande do Sul

 Porto Alegre, RS, Brazil

Wagdi.alrawagfeh@mun.ca felipe.meneguzzi@pucrs.br

Abstract. Norms have been used in multiagent systems as a standard de-

scription of agents’ behaviors. A lot of effort has been put in formalizing norms

and utilizing them in agents’ decision making. Most of this work focuses on

two types of norms: prohibitions and obligations. Agents may have incomplete

knowledge about norms in a system for several reasons, such as, deficient

norms identification techniques or because norms are not fixed and they may

change and emerge, etc. In this work we argue that, by assuming that agents do

not have complete knowledge of the norms within a system permission norms

are fundamental for modeling unknown normative states. Using Event Calculus,

we propose a formal representation of permission norm and we show how to

use it in agent normative practical reasoning. A simple mineral mining scenario

has been used to demonstrate our work, which was implemented in a popular

agent programming language.

Keywords: Permission norm, Norm-representation; Normative reasoning

1 Introduction

Open Multiagent Systems often contain agents that are heterogeneous, autonomous,

self-interested and which can join and leave the system at any time [1][2]. These fea-

tures make interaction, coordination or collaboration in the system challenging prob-

lems. To address such challenges, systems of social norms have been proposed to

provide a standard description of desirable behaviors within a society. There are two

major views regarding the integration of norms in multiagent systems. In the regimen-

tation approach where agents must obey norms and do not have choice about violat-

ing norms [3]. In this view the agents’ behaviors are more predictable; however

agents drastically lose their flexibility and autonomy. In the enforcement approach the

agents have the choice to comply or violate norms. In order to keep the system stable

and encourage agents to respect norms, agents who violate norms are subject to pun-

ishment and those who comply with norms are often rewarded [4][5][6]. In this paper,

* The paper was revised after the workshop

we take the latter view of enforcement, since our approach focuses on agents that plan

in order to achieve greater runtime flexibility. A substantial amount of recent work

focuses on practical normative reasoning using a variety of mechanisms. Panagiotidi

and Vasquez-Salceda focus on planning based normative reasoning [7], in which

agents form goals from norms; Criado et al. develops an agent architecture that rea-

sons about the agent objectives based on norms [8]; while Meneguzzi et al. develops a

mechanism to steer existing agent behavior towards norm achievement while execut-

ing plans to achieve agent goals [9]. In these efforts, only two types of norms are

considered in normative agent decision-making: obligations and prohibitions

[10][11][12][13]. Thus, in these systems, agents check whether performing a particu-

lar behavior complies with obligations or violate prohibitions, making compromises

in order perform norm compliant behaviors. In consequence processing permission

norms are often ignored in agent practical reasoning. Such design choice seems to

stem from the adoption of the sealing principle: “whatever is not prohibited is permit-

ted” [14]. This principle is sound if agents have complete knowledge about the nor-

mative states of a particular system, so it can always determine whether some action

violates a norm or not. Such clear-cut division of the state-space is illustrated in Fig1-

a, which depicts an agent’s knowledge of a system’s normative states in case of com-

plete knowledge and sealing principle. In this case, explicit reasoning about permis-

sion norms is not required since permission norms simply represent the absence of

prohibition. Royakkers [14] calls this kind of permission weak permission where it is

not enacted by an authority.

However, when agents do not have complete knowledge, some actions will be

known as either prohibited, obliged, or permitted (an thus whether they are norm

compliant), whereas others will be unknown. In order to address this challenge, we

assume that agents do not have complete knowledge and that such incompleteness is

explicitly represented, thus, in normative terms, world states can be either obliged,

prohibited, permitted, or unknown. The resulting division of the state space is illus-

trated in Fig1-b, which depicts the incomplete knowledge of agent about a system’s

normative states. Thus, agents do not have complete knowledge and some states will

be known for agents as prohibited (F), others as obliged (O), while others are permit-

ted (P); the rest of the state space is thus unknown (U). By adding permission norm to

the reasoning mechanism the agent will be able to reason about preferences over be-

haviors that are known as permitted over unknown ones. For example if the agent

needs to navigate from A to B and there are two paths X and Y. If the agent identifies

that taking path Y is permitted and taking X is unknown, then a rational agent should

take path Y rather than X (assuming X and Y have the same cost).

Our contributions in this paper are the following: we add the idea of utilizing per-

mission norms in the agents’ practical reasoning; we present a formal representation

of the permission norm and integrate it in a normative reasoning strategy that also

reasons about prohibition and obligation norms. We assume that agents have a mech-

anism to discover norms as agents explore the state-space (e.g. Alrawagfeh et al.

[25], Savarimuthu et al. [26]), thus, we are not concerned about addressing the norm

identification problem. The organization of this article is as follows: in section 2 we

briefly present a background. Section 3 discusses norm representation. The normative

reasoning strategy using permission norms is presented in Section 4. In Section 5 we

apply our work on the mineral mining scenario. In the last section, we conclude our

work and suggest for future work.

2 Background

2.1 JASON

Beliefs, Desires and Intentions (BDI) [15] is one of the most widely studied architec-

tures to implement practical reasoning in multi-agent systems. The BDI architecture is

also widely used in the definition of agent programming languages, such as the

AgentSpeak(L) programming language [17], arguably, the most widely studied such

language. Jason [18,19] is a Java-based interpreter for an extended version of

AgentSpeak(L) [16]. Agents in Jason use a belief-base that represents knowledge

using logic programming constructs that, unlike traditional AgentSpeak(L) allows

Prolog-like logical rules in the agent definition. There are two types of goals defined

in AgentSpeak(L): achievement goal which is represented by a literal prefixed with

“!” ; and test goal which is represented by a literal prefixed by “?”. Goals and belief

updates serve as triggers to the execution of hierarchical plans contained in a plan

library. Since we use the AgentSpeak(L) notation throughout this paper, we briefly

review the Jason version of its syntax. The most basic syntax element in Jason is the

predicate, which are represented by alphanumeric strings starting with a lower case

character. Predicates may have any number of terms, with this number being called

the arity of a predicate. A predicate represents a fact about the world and may be

evaluated to either true or false. Predicates with arity greater than 0 have a number of

terms. Terms are similar to predicates but they represent objects in the domain and

can be either functions (terms with arity greater than 0); constants (representing spe-

cific objects in the domain); or variables, which follow the Prolog standard and start

with an upper case letter or the underscore sign, representing an unnamed variable.

The “+” and “-“ symbols are used to represent changes in the belief base, and thus

represent belief addition and deletion respectively. A plan is structured as follows:

Triggering-event: Context <– body. In a plan, the triggering-event part is separat-

ed from the context part by the symbol “:”. In rules, the symbol “:-“separates a rule

left and right hand sides; the symbols “&” and “|” indicate a conjunction and dis-

Fig. 1.a Complete Knowledge of an agent

about the norms within a system. Shape F

represents prohibited states, O represents

obliged states, P in shape O refer to the

implicit permission norm. Shape P repre-

sents the permitted states.

Fig. 1.b Incomplete Knowledge of

an agent about the norms within a

system. U refers to unknown norma-

tive states

junction operators are indicated by the symbols “&” and “|” respectively. For more

details on the semantics of Jason, we refer the reader to [20].

2.2 Event Calculus

Event Calculus (EC) is a logical framework consisting of predicates and axioms to

represent and reason about actions and their effects. EC was originally proposed in

logic programming [21] with the purpose to affirm that as a result of executing a par-

ticular sequence of actions some fluents are initiated to be true in a specific time-point

and no action occurred that terminates this fluents. Event Calculus is well known by

its simplicity in describing concepts and straightforward implementation, since it is

based on logic programming. Therefore, several works [22][23] use EC for represent-

ing concepts in multi-agent systems.

A fluent defined as a property whose value is subject to change at different points

in time. The basic components of EC are actions A, fluents F and time T.

Table 1. The predicates of the event calculus

Predicate Meaning

happens(A,T) Action A occurs at time T

holdsAt(F,T) Fluent F is true at time T

terminate(A,F,T) Occurrence of action A at time T will make fluent F

false after time T

initiates(A,F,T) Occurrence of action A at time T will make fluent F true

after time T

clipped(T,F,Tn) Fluent F is terminated between time T and Tn

<, >, <=, >= Standard order relation for time

We define the predicate between(A,T1,T2), which means that action A occurred

after time T1 and before T2.Sometimes the effect of an action does not appear imme-

diately. Therefore, we modified the event calculus predicates initiates(A,F,T) and

terminates(A,F,T) as follows:

 initiatesAt(A,F,T1,T2) : the occurrence of action A at time T1 will make

fluent F true at T2.

 terminatesAt(A,F,T1,T2): the occurrence of action A at time T1 will

make fluent F false at time T2.

If the occurrence of action A at time T1 initiates the fluent F at T2 where T1 is before

T2 then, the predicate initiates(A,F,T1) is not sufficient to represent the delayed

effect. Thus, we replaced the initiates(A,F,T1) predicate by initiatesAt(A,F,T1,T2)

predicate ,where initiatesAt(A,F,T1,T2), states that the occurrence of action A at T1

will make fluent F true after T2, when T1≤ T2. However, initiatesAt(A,F,T1,T2) has

the same semantics of initiates(A,F,T1) when T1=T2.

Below, we summarize the basic event calculus axioms (with the slight modification

on the initiates predicate) that are important to our work:

 EC1: clipped (T1, F, T4) :- happens(A, T2) & terminatesAt(A, F, T2,T3)&

T1< T2 & T2≤T3 & T3<T4

This means that fluent F is terminated by the occurrence of action A between time T1

and T4. In other words, after time T1 if an action A occurred at time T2 and if the

effect of this action is reflected at time T3 then the fluent F becomes false between T1

and T4.

 EC3’: holdsAt (F, T3) :- happens(A, T1) & initiatesAt(A, F, T1,T2) & T1≤ T2

& T2<T3 & not clipped (T2, F, T3)

This means that the fluent F holds at Time T3 if the action A occurs at time T1 and

the fluent F holds after time T2 and F has not been terminated between T2 and T3.

3 Norm Representation

In this Section, we review the norm representation presented in [23], before we extend

it by adding permission norms. In [23] three fluents are defined to represent prohibi-

tion and obligation norms. These fluents work like flags that are raised if a prohibition

is violated, or an obligation norm is either fulfilled or violated. Here we add another

fluent for permission norm that is true only if a particular permitted sequence of ac-

tions is performed.

3.1 Norms

A norm is defined in [24] as a tuple N = <D, C, Seq, S, R> where:

 D {F,O,P} is the deontic type of the norm, F for prohibition, O for obligation and

P for permission.

 C is the norm’s context. The specified sequence of actions is obliged, prohibited or

permitted if C is a logical consequence of the agent’s belief base. C is composed of

(possibly empty) , or both. is composed of holdsAt predicates which describe

a particular world state. is an event calculus formula to represent a sequence of

actions.

 Seq is a sequence of action(s) that agents are not supposed to perform, have to

perform or may perform in case of prohibition, obligation1, or permission respec-

tively. Note that Seq is different than , since is part of the context condition

(actions that trigger norm activation) whereas Seq is the object of the norm's deon-

tic type (actions that are forbidden, obliged or permitted).

 S is the sanction that will be applied if the norm has been violated or not fulfilled.

 R is the reward that agents may get if they fulfill an obligation norm.

We define the deontic types of norm as follows:

1 If the order of actions was not important in a norm then in the norm representation we omit

the dependencies among T1,T2..Tn-1. However T1,T2..Tn-1 should be less than Tn.

─ Prohibition norms: In a particular context, if the occurrence of a sequence

of action(s) is subject to punishment then this sequence of actions is prohibited in

that context.

─ Obligation norms: If the nonoccurrence of prescribed sequence of action(s)

in a particular context is followed by punishment then this sequence of action(s) is

obligated in that context. Also, the fulfillment of this sequence might be subjected

to rewards.

─ Permission norms: In a particular context, if the occurrence of a sequence

of action(s) is not subject to punishment then this sequence of actions is permitted

in that context.

The punishment and reward in the prohibition and obligation represent an incentive

for agents to change their behaviors. As we see in the next section, a permission norm

gives the agents the possibility of preferring the known permitted actions to the un-

known actions (by unknown actions we mean the actions that are not known whether

prohibited, obliged or permitted). Fluent fPun(Nid,S) has been defined for prohibi-

tion norms, which, if true that means a prohibition norm has been violated. Similarly,

if oPun(Nid,S) fluent becomes true that means an obligation norm has been violat-

ed, But if the oRew(Nid,R) becomes true this means an obligation norm has been

fulfilled. For permission norm the story is different, regardless of whether the agents

act according to a permission norm or not there is no reward or sanction. However, to

prefer the behavior that acts according to permission norms over other behaviors, we

define a fluent pRew(Nid). When this fluent becomes true that means a permitted

sequence of action(s) has been performed. Plan X is preferred over plan Y if X has

more permitted actions than Y.

For the purpose of representing the three deontic of norm we adopt the prohibition

and obligation definition in [23] and introduce the permission definition:

1. fPun(Nid,S) fluent becomes true if the prohibition norm Nid is violated. The

sanction of the violation is S. Nid is a unique number of prohibition norm, where S

is an integer number representing the sanction value. The prohibition norm is rep-

resented as follows:

initiatesAt(An,fPun(Nid,S),Tn,Tn+1):- C, happens(A1,T1) &…& hap-

pens(An,Tn)& T1<T2< & …& <Tn .

 D = F. // fPun refers to prohibition norm’s violation

 C: the norm’s context.

 Seq = A1,..An. // the prohibited sequence of actions.

 S: the sanction value which will be applied on the violator agent.

 R is empty.

This means that, if the actions A1,..An occurred at time T1,..Tn respectively and

the context C was a logical consequence from the agents belief base, then the sanction

that might be applied on the actor after Tn is S.

2. oPun(Nid,S) fluent becomes true if the obligation norm Nid has not been ful-

filled. The punishment issued for this violation is S. Nid is a norm identification

number and S is the punishment value.

3. oRew(Nid,R) represents the rewards that may be granted by complying with the

obligation norm Nid, where R is the reward value.

Let δ be a sequence of actions, possibly empty, and δ’ is a sequence of prescribed

non-occurred action(s). An obligation norm violation occurs if in a particular context,

δ occurred but δ’ did not occur. The obligation norm fulfillment occurs when both δ

and δ’ occur. Fluent oPun(Nid,S) becomes true if the obligation norm Nid is violat-

ed. The initiates(A,F,T1) predicate is not suitable to represent the violation of obli-

gation norms, because it does not represent the delayed effects of actions. Therefore,

we replace the initiates(A,F,T1) predicate by the initiatesAt(A,F,T1,T2) predicate.

Two rules are needed to represent the obligation norm:

initiatesAt(Ai,oPun(Nid,S),Ti,Tn+1):- C & happens(A1,T1) & … & hap-

pens(Ai,Ti) &…& not happens(Aj,Tj) | ... | not happens(An,Tn) & T1< &…&

<Ti< &…& <Tj< &…& <Tn.

 D = O. // oPun refers to obligation norm’s violation

 C: the context. (as specified before)

 Seq = Aj,….An. // the obligatory sequence of actions

 S: the sanction. (as mentioned before)

 R is empty.

Which means that, if the context C was a logical consequence from agent belief base

and a sequence of actions (possibly empty) A1,..Ai occurred at time T1,..,Ti respec-

tively, and a sequence of actions Aj,..,An did not occur at Tj,..,Tn, then after Tn the

sanction that may be applied is S.

initiatesAt(An,oRew(Nid,R),Ti,Tn+1):- C & happens(A1,T1) & … & hap-

pens(Ai,Ti) &…& happens(Aj,Tj) & ... & happens(An,Tn) & T1< &…& <Ti<

&…& <Tj< &…& <Tn.

This means that, if C is entailed from agent’s belief base and a (possibly empty) se-

quence of actions A1,..Ai occurrs at time T1,..Ti, and a sequence of actions Aj,..,An

occurs at Tj,..,Tn, then after Tn the reward that may be granted is R.

4. pRew(Nid) fluent becomes true if a permitted sequence of actions has been per-

formed. Where Nid is the norm identification number (unique number for each

permission norm). the permission norm is represented as follows:

initiatesAt(An,pRew(Nid),Tn,Tn+1):- C, happens(A1,T1) &…& hap-

pens(An,Tn)& T1<T2< & …& <Tn .

This means that, if C entailed from agent belief base and the sequence of actions

A1,..An occurred at time T1,..Tn respectively, then after time Tn the fluent

pRew(Nid,1) becomes true. We illustrate this representation using the blocks world

scenario in the example below.

Example 1,

Suppose we have three blocks ; red, blue and green, and that we have the following

situation: on(red,blue), on(blue,table) and on(green,table). Now, if we have a permis-

sion norm that states “it is permitted to put green on red if red was not on the table”.

This permission norm is represented as follows:

initiatesAt(on(green,red),pRew(Nid),T1,T2):- not holdsAt(on(red,table),T1) &

happens(on(green,red),T1) & T1<T2.

4 BDI agent normative reasoning

In order to develop our normative reasoning strategy, we leverage the normative rea-

soning strategy presented by Alrawagfeh [24], which utilizes prohibition and obliga-

tion norms to find the best plan (in the sense of highest utility). In the context of BDI

agents, the best plan is found among the applicable plans. Our extension in this sec-

tion is to utilize permission norms in order to find the safest plan among the best

plans. We argue that using permission norms in practical reasoning within a norma-

tive system is important for at least two reasons when agents have incomplete

knowledge of normative states; First, if it is the agents’ duty to identify norms, the

norms identification mechanism may miss some norms; and second, norms are not

fixed; they may change, emerge or vanish. Hence, presuming that “whatever is not

prohibited is permitted” is not adequate since it does not account for such missing

norms.

We illustrate this argument with the following scenario. Suppose that an agent wants

to achieve a goal G and there are two plans P1 and P2, of equal and highest utility

based on prohibition and obligation norms, to achieve G. suppose P1 has some pro-

hibited action(s) but because of incomplete knowledge of agents, the agent does not

know that these actions are prohibited, then mistakenly the agent will presume them

as permitted. However, if the agent maintains the permission norms as it does with

prohibition and obligation then it can prefer between P1 and P2, the plan that has

more permitted actions than other will be the safest. In Fig.2, the basic BDI interpreter

overview is illustrated as white boxes, while our proposed additions are presented as

gray boxes. To deal with dynamic norms, the norm identification process needs to be

integrated with normative reasoning strategy. The agent discover emerged and abro-

gated norm by the norm identification process. However, the norm identification pro-

cess is beyond the scope of this paper [25][26].

Fig. 2. BDI Reasoning processes flow

The execution of plan Plan makes fluent help(Plan) true if it results in more rewards

than punishments (based on the helpful-rule below). The punishments value comes as

a result of violating prohibition norms or not fulfilling obligation norms. The rewards

value comes as a result of achieving the goal that is associated with Plan and ful-

filling obligation norms. Predicate goalpreference(G,Points) here is used to de-

scribe the importance of achieving goal G, where Points is an integer number refer-

ring to the importance of G and the goal importance is determined according to the

agent’s designed objectives.

To utilize permission norms in the normative reasoning strategy we define

safe(Plan) fluent which will be true if the execution of Plan conforms with one or

more permitted norms (based on the safe-rule below). If we have two plans of same

utility (based on prohibition and obligation norms) then the plan that conforms to

more permitted norms is the safest. That because the other actions that are unknown

might be prohibited. Our agent uses the following application-independent axioms in

its normative reasoning strategy:

EC1 & EC3’ from Section 3

Ax1: between(A,T1,T2) :- happens(A, T) & T1<T & T<T2

Ax2: terminatesAt(*,help(P),T1,T2):- happens(*,T1)

Ax3: terminatesAt(*,safe(P),T1,T2):- happens(*,T1)

Ax4: terminatesAt(*,fPun(I,S),T1,T2):- happens(*,T1)

Ax5: terminatesAt(*,oPun(I,S),T1,T2):- happens(*,T1)

Ax6: terminatesAt(*,oRew(I,S),T1,T2):- happens(*,T1)

Ax7: terminatesAt(*,pRew(I,S),T1,T2):- happens(*,T1)

In order to terminate fluents, an application-independent special event * is used. It
refers to the fact that the associated fluents becomes false after T. These axioms help
agents find a potential norm violation/fulfillment that may result from executing one
plan. If we want the agent to find the potential norm’s violation/fulfillment that may
result not only from executing the current plan, but also the one that may result by
actions interleaving of current plan and the previous plan, then we need to add to the
right hand side of Ax2…Ax7 another happens(*,T2) predicate. Here, the * action
monitors the end point of those fluents that are mentioned in the axioms above. With
these changes Ax2 will be as follows

Ax2b: terminatesAt(*,help(P),T1,T2):- happens(*,T1) & happens(*,T2).
Same thing applies for Ax3, Ax4, Ax5, Ax6 and Ax7.

using the above application-independent axioms in addition to the following rules (we
call them helpful-rule and safe-rule) the agent is able to find the set of best plans
among the applicable plans (using helpful-rule) and out of the best plans find the safest
plan (using safe-rule).

helpful-rule:

 initiatesAt(K,help(Plan_i),T1,T2):-
 .findall(V1,holdsAt(oRew(_,V1),T2+1), Wins) &
 .findall(V2,holdsAt(fPun(_,V2),T2+1), Loses1) &

 .findall(V3,holdsAt(oPun(_,V3),T2+1), Loses2) &
 goalpreference(G,Points) &
 Points + sum(Wins)- sum(Loses1) - sum(Loses2)> 0.

safe-rule:

 initiatesAt(K,safe(Plan_i),T1,T2):-
 .findall(V1,holdsAt(pRew(_,V1),T2+1),Count).

In the helpful-rule, by asserting action K (see Algorithm 1, lines 3,4 and 5), we simu-
late that K has occurred), and by executing .findall(V,P,S) function we obtain all the
values of V where predicate P is true and variable S instantiates with the sum of values
V. Finally, sum(Wins) obtains the rewards that may be granted if Plan_i is executed.
sum(Loses1) and sum(Loses2) will have the sanctions that may result if the plan
was executed. Conversely, in the safe-rule .findall(V,P,S) function we obtain all the
values of V where predicate P is true and variable S instantiates with the sum of values
V. Count will have the number of permission norms that are complied with if Plan_i
is executed. We can now define how our agent finds the set of best plans and then the
safest plan. We need the following additional definitions:

─ Let act() be a function that returns the sequence of actions of the plan ,

(A1,A2,…An). Before the agent takes the decision of intending/committing

plan, it will use the Algorithm 1 to find the most profitable and safe plan.

─ Let Γ be the set of applicable plans.

─ Let BestPl be the set of plans with the highest utilities.

─ Let Bel be a belief base represents the agent’s knowledge about the society along

with the society’s norms represented in Event Calculus.

─ Let Ω = EC1, EC3’, Ax1, Ax2, Ax3, Ax4, Ax5,Ax6, Ax7 helpful-rule, safe-

rule and Bel.

These are used in the following algorithm.

Algorithm 1 //find best plan

Input: applicable plans.

Output: safest plan. // the plan with the highest utility and

the one that conforms with more permission norms.

1: function FindBestPlan(Γ)

2: for all in Γ do

3: T current time.

4: for all θ act() do

5: Bel Bel happens(θ,T++).

6: end for

7: T current time.

8: if Ω holdsAt(help(),T) then

9: utility() Points + sum(Wins) - sum(Loses1)-

 sum(Loses2). // see helpful-rule.

10: end if

11: delete the asserted happens predicates at line 5.

12: end for

13: BestPl {max { utility()} }.

14: for all in BestPl do

15: T current time.

16 for all θ act() do

17: Bel Bel happens(θ,T++).

18: end for

19: T current time.

20: if Ω holdsAt(safe(),T) then

21: preference() Count. // see safe-rule.

22: end if

23: delete the asserted happens predicates at line 17.

24: end for

25: safestPlan {max { preference()} }.

26:End Function

As shown in Lines 4-6, the predicates happens (see Table 1) are added starting from

time T1 (the current time). The actions specified in predicate happens have not oc-

curred yet. By adding the plan’s actions, the agent simulates that it has executed them

in order to reason about whether the current plan is helpful or not. Plan is helpful

if the predicate holdsAt(help(),T) is deduced from current belief base; if that is

the case, then rewards outweigh losses. The plan of maximum utility is then added to

the best plan set BestPl. The set BestPl will have the plans of highest equal utilities.

Lines 14-25 find the safest plan out of BestPl. At Line 20 if the predicate

holdsAt(safe(),T) is deduced for current belief base then this means that there is at

least one permission norm being complied with as a result of executing plan . The

number of times permission norms are complied with results from executing plan

are saved in variable Count. The plan of maximum count is thus the safest plan. The

safest plan will be ready for execution by adding it to the intentions. The happens

predicate for each action of an executed plan will be added to the belief base (same as

in Lines 4-6). Predicate happens(*,Tn+1) is added to the belief base after executing

the last action of the chosen plan. The purpose of adding the special event * is to ter-

minate the fluents (help, safe, fPun, oPun, oRew and pRew) after Tn+1. Thus, if

plans executed in the past were causing norm violation/fulfillment then we do not

want this violation/fulfillment to be revealed again in the future. However, our strate-

gy is able to reveal the violation/fulfillment that may result from the interleaving of

the current plan (under investigation) and the previous executed plan.

5 Experiments

For experiment purposes, a mineral mining society which has been adapted from the

Gold Miners scenario2 has been used. We adopt a similar scenario as the one present-

2 http://jason.sourceforge.net/Jason/Examples

ed in [23], that scenario is composed of; a grid-like territory with gold and silver piec-

es which are scattered in; and agents to collect the scattered pieces to their respective

depot (one for silver and one for gold). In the territory there is a monitor agent who

plays the role of police in the scenario. The monitor agent is able to observe other

agents actions and also able to issue sanctions or rewards. There are set of norms

which govern the society. We assume that agents do not know all the norms. The

society has three agents, one that uses prohibition and obligation norms in its practical

reasoning. The other one uses prohibition, obligation and permission norms in its

practical reasoning. Both of them have the same prohibition and obligation norms.

The third agent is the monitor agent. Let us call the first agent best-agent and the se-

cond agent best-safest-agent, and call the third agent monitor-agent. The best-agent

uses in its practical reasoning the axioms Ax1..Ax7 and the helpful-rule. The best-

safest-agent uses the axioms Ax1…Ax7, helpful-rule and safe-rule. The norms

will be represented in the monitor-agent using EC, monitor-agent uses the Ax1…Ax7

to check if a violation/fulfillment occurred.

5.1 Gold and Silver mining society

In this society the possible actions which agents can perform are: pick(-), drop(-,-)

and moveto(-,-). The two competitive agents have one continuous goal which is

!collect(gold), the importance of achieving this goal is obtained by the predicate

goalpreference(collect(gold), 10), so the importance of values of achieving the

goal is 10. The grid has two depots one for gold and one for silver. The grid has 10

pieces of gold and 10 pieces of silver. The two agents compete to collect those pieces

and the game ends when all the pieces are collected. In this experiment the potential

violations/fulfillments that may result from the current plan and the previously exe-

cuted plan are taken into consideration. The two agents have the same plans below:

@plan1-1 // the agent will collect gold to the silver depot.

 +!collect(gold): free <– !find(gold,X,Y); moveto(X,Y) ;

pick(gold); moveto(silver_depotX,silver_depotY) ;

drop(gold,silver_depot).

@plan1-2// the agent will collect gold to the gold depot.

+!collect(gold): free <– !find(gold,X,Y); moveto(X,Y) ;

pick(gold); moveto(gold_depotX,gold_depotY);

drop(gold,gold_depot).

@plan1-3 // the agent will collect gold to the gold depot and

collect silver to gold depot.

+!collect(gold): free <– !find(gold,X,Y); moveto(X,Y) ;

pick(gold); moveto(gold_depotX,gold_depotY);

drop(gold,gold_depot); !find(silver,X1,Y1); pick(silver);

moveto(gold_depotX,gold_depotY; drop(silver,gold_depot).

@plan1-4 // the agent will collect gold to the gold depot and

collect another gold to the gold depot.

+!collect(gold): free <– !find(gold,X,Y); moveto(X,Y) ;

pick(gold); moveto(gold_depotX,gold_depotY);

drop(gold,gold_depot); !find(gold,X1,Y1); moveto(X1,Y1) ;

pick(gold); moveto(gold_depotX,gold_depotY);

drop(gold,gold_depot).

@plan1-5 // the agent will collect gold to the gold depot and

collect silver to silver depot.

+!collect(gold): free <– !find(gold,X,Y); moveto(X,Y) ;

pick(gold); moveto(gold_depotX,gold_depotY);

drop(gold,gold_depot); !find(silver,X1,Y1); pick(silver);

moveto(silver_depotX,silver_depotY); drop(silver,silver_depot).

There are set of norms that govern this society; some of them are unknown to best-

agent and best-safest-agent. The common norms among the three agents as follows:

 It is prohibited to drop gold in the silver’s depot if the gold’s depot is not full, the

sanction value is 5.

initiatesAt(drop(gold,silver_depot),fPun(1,5),T1,T2):- not

holdsAt(full(gold_depot),T1) happens(drop(gold,silver_depot),T1) &

T1<=T2.

 It is prohibited to carry more than one gold piece at the same time, the sanction

value is 10

initiatesAt(pick(gold),fPun(3,10),T1,T3):- happens(pick(gold),T1) & hap-

pens(pick(gold),T2) & not between(drop(gold,_),T1,T2) & T1<T2 & T2<=T3.

 It is obligatory to collect silver immediately after collecting gold, the sanction val-

ue is 10. The reward for adhering is 10.

initiatesAt(pick(gold),oPun(1,10),T1,T4):-happens(pick(gold),T1) & hap-

pens(drop(gold,_),T2)& happens(pick(gold),T3) & not be-

tween(pick(silver),T2,T3) & T1<T2 & T2<T3 & T3<=T4.

initiatesAt(pick(gold),oRew(1,10),T1,T4):- happens(pick(gold),T1) & hap-

pens(drop(gold,_),T2)& happens(pick(gold),T3) & be-

tween(pick(silver),T2,T3) & T1<T2 & T2<T3 & T3<=T4.

In addition to the previous norms best-safest-agent is aware of the following permis-

sion norms:

 It is permitted to drop gold in gold depot

initiatesAt(drop(gold,g_depot),pRew(1),T1,T2):- hap-

pens(drop(gold,g_depot),T1)& T1<=T2.

 it is permitted to drop silver in silver depot

initiatesAt(drop(silver,s_depot),pRew(2),T1,T2):- hap-

pens(drop(silver,s_depot),T1) & T1<=T2.

The monitor agent aware of the above norms in addition to the following prohibition

norm:

 It is prohibited to drop silver in the gold’s depot if the silver’s depot is not full, the

sanction value is 10.

initiatesAt(drop(silver,gold_depot),fPun(1,10),T1,T2):- not

holdsAt(full(silver_depot),T1) happens(drop(silver,gold_depot),T1) &

T1<=T2.

The experiment was executed 10 times and the average taken. Two values for each

agent have been recorded: the calculated-utility which results from the agent’s predic-

tion in case of a particular plan is chosen; real-utility which results from the execution

of a particular plan. These two values could be different, if an agent does not know

that a particular act is prohibited then the sanction value of performing this act will

not be calculated in the calculated-utility but it will be included in the real-utility (the

sanction value will be issued by the monitor agent).

Based on the norms and the 5 plans above, the best-agent finds the two best plans

(plan_3 and plan_5) with utility equals to 20, then it will choose one of them random-

ly. However, plan_3 violates a prohibition that is not known for the two agents under

the comparison. The best-safest-agent finds the same best plans (plan_3 and plan_5),

then, using safe-rule, it chooses the one that conforms with more permissions, which

is plan_5. In Fig.3 the results show that the average utility for goals achieved for best-

safest-agent is greater than the utility of the best-agent. That is because best-safest-

agent integrates permissions into its normative reasoning and using our preference

relation over the best plans. We noticed that the best-agent has collected more golds

and silvers than the best-safest-agent, that could be due to best-safest-agent spending

more time reasoning about plan selection than the best-plan. The results in Fig.4

shows that the real utility (after plan execution) of the best-agent is less than the pre-

dicted/calculated utility (before plan execution), this result goes back to best-agent

using only prohibitions and obligations in its practical reasoning, in addition to its

incomplete knowledge about the system’s norms. For the best-safest-agent, the real

and calculated utilities were identical, hence, in Fig.4. the line for the best-safest agent

calculated utility is not appeared, it is below the best-safest agent real utility. (though

this is not necessarily always true). However, the ultimate utility of the best-safest

agent should be the same or better than the ultimate utility of the best-agent.

Fig. 4. Shows the calculat-

ed/predicted utility for the best-

safest-agent and best-agent.

Fig. 3. Shows the average collected

gold and silver pieces and the ulti-

mate achievement utilities for best-

agent and best-safest-agent.

6 Conclusion

In this paper we presented a formal representation of norms and a normative reason-

ing strategy based on event calculus that, in addition to prohibition and obligation

norms, takes permission norms into consideration. We demonstrate empirically that

when agents have incomplete knowledge about the norms of a system then permis-

sions have a significant role in practical normative reasoning. Using permission

norms gives agents the ability to have preference over plans, i.e, plans containing

actions that are known to be permitted are preferable over plans that contain actions

whose normative status is unknown. The experiments compare between two agents:

one (best-agent) that uses prohibition and obligation norms into its practical reason-

ing; the other one (best-safest-agent) that uses prohibition, obligation and permission

norms into its practical reasoning. The results demonstrate that adding permission

norms in the reasoning process may have fundamental benefits. However, by best-

agent, the average number of collected gold and silver pieces is more than the average

collected pieces by best-safest-agent. This may indicate that the normative reasoning

in the best-safest-agent needs more time than the case with best-agent. As future

work, we plan to do further experiments to study the time efficiency of our practical

normative reasoning mechanism. It will also be interesting to compare our best-safest-

agent with other BDI norm aware agents in the literature.

Acknowledgments. We thank the anonymous reviewers from COIN for their con-

structive reviews, which helped to improve this paper substantially.

References

1. Hermoso, R., Billhardt, H. and Ossowski, S 2010. Role evolution in open multi-agent sys-

tems as an information source for trust. In: Procs. AAMAS 2010, pp 217-224.

2. Hübner, J. F., Boissier, O., Kitio, R., and Ricci, A. 2010. Instrumenting multi-agent organ-

isations with organisational artifacts and agents. Autonomous Agents and Multi-Agent

Systems, 20-3, 369-400.

3. Esteva, M., Rodriguez-Aguilar, J. A., Sierra, C., Garcia, P., and Arcos, J. L. 2001. On the

formal specification of electronic institutions. In: Agent mediated electronic commerce, pp

126-147. Springer Berlin Heidelberg.

4. Aldewereld, H., Dignum, F., García-Camino, A., Noriega, P., Rodríguez-Aguilar, J.A. and

Sierra, C. 2006. Operationalisation of norms for usage in electronic institutions. In: Procs.

AAMAS, pp. 223–225. New York 2006

5. Castelfranchi, C. 2004. Formalizing the informal: Dynamic social order, bottom-up social

control, and spontaneous normative relations. Journal of Applied Logic, 1-1, 47–92.

6. Pitt, J., Busquets, D., and Riveret, R. 2013. The pursuit of computational justice in open

systems. AI & SOCIETY, 1-20.

7. Panagiotidi, S. and Vázquez-Salceda, J. 2012. Towards Practical Normative Agents: A

Framework and an Implementation for Norm-Aware Planning. COIN at Agent System

VII. Springer Berlin Heidelberg, 2012. 93-109.

8. Criado, N., Argente, E., Noriega, P. and Botti, V.2010. Towards a Normative BDI Archi-

tecture for Norm Compliance. In: COIN at MALLOW 2010, pp. 65–81.

9. Meneguzzi, F., Vasconcelos, W., Oren, N. and Luck, M. 2012.Nu-BDI: Norm-aware BDI

Agents. In Procs: of the 10th Workshop, EUMAS, Dublin, Ireland 2012

10. Kollingbaum, M. 2005. Norm-governed Practical Reasoning Agents. Ph.D. Dissertation,

University of Aberdeen

11. Meneguzzi, F. and Luck, M. 2009. Norm-based behaviour modification in BDI agents. In:

Procs. AAMAS 2009, pp 177–184.

12. Oren, N., Vasconcelos, W., Meneguzzi, F. and Luck, M. 2011. Acting on Norm

ConstrainedPlans. In: Leite, J., Torroni, P., Agotnes, T., Boella, G., van der Torre, L. (eds.)

CLIMA XII 2011. LNCS, vol. 6814, pp. 347–363. Springer, Heidelberg.

13. Alechina, N., Dastani, M., and Logan, B. 2012. Programming norm-aware agents. In:

Procs. AAMAS 2012, pp1057–1064.

14. Royakkers, L. M. 1997. Giving permission implies giving choice. In: Procs. 8th Interna-

tional workshop on Database and Expert Systems Applications, pp 198-203.

15. M. E. Bratman. 1987. Intentions, Plans, and Practical Reason. Harvard University Press:

Cambridge, MA.

16. d’Inverno, M., Kinny, D., Luck,M., and Wooldridge,M. 1998. A formal specification of

dMARS. InM. P. Singh, A. S. Rao, and M.Wooldridge, (Eds.), Intelligent agents IV-

Procs. ATAL 1997, pp24–26, number 1365 in LNAI, pp. 155–176.

17. Anand S. Rao. 1996. AgentSpeak(L): BDI agents speak out in a logical computable lan-

guage. In: 7th European Workshop MAAMAW, Agents Breaking Away, pp. 42–55.

18. Dignum, F., Morley, D., Sonenberg, E. and Cavedon, L. 2000. Towards socially sophisti-

cated BDI agents. In: E. Durfee (Ed.): Procs. ICMAS 2000. pp. 111-118, IEEE Press

19. Bordini, R. H. and Huebner , J. F. 2006. BDI Agent Programming in AgentSpeak Using

Jason. 6th international workshop, CLIMA 2006, pp 143–164.

20. Rafael H. Bordini, Jomi Fred Huebner , and Michael Wooldridge.2007. Programming

Multi-Agent Systems in AgentSpeak using Jason. Wiley.

21. Kowalski, R. A., and Sergot, M. J. 1986. A logic-based calculus of events. New Genera-

tion Computing, 4-1, 67–95.

22. Artikis, A., Kamara, L., Pitt, J., and Sergot, M. 2005. A Protocol for Resource Sharing in

Norm-Governed Ad Hoc Networks. In DALT II, volume 3476 of LNCS. Springer-Verlag.

23. Fornara, N., and Colombetti, M. 2009. Specifying artificial institutions in the event calcu-

lus. In V. Dignum (Ed.), Handbook of research on multi-agent systems: Semantics and dy-

namics of organizational models, pp 335–366. Hershey, PA: IGI Global.

24. Alrawagfeh, Wagdi. "Norm Representation and Reasoning: A Formalization in Event Cal-

culus. In Procs. PRIMA 2013. Springer Berlin Heidelberg, 2013. 5-20.

25. Alrawagfeh, W., Brown, E., and Mata-Montero, M. 2011. Norms of Behaviour and Their

Identification and Verification in Open Multi-Agent Societies. International Journal of

Agent Technologies and Systems (IJATS), 3-3, 1-16. doi:10.4018/jats.2011070101.

26. Savarimuthu, B. T. R. (2011). Mechanisms for norm emergence and norm identification in

multi-agent societies (Thesis, Doctor of Philosophy). University of Otago.

