ING'S
College

[LONDON

University of London




1(:Iomposing High-Level Plans
or

Declarative Agent
Programming

Felipe Meneguzzi &
Michael Luck

Kinﬂ’s Colleﬁe London


http://www.kcl.ac.uk/

e
Outline

* Procedural versus Declarative
*AgentSpeak(L)

" AgentSpeak-PL

* The planning action
* Chaining plans

* AgentSpeak <---> STRIPS
* Plan Execution

*Experiments


http://www.kcl.ac.uk/

Procedural versus
Declarative

*Procedural agents select black box
plans to handle events in the
environment

" Declarative agents select capabilities to
bring about a specific world state



http://www.kcl.ac.uk/

S ————
AgentSpeak(L)

* Procedural agent
language ® ®

° Based On the BDI mOdeI Goal addition/deletion

v
(Find applicable plans)

* Designer specifies plans
(" Goal Achieved ) ( Goal Failed )

in a library L J L

N
¢ No plan found

Applicable plan found

V.

° Pl ans en cod e p roce d ures (Push plan into Intentions )
/‘\ J\Plan failed
Plan executed L

* Plans are characterised by
trigger and context < (Prosess Intention )
condition

* Goals are implicit in the
plans



http://www.kcl.ac.uk/

T
AgentSpeak(L)

“Actual goal is implicit

* +Imove(Destination) : true
* — lbuy(iceCream).

*We want to be able to say
lachieve(at(Dest))

*But this would require a very different
interpreter...

* Not exactly


http://www.kcl.ac.uk/

T
AgentSpeak-PL

" AgentSpeak(L) + Planning
* Standard AgentSpeak(L) language
* Planner invoked through an atomic action

" In principle, any state-space planner can be

used
AgentSpeak

Interpreter Planner
Plan % B @

Library



http://www.kcl.ac.uk/

____________________________________________
The planning action

*Point of connection between interpreter
and planner

*Encapsulates a conversion process

* From AgentSpeak to STRIPS/PDDL
* From a STRIPS plan to AgentSpeak

" Takes a conjunction of beliefs as input

*Succeeds if planner is able to generate
a plan to achieve its input


http://www.kcl.ac.uk/

The planning action

————— )0

| plan(Goals)
'
Plan Library |— — {Create STRIPS Prome@

(Invoke PlanneD

<> Planner failed\©

/I\ (Strips Problem)
|

|

|

|

|

|

| Planner succeeded
|

— — — ~( Convert STRIPS Plan ) Flan Created ™

Trigger Added

‘ Intention Structure “& S

rigger Plan ExecutiorD



http://www.kcl.ac.uk/

____________________________________________
Chaining Plans

" Traditional AgentSpeak programming
is similar to procedural languages
* Lower-|level basic procedures (subroutines)
* Higher-level procedures that use them

" AgentSpeak-PL uses a planner to
create new high-level plans by chaining
basic plans


http://www.kcl.ac.uk/

T
AgentSpeak to STRIPS

+!move(A,B) ——opname: move(A,B)
. at(A) & not at(B)—pre: at(A) & not at(B)
—-at(A); del: at(A)
+at(B). add: at(B)

* Relies on clear similarities between
AgentSpeak plans and STRIPS operators

* Desired world state becomes the
planner’s goal

* Belief base becomes the planner’s start
state


http://www.kcl.ac.uk/

T
STRIPS to AgentSpeak

STRIPS Plan AgentSpeak(L):

to achieve

battery(full): +l goal conj (battery(full))
. true

nove(1, 1) <- lmove(l,1);

nove(1, 2) l move( 1, 2);

char ge | char ge.

*Each STRIPS action correspond to a low-
level AgentSpeak(L) plan

*Plans amount to a series of AgentSpeak(L)
subgoals


http://www.kcl.ac.uk/

e
Plan Execution

*Generated plans are added to the plan
library

"The event that caused planning is re-
posted

*Generated plan is executed as a regular
AgentSpeak(L) plan



http://www.kcl.ac.uk/

T
Tests: Cleaning Robot

*Taken from Rao’s paper on AgentSpeak

*Cleaning Robot must switch lanes to
pick up waste and move it to a bin



http://www.kcl.ac.uk/

T
Cleaning Robot

Agent Speak( L) Agent Speak- PL
% Plan 1 +|l ocat i on(wast e, X)
+| ocati on(waste, X . location(robot, X) &
| ocation(robot, X) & | ocati on(bin,Y)
| ocation(bin,Y) <- pick(waste);
<- pick(waste); +goal conj ([l ocation(robot,Y)]);
| ocati on(robot, Y); drop(waste) .
drop(wast e) .
% Pl an 2 + move( X Y)
+!'| ocati on(robot, X : location(robot, X) &
| ocati on(robot, X) not X =Y &
<- true. not |location(car,Y) &
% Pl an 3 adj acent ( X, Y)
+!'| ocati on(robot, X <- -location(robot, X);
. location(robot,Y) & +|l ocati on(robot, Y);
not X =Y & move( X, Y).

adj acent (Y, 2) &
not | ocation(car, 2)
<- nove(Y, 2);
'l ocati on(robot, X).


http://www.kcl.ac.uk/

e
Conclusions

*Planning augments the runtime
flexibility of BDI agents

"In the case of AgentSpeak(L), planning
allows it to be used with declarative
goals

* Previous efforts focused on HTN
planning, which is not declarative


http://www.kcl.ac.uk/

e
Future Work

* Refine conversion process

* Remove irrelevant beliefs from start state
* Derive minimum context condition for

generated plans

" Investigate issues with plan addition

nteractions of new plans and the plan
ibrary

Positive and negative plan interaction

*Study planning agents in a society


http://www.kcl.ac.uk/

