
Interaction Patterns in a Multi-Agent
Organisation to Support Shared Tasks

Moser Silva Fagundes, Felipe Meneguzzi, Renata Vieira, and Rafael H. Bordini

Postgraduate Programme in Computer Science – School of Informatics (FACIN)
Pontifical Catholic University of Rio Grande do Sul (PUCRS) – Porto Alegre – RS, Brazil

{moser.fagundes,felipe.meneguzzi,renata.vieira,rafael.bordini}@pucrs.br

Abstract. We aim to help the coordination of the activities of groups of users
who share certain tasks. In particular, we are working towards automatically pre-
dicting the context of each user, in particular which task each user is trying to
accomplish. We also intend to predict how probable it is that users will be able to
successfully accomplish theirs tasks. In case a failure is likely, we help the users
in negotiating task reallocation among group members. This paper presents the
interaction patterns we use for information exchange among agents in order to
determine the context needed to make those predictions.

1 Introduction

In daily life, groups of people cooperate to successfully complete tasks that are in the in-
terest of their respective members. The members of such groups can be geographically
distributed and subject to setbacks which unexpectedly interrupt the progress of their
activities. For example, consider a delivery service whose employees pick up and de-
liver packets in geographically distributed locations. Such activities can be interrupted
by traffic jams, cancellations of service orders, mechanical problems in the vehicles, etc.
When the activities unfold as planned, coordination requires minimal attention to detail.
However, when the plans deviate from the expected courses of action, it is expected that
someone estimates how likely it is that the plan will fail. If a plan is expected to fail,
then a reallocation of tasks could be made. For example, if an employee gets stuck in a
traffic jam and realizes that he will not arrive in time to make a programmed pickup, he
can call another employee to perform this task.

In such dynamic and unpredictable environments, the Multi-Agent Systems (MAS)
paradigm [3, 5, 4, 6] can be employed to develop complex applications that integrate
multiple autonomous entities, both human and computational. Such applications can be
designed to facilitate the interaction of users operating several types of devices (e.g.,
smartphones, tablets, laptops), predicting which tasks each group member is trying to
achieve and suggesting possible alternative courses of action that might increase the
chances of success in finishing all the group’s tasks. However, to make possible the
development of predictive multi-agent applications like these, we need to enable au-
tonomous agents to provide and request relevant information to each other so as to
reconstruct the context of the users.



2 M.S. Fagundes, F. Meneguzzi, R. Vieira, R.H. Bordini

In this paper, we put forward a multi-agent organisation to support activities shared
among members of a group, focusing on the description of the agent roles and inter-
action patterns between the roles so as to exchange information in order to gather the
context of all the users. We show how these agent interaction patterns can be imple-
mented in the Jason agent programming language [1] and we illustrate our approach by
means of a scenario related to a delivery service company.

The remainder of this paper is organised as follows. Section 2 describes our proposal
for a multi-agent organisation. Section 3 introduces a scenario to illustrate our approach.
Finally, Section 4 draws some conclusions and points towards future work directions.

2 A Multi-Agent Organisation to Support Group Activities

A multi-agent organisation consists of a collection of roles and relationships which
govern the behaviour of the agents [2]. In such organisations, roles can be employed
to determine suitable interaction partners by providing additional information about the
individuals. In this section, we employ the notion of organisation to describe a multi-
agent system to support the activities of a group of users.

2.1 Roles

There are two roles in our MAS organisation: Interface Agent and Planner Agent. Inter-
face agents operate in devices of the human users (e.g., smartphones, tablets, laptops).
These agents encapsulate the methods needed to run properly in particular devices, tak-
ing into account their hardware and operating system configurations. An agent playing
this role collects information about the human user from different sources (e.g., social
networks, calendar, GPS) and provides information to the planner agent (this role is
detailed below). An interface agent can deliver information to a planner agent in two
ways: (i) proactively, when the interface agent believes that the information is relevant
to the tasks carried out by the planner agent; and (ii) reactively, when the planner agent
requests a particular information. Within our organisation, there is one interface agent
per device, and this agent interacts with one user and his respective planner agent.

Planner agents operate in “the Cloud” and they interact with interface agents in or-
der to get information about the users. In our multi-agent system, there is one planner
agent per user, and this agent can interoperate with the interface agents running on vari-
ous devices of this user (often a user interacts with several devices such as smartphones,
tablets, etc. for the same task, depending on their current context). This way, the planner
agents can infer the context of the users on the basis of information from multiple de-
vices. This is fundamental to the type of system that we envision, given that all complex
tasks performed by the planner agents (recognition of intentions, negotiation, and task
reallocation) are based on the users’ context. The agents playing this role are designed
to run the reasoning processes that require high computational performance, hence alle-
viating the burden of the interface agents running on portable devices that have limited
computational resources.

In summary, for each user there is one planner agent and a set of interface agents
(at least one such agent). Figure 1 illustrates a scenario in which there are three users



Interaction Patterns in a Multi-Agent Organisation to Support Shared Tasks 3

(userA, userB, and userC) and three planner agents (pa, pb, and pc). The arrows
between these agents indicate that they are capable of interacting with each other (in
this case, they interact to exchange information about the users). Each planner agent
communicates with one or more interface agents of the same user. For instance, pb
communicates with three interface agents, namely ib1, ib2, and ib3, running on a
laptop, a tablet, and a smartphone, respectively. The arrows between pb and these in-
terface agents indicate that they are capable of interacting. Figure 1 also shows that
a single user can have multiple devices (for example, userA has a smartphone and a
tablet).

ia1

pa

ia2

pb

ib2
ib3

ib1

userA

Server/Cloud

userB

ic1

userC

pc

Fig. 1. Scenario with three users, three planner agents, and six interface agents.

2.2 Agent Interactions

Within the multi-agent organisation, the following interactions are allowed:

– Interface Agent– Planner Agent .
Interaction #1: An interface agent is capable of proactively sending information

to its planner agent. This behaviour is triggered by the arrival of new informa-
tion that the interface agents believe to be relevant to the construction of the
user context. Figure 2(a) shows the protocol for this interaction.

Interaction #2: A planner agent can tell its respective interface agents about which
information it considers to be relevant. Figure 2(b) shows the protocol for this
second type of interaction.

Interaction #3: A planner agent is capable of asking the related interface agents
for information in order to construct and update the context of a user. In this
interaction, the planner agent asks for specific information, and the interface
agent returns such information or tells that it is not available. The protocol for
this interaction is specified in Figure 2(c).

– Planner Agent– Planner Agent .



4 M.S. Fagundes, F. Meneguzzi, R. Vieira, R.H. Bordini

Interaction #4: planner agents are capable of asking other planner agents for in-
formation in order to create or update a representation of the users’ context.
This interaction follows the same protocol as Interaction #3, except that it hap-
pens between two planner agents.

Interface
Agent

Planner
Agent

relevant
information

(a) Interaction #1

information

information 
not available

Planner
Agent

ask for information

Interface
Agent

(c) Interaction #3

information 
about relevant 
information

Interface
Agent

Planner
Agent

(b) Interaction #2

Fig. 2. Interaction protocols.

2.3 Jason Implementation

This section shows how to implement in Jason1 the interactions described in the previ-
ous subsection. Before describing the implementation of the interactions, we describe
the agents’ beliefs about the organisation structure. Agents playing the interface role
know their respective user and planner. For example, ia1 in Figure 1 believes that:

user(userA).
planner(pa,userA).

Agents playing the role planner have beliefs about their respective user and inter-
face agents, and about other planners. For example, pb in Figure 1 believes that:

user(userB).
planner(pa,userA).
planner(pc,userC).
interface([ib1,ib2,ib3]).

An interface agent implements Interaction #1 using the following plan template:

@tellXxx[interaction(1)]
+!tellXxx(Y) : user(User) <-

?xxx(Y);
?planner(Agent,User);
.send(Agent,tell,xxx(Y)).

in which xxx(Y) is the belief (information) to be told; the “context part” of the plan
instantiates User, which is used in the body of the plan to select the name of the planner.

In Interaction #2, a planner agent tells its interface agents about which informa-
tion it considers relevant. We propose an implementation of such interactions using the

1 For the sake of space, this paper assumes that the reader is familiar with the Jason program-
ming language. For details about the Jason platform, see Bordini et al. [1].



Interaction Patterns in a Multi-Agent Organisation to Support Shared Tasks 5

tellHow performative, by means of which the planner informs the interface agents of
plans that should be executed when they get to know something that is relevant to the
planner. Our implementation uses the following plan template:

@tellXxx[interaction(2)]
+!tellXxx : user(User) <-

?interface(InterfaceAgents);
.my name(Agent);
.concat("@tellXxx [interaction(2)] ",

"+xxx(Y) : true <- .send(", Agent, ",tell,xxx(Y)).", Plan);
.send(InterfaceAgents,tellHow,Plan).

in which xxx(Y) is the belief (relevant information) that interface agents are asked
to provide to the planner. The plan body consists of retrieving the names of interface
agents, and specifying and sending the plan to be executed by them.

Interaction #3 takes place when a planner agents fails to retrieve some information
and asks its adjacent interface agents for this information. This third type of interaction
is implemented in Jason by means of plans triggered by test goals of the planner, which
are specified according to the following plan template:

@determineXxx[interaction(3)]
+?xxx(Y) : user(User) <-

?interface(InterfaceAgents);
.selectIA(InterfaceAgents,Agent);
.send(Agent,askOne,xxx(Y),xxx(Y));
+xxx(Y)[source(Agent)].

This plan retrieves the list of interface agents and selects one of them with
selectIA. The name of the selected agent is stored in variable Agent. Then, the plan-
ner agent sends an askOne message to Agent. If Agent successfully unifies xxx(Y)
with its beliefs, then the planner agent adds this predicate to its belief base, which will
include an annotation that indicates the source of this information.

Interaction #4 is similar to Interaction #3, except that the planner asks another
planner instead of an interface agent. These interactions use the following template:

@determineXxx[interaction(4)]
+?xxx(Y) : not user(User) <-

?planner(Agent,User);
.send(Agent,askOne,xxx(Y),xxx(Y));
+xxx(Y)[source(Agent)].

in which xxx(Y) is the belief (information) to be acquired. Note that the context part of
this plan is “not user(User)”, which indicates that this plan is applicable only when
the agent needs to know something about a user that is not its own.

3 Delivery Service Scenario

This section describes a delivery service scenario to illustrate our approach. There are
three employees participating in this scenario, and each employee drives a vehicle to
make programmed pickups and deliveries. The structure of the organisation is the same
used in Figure 1, so we can say that userA corresponds to employeeA, userB corre-
sponds to employeeB, and userC corresponds to employeeC.

Consider a situation in which pa aims to determine the location of employeeA
and employeeC. In the code of pa, specified in Listing 1, @someGoal tries to unify



6 M.S. Fagundes, F. Meneguzzi, R. Vieira, R.H. Bordini

?location(employeeA,LocEA) and fails because it has no beliefs about the lo-
cation of employeeA. As an attempt to determine this location, agent pa triggers
@determineLocation[interaction(3)], which sends an askOne message to one
of the other related interface agents [ia1,ia2].

Listing 1 - pa

user(employeeA).
interface([ia1,ia2]).
planner(pb,employeeB).
planner(pc,employeeC).

@someGoal
+!someGoal : true <-

?location(employeeA,LocEA);
?location(employeeC,LocEC); ...

@determineLocation[interaction(3)]
+?location(User,Location) : user(User) <-

?interface(InterfaceAgents);
.selectIA(InterfaceAgents,Agent);
.send(Agent,askOne,location(User,Location),location(User,Location));
+location(User,Location)[source(Agent)].

@determineLocation[interaction(4)]
+?location(User,Location) : not user(User) <-

?planner(Agent,User);
.send(Agent,askOne,location(User,Location),location(User,Location));
+location(User,Location)[source(Agent)].

Assume that planner agent pa selects the interface agent ia1 (Listing 2) as the
receiver of the message. When the agent ia1 receives the message, it attempts to unify
location(employeeA,LocEA) and fails to do so. This failure triggers the addition
of a test goal, which is handled by plan @determineLocation. This plan reads the
current location from the tablet’s GPS of employeeA (tablet.getLocation). When
location(employeeA,Location) is added to the belief base of ia1, it replies to
pa, which resumes the execution of pa’s plan.

Listing 2 - ia1

user(employeeA).
planner(pa,employeeA).

@determineLocation
+?location(User,Location) : user(User) <-

tablet.getLocation(Location);
+location(User,Location).

Further, in the body of plan @someGoal, the agent pa tries to unify ?location(

employeeC,LocEC) and fails. This failure triggers the plan @determineLocation[

interaction(4)], which sends an askOne message to the respective planner agent
(in this case, pc), starting an instance of Interaction #4. Sometimes, the planner agents
do not have the information requested by other agents. In this case, they have to inter-
act with their interface agent in order to get the requested information. For instance,
consider a situation in which pc does not know the location of employeeC. So, when
pa asks pc about the location of employeeC, pc asks its interface agents about it (this
is Interaction #3 taking place within Interaction #4). This can be seen in Listing 3 and
Listing 4, the code for pc and ic1, respectively.



Interaction Patterns in a Multi-Agent Organisation to Support Shared Tasks 7

Listing 3 - pc

user(employeeC).
interface([ic1]).
planner(pa,employeeA).
planner(pb,employeeB).

@determineLocation[interaction(3)]
+?location(User,Location) : user(User) <-

?interface(InterfaceAgents);
.selectIA(InterfaceAgents,Agent);
.send(Agent,askOne,location(User,Location),location(User,Location));
+location(User,Location).

Listing 4 - ic1

user(employeeC).
planner(pc,employeeC).

@determineLocation
+?location(User,Location) : user(User) <-

smartphone.getLocation(Location);
+location(User,Location).

4 Conclusion

This paper presented an organisation of agents to support group activities, focusing on
the specification and implementation of interaction patterns between the agent roles as
an infrastructure to enable the exchange of information about users and their context.

There are three main directions for future work. The investigation and development
of plan recognition and negotiation techniques using contextual information for proac-
tive multiuser assistance, as well as the use of ontologies to support the generation of
plans for the Jason platform using the templates introduced in this paper.

Acknowledgements

Part of the results presented by this paper were obtained through the project named
Semantic and Multi-Agent Technologies for Group Interaction, sponsored by Samsung
Eletrônica da Amazônia Ltda., under the terms of Law number 8.248/91.

References

1. Bordini, R., Wooldridge, M., Hübner, J.F.: Programming Multi-Agent Systems in AgentSpeak
using Jason. Wiley Series in Agent Technology, John Wiley & Sons (2007)

2. Horling, B., Lesser, V.R.: A survey of multi-agent organizational paradigms. Knowledge Eng.
Review 19(4), 281–316 (2004)

3. Jennings, N.R.: On agent-based software engineering. Artif. Intell. 117(2), 277–296 (2000)
4. Jennings, N.R.: An agent-based approach for building complex software systems. Commun.

ACM 44(4), 35–41 (2001)
5. Jennings, N.R., Sycara, K.P., Wooldridge, M.: A roadmap of agent research and development.

Autonomous Agents and Multi-Agent Systems 1(1), 7–38 (1998)
6. Wooldridge, M.: Agent-based software engineering. IEE Proceedings - Software 144(1), 26–

37 (1997)


