
Composing high-level plans
for declarative agent programming

Felipe Meneguzzi and Michael Luck

Department of Computer Science
King’s College London

felipe.meneguzzi@kcl.ac.uk

michael.luck@kcl.ac.uk

Abstract. Research on practical models of autonomous agents has large-
ly focused on a procedural view of goal achievement. This allows for
efficient implementations, but prevents an agent from reasoning about
alternative courses of action for the achievement of its design objectives.
In this paper we show how a procedural agent model can be modified
to allow an agent to compose existing plans into new ones at runtime
to achieve desired world states. This new agent model can be used to
implement a declarative goals interpreter, since it allows designers to
specify only the desired world states in addition to an agent’s basic cap-
abilities, enhancing the agent’s ability to deal with failures. Moreover
our approach allows the new plans to be included in the plan library,
effectively enabling the agent to improve its runtime performance over
time.

1 Introduction

The notion of autonomous intelligent agents has become increasingly relevant
in recent years both in relation to numerous real applications and in drawing
together different artificial intelligence techniques. Perhaps the best known and
most used family of agent architectures is that based around the notions of
beliefs, desires and intentions, which is exemplified by such systems as PRS,
dMARS and AgentSpeak [1]. For reasons of efficiency and real-time operation,
these architectures have been based around the inclusion of a plan library con-
sisting of predefined encapsulated procedures, or plans, coupled with information
about the context in which to use them [2]. However, designing agents in this
way severely limits an agent’s runtime flexibility, as the agent depends entirely
on the designer’s previous definition of all possible courses of action associated
with proper contextual information to allow the agent to adopt the right plans
in the right situations.

Typically, agent interpreters select plans using more or less elaborate al-
gorithms, but these seldom have any knowledge of the contents of the plans, so
that plan selection is ultimately achieved using fixed rules, with an agent adopt-
ing black box plans based solely on the contextual information that accompanies
them. Alternatively, some agent interpreters allow for plan modification rules to

2 Meneguzzi and Luck

allow plans to be modified to suit the current situation [3], but this approach
still relies on a designer establishing a set of rules that considers all potentially
necessary modifications for the agent to achieve its goals. The problem here is
that for some domains, an agent description must either be extremely extensive
(requiring a designer to foresee every possible situation the agent might find
itself in), or will leave the agent unable to respond under certain conditions.

This procedural response to goal achievement has been favoured to enable
the construction of practical systems that are usable in real-world applications.
However, it also causes difficulties in cases of failure. When a procedural agent
selects a plan to achieve a given goal it is possible that the selected plan may
fail, in which case the agent typically concludes that the goal has also failed,
regardless of whether other plans to achieve the same goal might have been
successful. By neglecting the declarative aspect of goals in not considering the
construction of plans on-the-fly, agents lose the ability to reason about alternat-
ive means of achieving a goal, making it possible for poor plan selection to lead
to an otherwise avoidable failure.

In this paper we describe how a procedural agent model can be modified to
allow an agent to build new plans at runtime by chaining existing fine-grained
plans from a plan library into high-level plans. We demonstrate the applicab-
ility of this approach through a modification to the AgentSpeak architecture,
allowing for a combination of declarative and procedural aspects. This modi-
fication requires no change to the plan language, allowing designers to specify
predefined procedures for known tasks under ideal circumstances, but also al-
lowing the agent to form new plans when unforeseen situations arise. Though
we demonstrate this technique for AgentSpeak, it can be easily applied to other
agent architectures with an underlying procedural approach to reasoning, such
as JADEX or the basic 3APL [4]. The key contribution is a method to augment
an agent’s runtime flexibility, allowing it to add to its plan library to respond
to new situations without the need for the designer to specify all possible com-
binations of low-level operators in advance. The paper is organised as follows: in
Section 2 we briefly review relevant aspects of AgentSpeak, in order to introduce
the planning capability in Section 3; in Section 4 a classic example is provided
to contrast our approach to that of traditional AgentSpeak; in Section 5 we
compare our work with similar or complementary approaches that also aim to
improve agent autonomy; finally, in Section 6 a summary of the contribution is
provided along with further work that can be carried out to improve our system.

2 AgentSpeak

AgentSpeak [2] is an agent language that allows a designer to specify a set of
procedural plans which are then selected by an interpreter to achieve the agent’s
design goals. It evolved from a series of procedural agent languages originally
developed by Rao and Georgeff [5]. In AgentSpeak an agent is defined by a
set of beliefs and a set of plans, with each plan encoding a procedure that is
assumed to bring about a desired state of affairs, as well as the context in which

Composing high-level plans for declarative agent programming 3

a plan is relevant. Goals in AgentSpeak are implicit, and plans intended to fulfil
them are invoked whenever some triggering condition is met in a certain context,
presumably the moment at which this implicit goal becomes relevant.

The control cycle of an AgentSpeak interpreter is driven by events on data
structures, including the addition or deletion of goals and beliefs. These events
are used as triggering conditions for the adoption of plans, so that adding an
achievement goal means that an agent desires to fulfil that goal, and plans whose
triggering condition includes that goal (i.e. are relevant to the goal) should lead
to that goal being achieved. Moreover, a plan includes a logical condition that
specifies when the plan is applicable in any given situation. Whenever a goal
addition event is generated (as a result of the currently selected plan having
subgoals), the interpreter searches the set of relevant plans for applicable plans;
if one (or more) such plan is found, it is pushed onto an intention structure for
execution. Elements in the intention structure are popped and handled by the
interpreter. If the element is an action this action is executed, while if the ele-
ment is a goal, a new plan is added into the intention structure and processed.
During this process, failures may take place either in the execution of actions, or
during the processing of subplans. When such a failure takes place, the plan that
is currently being processed also fails. Thus, if a plan selected for the achieve-
ment of a given goal fails, the default behaviour of an AgentSpeak agent is to
conclude that the goal that caused the plan to be adopted is not achievable. This
control cycle is illustrated in the diagram of Figure 1,1 and strongly couples plan
execution to goal achievement.

Find applicable plans

Push plan into Intentions

Process Intention

Goal FailedGoal Achieved

Goal addition/deletion

Applicable plan found

No plan found

Plan failed

Plan executed

Fig. 1. AgentSpeak control cycle.

1 For a full description of AgentSpeak, refer to d’Inverno et al. [1]

4 Meneguzzi and Luck

The control cycle of Figure 1 allows for situations in which the poor selection
of a plan leads to the failure of a goal that would otherwise be achievable through
a different plan in the plan library. While such limitations can be mitigated
through meta-level [6] constructs that allow goal addition events to cause the
execution of applicable plans in sequence, and the goal to fail only when all
plans fail, AgentSpeak still regards goal achievement as an implicit side-effect of
a plan being executed successfully.

3 Planning in an AgentSpeak interpreter

In response to these limitations, we have created an extension of AgentSpeak
that allows an agent to explicitly specify the world-state that should be achieved
by the agent. In order to transform the world to meet the desired state, the agent
uses a propositional planner to form high-level plans through the composition of
plans already present in its plan library. This propositional planner is invoked
by the agent through a regular AgentSpeak action, and therefore requires no
change in the language definition. The only assumption we make is the exist-
ence of plans that abide by certain restrictions in order to be able to compose
higher-level plans taking advantage of planning capabilities introduced in the
interpreter. Whenever an agent needs to achieve a goal that involves planning,
it uses a special planning action that converts the low-level procedural plans
of AgentSpeak into STRIPS operators and invokes the planning module. If the
planner succeeds in finding a plan, it is converted back into a high-level Agent-
Speak plan and added to the intention structure for execution. Here, we liken
the low-level procedural plans of AgentSpeak to STRIPS operators, connecting
the agent interpreter to the planner by converting one formalism into the other
and vice versa. We have chosen to use STRIPS as the planning language in this
paper for simplicity reasons, and this approach would not lose applicability if
one was to use PDDL [7] (or another language) as the planning language.

3.1 The planning action

In order to describe the connection of the planning component with AgentSpeak,
we need to review the main constructs of this agent language. As we have seen,
an AgentSpeak interpreter is driven by events on the agent’s data structures
that may trigger the adoption of plans. Additions and deletions of goals and
beliefs are represented by the plus (+) and minus (−) sign respectively. Goals
are distinguished into test goals and achievement goals, denoted by a preceding
question mark (?), or an exclamation mark (!), respectively. For example, the
addition of a goal to achieve g would be represented by +!g. Belief additions and
deletions arise as the agent perceives the environment, and are therefore outside
its control, while goal additions and deletions only arise as part of the execution
of an agent’s plans.

In our approach, in addition to the traditional way of encoding goals for an
AgentSpeak agent implicitly as triggering events consisting of achievement goals

Composing high-level plans for declarative agent programming 5

+goal conj(Goals) : true ← plan(Goals).

Table 1: Planner invocation plan.

(!goal), we allow desires including multiple beliefs (b1, . . . , bn) describing a de-
sired world-state in the form goal conj([b1, . . . , bn]). An agent desire description
consists of a conjunction of beliefs the agent wishes to be true simultaneously at
a given point in time. The execution of the planner component is triggered by
an event +goal conj([b1, . . . , bn]) as shown in Table 1.

Now, the key to our approach to planning in AgentSpeak is the introduction
of a special planning action, denoted plan(G), where G is a conjunction of desired
goals. This action is bound to an implementation of a planning component, and
allows all of the process regarding the conversion between formalisms to be
encapsulated in the action implementation, making it completely transparent to
the remainder of the interpreter.

Planning Action

Create STRIPS Problem

Invoke Planner

Convert STRIPS Plan

Plan LibraryPlan Library

BeliefsBeliefs

Trigger Plan Execution

Intention StructureIntention Structure

plan(Goals)

(Strips Problem)

Planner succeeded

Planner failed

Plan Created

Trigger Added

Plan Executed

Plan Failed / Reassess Initial State

Fig. 2. Operation of the planning action.

As illustrated in Figure 2, the internal action to plan takes as an argument
the desired world-state, and uses this, along with the current belief database and
the plan library, to generate a STRIPS [8] planning problem. This action then
invokes a planning algorithm; if a plan is found, the planning action succeeds,
otherwise the planning action fails. If the action successfully yields a plan, it
converts the resulting STRIPS plan into a new AgentSpeak plan to be added to
the plan library, and immediately triggers the adoption of the new plan. If the

6 Meneguzzi and Luck

+!move to(A, B) : available(car)

← get(car);

drive(A, B).

+!move to(A, B) : ¬available(car)

← walk(A, B).

Table 2: Movement plans.

newly created plan fails, the planner may then be invoked again to try and find
another plan to achieve the desired state of affairs, taking into consideration any
changes in the agent beliefs.

3.2 Chaining plans into higher-level plans

The design of a traditional AgentSpeak plan library follows a similar approach
to programming in procedural languages, where a designer typically defines fine-
grained actions to be the building blocks of more complex operations. These
building blocks are then assembled into higher-level procedures to accomplish
the main goals of a system. Analogously, an AgentSpeak designer traditionally
creates fine-grained plans to be the building blocks of more complex operations,
typically defining more than one plan to satisfy the same goal (i.e. sharing the
same trigger condition), while specifying the situations in which it is applicable
through the context part of each plan. Here, we are likening STRIPS actions
to low-level AgentSpeak plans, since the effects of primitive AgentSpeak actions
are not explicitly defined in an agent description. For example, an agent that
has to move around in a city could know many ways of going from one place
to another depending on which vehicle is available to it, such as by walking or
driving a car, as shown in Table 2.

Modelling STRIPS operators to be supplied to a planning algorithm is similar
to the definition of these building-block procedures. In both cases, it is important
that operators to be used sequentially fit. That is, the results from applying one
operator should be compatible with the application of the possible subsequent
operators, matching the effects of one operator to the preconditions of the next
operator.

Once the building-block procedures are defined, higher-level operations must
be defined to fulfil the broader goals of a system by combining these building
blocks. In a traditional AgentSpeak plan library, higher-level plans to achieve
broader goals contain a series of goals to be achieved by the lower-level opera-
tions. This construction of higher-level plans that make use of lower-level ones
is analogous to the planning performed by a propositional planning system. By
doing the planning themselves, designers must cope with every foreseeable situ-
ation the agent might find itself in, and generate higher-level plans combining
lower-level tasks accordingly. Moreover, the designer must make sure that the

Composing high-level plans for declarative agent programming 7

subplans being used do not lead to conflicting situations. This is precisely the
responsibility we intend to delegate to a STRIPS planner.

Plans resulting from propositional planning can then be converted into se-
quences of AgentSpeak achievement goals to comprise the body of new plans
available within an agent’s plan library. In this approach, an agent can still have
high-level plans pre-defined by the designer, so that routine tasks can be handled
exactly as intended. At the same time, if an unforseen situation presents itself
to the agent, it has the flexibility of finding novel ways to solve problems, while
augmenting the agent’s plan library in the process.

Clearly, lower-level plans defined by the designer can (and often will) include
the invocation of atomic actions intended to generate some effect on the envir-
onment. Since the effects of these actions are not usually explicitly specified in
AgentSpeak (another example of reasoning delegated to the designer), an agent
cannot reason about the consequences of these actions. When designing agents
using our model, we expect designers to explicitly define the consequences of
executing a given AgentSpeak plan in terms of belief additions and deletions in
the plan body as well as atomic action invocations. The conversion process can
then ignore atomic action invocations when generating a STRIPS specification.

3.3 Translating AgentSpeak into STRIPS

Once the need for planning is detected, the plan in Table 1 is invoked so that
the agent can tap into a planner component. The process of linking an agent
to a propositional planning algorithm includes converting an AgentSpeak plan
library into propositional planning operators, declarative goals into goal-state
specifications, and the agent beliefs into the initial-state specification for a plan-
ning problem. After the planner yields a solution, the ensuing STRIPS plan is
translated into an AgentSpeak plan in which the operators resulting from the
planning become subgoals. That is, the execution of each operator listed in the
STRIPS plan is analogous to the insertion of the AgentSpeak plan that corres-
ponded to that operator when the STRIPS problem was created.

Plans in AgentSpeak are represented by a header comprising a triggering con-
dition and a context, as well as a body describing the steps the agent takes when
a plan is selected for execution. If e is a triggering event, b1, . . . , bm are belief
literals, and h1, . . . , hn are goals or actions, then e : b1& . . . &bm ← h1; . . . ;hn.
is a plan. As an example, let us consider a triggering plan for accomplishing
!move(A,B) corresponding to a movement from A to B, where:

– e is !move(A,B);
– at(A) & not at(B) are belief literals; and
– -at(A); +at(B). is the plan body, containing information about belief addi-

tions and deletions.

The plan is then as follows:
+!move(A,B) : at(A) & not at(B)

<- -at(A);
+at(B).

8 Meneguzzi and Luck

When this plan is executed, it results in the agent believing it is no longer
in position A, and then believing it is in position B. For an agent to rationally
want to move from A to B, it must believe it is at position A and not already
at position B.

In the classical STRIPS notation, operators have four components: an iden-
tifier, a set of preconditions, a set of predicates to be added (add), and a set
of predicates to be deleted (del). For example, the same move operator can be
represented in STRIPS following the correspondence illustrated in Figure 3, in
which we convert the AgentSpeak invocation condition into a STRIPS operator
header, a context condition into an operator precondition, and the plan body is
used to derive add and delete lists.

Fig. 3. Correspondence between an AgentSpeak plan and a STRIPS operator.

A relationship between these two definitions is not hard to establish, and
we define the following algorithm for converting AgentSpeak plans into STRIPS
operators. Let e be a triggering event, b1& . . . &bm a conjunction of belief liter-
als representing a plan’s context, and a1, . . . , an be belief addition actions and
d1, . . . , do be belief deletion actions within a plan’s body. All of these elements
can be represented in a single AgentSpeak plan. Moreover let opname be the
operator name and parameters, pre be the preconditions of the operator, add
the predicate addition list and del the predicate deletion list. Mapping an Agent-
Speak plan into STRIPS operators is accomplished as follows:

1. opname = e

2. pre = b1& . . . &bm

3. add = a1, . . . , an

4. del = d1, . . . , do

In Section 3.1 we introduced the representation of a conjunction of desired
goals as the predicate goal conj([b1, . . . , bn]). The list [b1, . . . , bn] of desires is
directly translated into the goal state of a STRIPS problem. Moreover, the initial
state specification for a STRIPS problem is generated directly from the agent’s
belief database.

Composing high-level plans for declarative agent programming 9

+goal conj(Goals) : true

←!op1; . . . ; !opn.

Table 3: AgentSpeak plan generated from a STRIPS plan.

3.4 Executing generated plans

The STRIPS problem generated from the set of operators, initial state and goal
state is then processed by a propositional planner. If the planner fails to gener-
ate a propositional plan for that conjunction of literals, the plan in Table 1 fails
immediately and this goal is deemed unachievable, otherwise the resulting pro-
positional plan is converted into an AgentSpeak plan and added to the intention
structure.

A propositional plan from a STRIPS planner is in the form of a sequence
op1, . . . , opn of operator names and instantiated parameters. We define a new
AgentSpeak plan in Table 3, where goal conj(Goals) is the event that initially
caused the planner to be invoked.

Immediately after adding the new plan to the plan library, the event
goal conj(Goals) is reposted to the agent’s intention structure, causing the gen-
erated plan to be executed. Plans generated in this fashion are admittedly simple,
since the development of a complete process of plan generalisation is not a trivial
matter since, for instance, it involves solving the issue of deriving the context
condition adequately. An extremely simple solution for this problem uses the en-
tire belief base of the agent as context for that plan, but this solution includes a
great number of beliefs that are probably irrelevant to the goal at hand, severely
limiting this plan’s future applicability. Another solution involves replicating the
preconditions of the first operator for the new plan, but this could also lead the
agent to fail to execute the plan later on. We have developed an algorithm to de-
rive a minimal set of preconditions, which we omit here due to space constraints,
showing instead the simple solution of using a constantly true context. Another
possible refinement to the conversion of a STRIPS plan into an AgentSpeak plan
is to allow the same generated plan to be reused to handle side-effects of the set
of goals that led to its generation. For example, a plan for a conjunction of goals
g can be used to achieve any subset g′ of g.

In the ensuing execution of the generated plan, the fact that multiple con-
current plans might be stacked in an agent’s intentions structure must also be
addressed. There are multiple ways of addressing this issue, namely:

– delegate the analysis and resolution of conflicting interaction between plans
to the designer;

– implement provisions to ensure that the plans used by the planner process
are executed atomically;

– drop the entire intention structure before plan adoption and prevent new
intentions from being adopted during plan execution; and

10 Meneguzzi and Luck

– analyse the current intention structure and prospective plan steps during
planning to ensure they do not interfere with each other.

The first way of resolving concurrency problems is the traditional solution in
an AgentSpeak context, but it is clearly not acceptable, since the main goal of our
extension is to diminish the amount of designer tasks. On the other hand, the last
alternative involves the introduction of a complex analysis procedure to solve a
very limited number of potential conflicts. In our work we considered the second
and third ways of dealing with concurrency problems, and in the prototype
described in Section 4 we opted to enable the agent to execute dynamically
generated plans atomically (by preventing other intentions to be selected from
the stack while a dynamic plan was being executed).

4 Experiments and Results

We have implemented the planning action described in Section 3 using Jason
[9], which is an open-source Java implementation of AgentSpeak that includes
a number of extensions, such as facilities for communication and distribution.
In addition to providing an interpreter for the agent language, Jason has an
object-oriented API for the development of actions available to the agents being
developed. Since planning is to be performed as part of a regular AgentSpeak
plan, the planning action encapsulates the conversion process of Section 3.3 using
Jason’s internal actions.

This implementation was used in a number of toy problems, such as the
Blocks world used with the original STRIPS planner [8], as well as some ex-
amples from the AgentSpeak literature [2]. Solutions for these problems were
created using both a procedural approach characteristic of traditional Agent-
Speak agents, and a declarative one, in which high-level plans are omitted and
left to be derived by the planning system. This switch in the method for describ-
ing agents results in a reduction of the plan description size, as it is no longer
necessary to enumerate relevant combinations of lower-level plans for the agent
to be able to react to different situations.

In terms of complexity the most computationally demanding part of our
architecture is the planning process, which can vary significantly depending on
the specific planner being used. The complexity of solving propositional planning
problems depends on the number of pre-conditions and post-conditions of the
operators in a certain domain [10], varying from polynomial to NP-complete and
PSPACE-complete complexity. On the other hand, the conversion process into
STRIPS is clearly very simple, having linear complexity on the number of pre-
conditions and post-conditions of the operators being converted. The same linear
complexity applies to the conversion from a STRIPS plan into an AgentSpeak
plan.

Rao [2] uses a simple example agent to describe the derivations performed by
an AgentSpeak interpreter. This agent detects when waste appears in a particular
road lane, and disposes of it in a waste bin. The original plan library for the agent
is as follows:

Composing high-level plans for declarative agent programming 11

% Plan 1
+location(waste, X)

: location(robot,X) &
location(bin,Y)

<- pick(waste);
!location(robot,Y);
drop(waste).

% Plan 2
+!location(robot, X)

: location(robot,X)
<- true.

% Plan 3
+!location(robot, X)

: location(robot,Y) &
not X = Y &
adjacent(Y,Z)&
not location(car,Z)

<- move(Y, Z);
!location(robot, X).

Using Plan 1, whenever an agent detects waste in its current position, the
agent will pick up the waste, move to the location of the waste bin and drop
it. In this plan library, the agent’s movement is achieved by an internal action,
move(Y,Z), and the agent has no way of explicitly reasoning about it. Moreover,
if an agent has to perform multiple moves, recursive instantiations of Plan 3
in this library are stacked in the agent’s intention structure, until the recursion
stop condition is reached in Plan 2.

In order to be able to call a planner we need to modify the portion of the
plan library responsible for the agent’s movement (i.e. the last two plans) into
a declarative description yielding the following plan library:

+location(waste, X)
: location(robot, X) &

location(bin, Y)
<- pick(waste);

+goal_conj ([location(robot,Y)]);
drop(waste).

+!move(X,Y)
: location(robot,X) &

not X = Y &
not location(car,Y) &

adjacent(X,Y)
<- -location(robot,X);

+location(robot,Y);
move(X,Y).

The new plan library includes a description of the preconditions and effects of the
move(X,Y) action. This is the action that is to be handled by the planning process,
and the agent derives the sequence of movements required to reach the waste
bin by desiring to be in the position of the bin. In order to specify this desire,
the plan to dispose of the waste includes a step to add the desire +goal_conj([

location(robot,Y)]), which causes the planner to be invoked. Here, the atomic

12 Meneguzzi and Luck

action to move(X,Y) is also included in the plan specification so that when !move

(X,Y) is invoked, the agent not only updates its beliefs about the movement, but
actually moves in the environment. Unlike the original plan library, however,
the agent can plan its movements before starting to execute them, and will only
start carrying out these actions if it has found the entire sequence of movements
required to reach the desired location.

5 Related Work

Work on the declarative nature of goals as a means to achieve greater autonomy
for an agent is being pursued by a number of researchers. Here we consider the
approaches to declarative goals currently being investigated, namely those of
Hübner et al. (Jason) [11], van Riemsdijk et al. [12] and Meneguzzi et al. [13].
There are multiple interpretations as to the requirements and properties of de-
clarative goals for an agent interpreter, and while some models consist of an
agent that performs planning from first principles whenever a goal is selected,
others argue that the only crucial aspect of an architecture that handles declar-
ative goals is the specification of target world states that can be reached using
the traditional procedural approach.

5.1 Jason

A notion of declarative goals for AgentSpeak that takes advantage of the context
part of the plans (representing the moment an implicit goal becomes relevant)
was defined by Hübner et al. [11], and implemented in Jason [9]. More specifically,
plans that share the same triggering condition refer to the achievement of the
same goal, so that a goal can only be considered impossible for a given agent if all
plans with the same triggering condition have been attempted and failed. In this
extended AgentSpeak interpreter, these plans are modified so that the last action
of every plan consists of testing for the fulfilment of the declared goal, and then
the plans are grouped and executed in sequence until one finishes successfully.
A plan only succeeds if at the end of its execution an agent can verify that its
intended goal has been achieved. This approach retains the explicitly procedural
approach to agent operation (a pre-compiled plan library describing sequences
of steps that the agent can perform to accomplish its goals), only adding a more
robust layer for handling plan-failure.

5.2 X-BDI

X-BDI [14] was the first agent model that includes a recognisably declarative goal
semantics. An X-BDI agent is defined by a set of beliefs, a set of desires, and a
set of operators that manipulate the world. The agent refines the set of desires
through various constraints on the viability of each desire until it generates a set
containing the highest priority desires that are possible and mutually consistent.
During this process the agent selects the operators that will be applied to the

Composing high-level plans for declarative agent programming 13

world in order to fulfil the selected desires in a process that is analogous to
planning. The key aspect of X-BDI is that desires express world-states rather
than triggers for the execution of pre-defined plans, leaving the composition of
plans from world-changing operators to the agent interpreter.

5.3 Formalisations of Declarative Goals

Several researchers have worked on a family of declarative agent languages and
investigated possible semantics for these languages [15, 12]. All of these languages
have in common the notion that an agent is defined in terms of beliefs, goals
and capabilities, which are interpreted in such a way as to select and apply
capabilities in order to fulfil an agent’s goals. These approaches have evolved
from GOAL [15] into a declarative semantics very similar to that of X-BDI [14],
in which an agent’s desires express world-states which must be achieved by the
agent selection and application of capabilities.

5.4 Discussion

In addition to the models described in this section, variations of the way an agent
interpreter handles declarative goals have also been described. These approaches
advocate the use of fast propositional planners to verify the existence of a se-
quence of actions that fulfil a declarative goal [13]. The planning process in this
setting allows the consideration of the entire set of available operators to create
new plans, providing a degree of flexibility to the agent’s behaviour. Our research
has not dealt with multi-agent issues so far, but the approach taken by Coo-BDI
[16] to share plans between agents might provide an interesting extension to our
architecture. The exchange of new plans might offset the sometimes significant
time needed to create plans from scratch by allowing agents to request the help
of other planning-capable agents.

The approaches in Sections 5.1 and 5.3 deal with important aspects of de-
clarative goals in agent systems, such as the verification of accomplishment and
logical properties of such systems. However, support for declarative goals in
Jason still requires a designer to specify high-level plans, while the formalisms
described by van Riemsdijk lack any analysis of the practicality of their imple-
mentation. Though X-BDI implements a truly declarative agent specification
language, the language is very far from mainstream acceptance, and the under-
lying logic system used in X-BDI suffers from a stream of efficiency problems.

6 Concluding Remarks

In this paper we have demonstrated how the addition of a planning component
can augment the capabilities of a plan library-based agent. In order to exploit
the planning capability, the agent uses a special planning action to create high-
level plans by composing specially designed plans within an agent’s plan library.
This assumes no modification in the AgentSpeak language, and allows an agent

14 Meneguzzi and Luck

to be defined so that built-in plans can still be defined for common tasks, while
allowing for a degree of flexibility for the agent to act in unforseen situations.
Our system can also be viewed as a way to extend the declarative goal semantics
proposed by Hübner et al. [11], in that it allows an agent designer to specify only
desired world-states and basic capabilities, relying on the planning component
to form plans at runtime. Even though the idea of translating BDI states into
STRIPS problems is not new [13], our idea of an encapsulated planning action
allows the usage of any other planning formalism sufficiently compatible with
the BDI model.

Recent approaches to the programming of agents based on declarative goals
rely on mechanisms of plan selection and verification. However, we argue that
a declarative model of agent programming must include not only constructs for
verifying the accomplishment of an explicit world-state (which is an important
capability in any declarative agent), but also a way in which an agent designer
can specify only the world states the agent has to achieve and the description
of atomic operators allowing an underlying engine to derive plans at runtime.
In this paper we argue that propositional planning can provide one such engine,
drawing on agent descriptions that include atomic actions and desired states,
and leaving the derivation of actual plans for the agent at runtime.

The addition of a planning component to a BDI agent model has been re-
cently revisited by other researchers, especially by Sardina et al. [17] and Walczak
et al. [18]. The former describes a BDI programming language that incorpor-
ates Hierarchical Task Networks (HTN) planning by exploring the similarities
between these two formalisms, but this approach fails to address the fact that
designers must specify rules for HTN planning in the same way in which they
would decompose multiple plans in a traditional BDI agent. The latter approach
is based on a specially adapted planner to support the agent, preventing the
model from taking advantage of novel approaches to planning.

The prototype implemented for the evaluation of the extensions described
in this paper has been empirically tested for a number of small problems, but,
further testing and refinement of this prototype is still required, for instance,
to evaluate how interactions between the addition of new plans will affect the
existing plan library. The system can also be improved in a number of ways
in order to better exploit the underlying planner component. For example, the
effort spent on planning can be moderated by a quantitative model of control,
so that an agent can decide to spend a set amount of computational effort into
the planning process before it concludes the goal is not worth pursuing. This
could be implemented by changing the definition of goal conj(Goals) to include
a representation of motivational model goal conj(Goals, Motivation), which can
be used to tune the planner and set hard limits to the amount of planning effort
devoted to achieving that specific desire.

As indicated above, the key contribution of this paper is a technique that
allows procedural agent architectures to use state-space (and hence, declarative)
planners to augment flexibility at runtime, thus leveraging advances in planning
algorithms. It is important to point out that previous efforts exploring the use

Composing high-level plans for declarative agent programming 15

of HTN planning do not change the essential procedural mode of reasoning of
the corresponding agent architectures, as argued by Sardina et al. [17]. State-
space planners operate on a declarative description of the desired goal state, and
our conversion process effectively allows a designer to use an AgentSpeak-like
language in a declarative way, something which previous planning architectures
do not allow. Finally, we are currently working on addressing some of the limit-
ations we have identified regarding the generation and execution of concurrent
plans for multiagent scenarios.

Acknowledgments. The first author is supported by Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior (CAPES) of the Brazilian Ministry of
Education. We would like to thank Rafael Bordini and Jomi Hübner for their
support regarding the programming of AgentSpeak agents in their Jason im-
plementation, as well as the discussion of many issues regarding planning and
declarative goals.

References

1. d’Inverno, M., Luck, M.: Engineering AgentSpeak(L): A formal computational
model. Journal of Logic and Computation 8(3) (1998) 233–260

2. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In de Velde, W.V., Perram, J.W., eds.: Proceedings of the Seventh European Work-
shop on Modelling Autonomous Agents in a Multi-Agent World. Volume 1038 of
LNCS. Springer, Eindhoven, The Netherlands (1996) 42–55

3. van Riemsdijk, B., van der Hoek, W., Meyer, J.J.C.: Agent programming in dribble:
from beliefs to goals using plans. In: AAMAS ’03: Proceedings of the Second
International Joint Conference on Autonomous Agents and Multiagent Systems,
Melbourne, Australia, ACM Press (2003) 393–400

4. Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E.: Multi-Agent Pro-
gramming: Languages, Platforms and Applications. Volume 15 of Multiagent Sys-
tems, Artificial Societies, and Simulated Organizations. Springer (2005)

5. Rao, A.S., Georgeff, M.P.: BDI-agents: from theory to practice. In: Proceedings of
the First International Conference on Multiagent Systems ICMAS-95, San Fran-
cisco (1995) 312–319

6. Georgeff, M.P., Ingrand, F.F.: Monitoring and control of spacecraft systems us-
ing procedural reasoning. In: Proceedings of the Space Operations and Robotics
Workshop, Houston, USA (1989)

7. Fox, M., Long, D.: PDDL2.1: An Extension to PDDL for Expressing Temporal
Planning Domains. Journal of Artificial Intelligence Research 20 (2003) 61–124

8. Fikes, R., Nilsson, N.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2(3-4) (1971) 189–208

9. Bordini, R.H., Hübner, J.F., Vieira, R.: Jason and the golden fleece of agent-
oriented programming. In Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni,
A.E., eds.: Multi-Agent Programming: Languages, Platforms and Applications.
Springer (2005) 3–37

10. Bylander, T.: The computational complexity of propositional STRIPS planning.
Artificial Intelligence 69(1-2) (1994) 165–204

16 Meneguzzi and Luck

11. Hübner, J., Bordini, R.H., Wooldridge, M.: Programming declarative goals us-
ing plan patterns. In: Proceedings of the 2006 Workshop on Declarative Agent
Languages and Technologies. (2006)

12. van Riemsdijk, M.B., Dastani, M., Meyer, J.J.C.: Semantics of declarative goals
in agent programming. In: AAMAS ’05: Proceedings of the Fourth International
Joint Conference on Autonomous Agents and Multiagent Systems, Utrecht, The
Netherlands, ACM Press (2005) 133–140

13. Meneguzzi, F.R., Zorzo, A.F., Móra, M.D.C.: Propositional planning in BDI
agents. In: Proceedings of the 2004 ACM Symposium on Applied Computing,
Nicosia, Cyprus, ACM Press (2004) 58–63

14. Móra, M.d.C., Lopes, J.G.P., Vicari, R.M., Coelho, H.: BDI models and systems:
Bridging the gap. In: Intelligent Agents V, Agent Theories, Architectures, and Lan-
guages, Fifth International Workshop, ATAL ’98. Volume 1555 of LNCS. Springer,
Paris, France (1999) 11–27

15. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.J.C.: Agent program-
ming with declarative goals. In: Intelligent Agents VII. Agent Theories Architec-
tures and Languages, 7th International Workshop, ATAL 2000. Volume 1986 of
LNCS. Springer, Boston, USA (2001) 228–243

16. Ancona, D., Mascardi, V.: Coo-BDI: Extending the BDI Model with Cooperativity.
In Leite, J.A., Omicini, A., Sterling, L., Torroni, P., eds.: Proceedings of the First
Declarative Agent Languages and Technologies Workshop (DALT’03), Springer-
Verlag (2004) 109–134 LNAI 2990.

17. Sardina, S., de Silva, L., Padgham, L.: Hierarchical Planning in BDI Agent Pro-
gramming Languages: A Formal Approach. In: AAMAS ’06: Proceedings of the
Fifth International Joint Conference on Autonomous Agents and Multiagent Sys-
tems, Hakodate, Japan, ACM Press (2006) 1001–1008

18. Walczak, A., Braubach, L., Pokahr, A., Lamersdorf, W.: Augmenting BDI Agents
with Deliberative Planning Techniques. In: The Fifth International Workshop on
Programming Multiagent Systems (PROMAS-2006). (2006)

