
An approach to generate MDPs using HTN representations

Felipe Meneguzzi and Katia Sycara
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA, USA

{meneguzz, katia}@cs.cmu.edu

Yuqing Tang
Graduate Center

City University of New York
New York, NY, USA
ytang@cs.gc.cuny.edu

Simon Parsons
Brooklyn College

City University of New York
New York, NY, USA

parsons@sci.brooklyn.cuny.edu

Abstract
Planning for deterministic and probabilistic do-
mains differ significantly in representations they
require, the algorithms that solve them and the
way in which results are represented. Hierarchi-
cal Task Networks (HTN) and Markov Decision
Process (MDPs) are representative formalisms of,
respectively, deterministic and stochastic planning.
Stochastic domain specifications can easily become
opaque to a human designer, especially as the do-
main size increases. Our research aims to develop
algorithms for lossless and automatic mapping of
HTN models that are easily intelligible to humans
into MDPs. In this paper we develop algorithms to
convert deterministic planning domains with HTN
domain knowledge and an action error model into
MDPs that can then be solved, while maintaining a
bound on the number of MDP states.

1 Introduction
Deterministic planning domains are generally easy to visual-
ize and understand, as the details of the meaning of transi-
tions between states are clearly defined in the operators, and
the resulting plans are intuitive and easily understood. One
particular formalism for domain representation in determin-
istic planning is the hierarchical task network (HTN) [Erol
et al., 1994], which encodes not only STRIPS/PDDL actions
with their preconditions and effects, but also domain knowl-
edge in the form of a hierarchy of tasks that can be refined
from a high-level objective into the actions required in the
environment. Conversely, one of the most widely studied for-
malisms for planning under uncertainty is the Markov deci-
sion process (MDP) [Bellman, 2003], in which the evolution
of the environment is modeled as a Markov chain, and the
goals of the planner are implicitly represented in a function
that defines, for each state, the reward of executing a cer-
tain action. The definition of stochastic planning problems
quickly becomes unwieldy as the number of state variables
increase.1 As the number of states goes up, so does the size of
the transition probability tables, with problems requiring one

1Of course the time and space complexity of solving these prob-
lems grows exponentially as well, but this is not our focus here.

such table for each action in the domain. As a consequence,
although MDPs are an elegant mathematical formalism for
representing stochastic domains, it is not straightforward for
non-specialists to model domains using this formalism.

Our goal is to use HTN models, which are more user-
friendly, to automatically construct MDPs. In this paper we
propose a step towards this overall aim, showing how to use
HTNs to describe MDPs, thus allowing stochastic domains to
be modeled using HTNs that are then translated into MDPs
in order to be solved. Together with a simple model of action
error, our conversion process allows efficient MEU planning
over the state space induced by the HTN. The benefits of the
approach are twofold: (a) reduction of the state space, and
consequent reduction of the computational burden is benefi-
cial since it enables the representation and solving of realistic
planning problems, and (b) starting from a declarative rep-
resentation makes planning more comprehensible to humans,
while extending the representation to stochastic domains.

2 Background
2.1 MDPs
We consider an MDP to be a tuple Σ = (S,A, Pr, u) where
S is a finite set of states, A is a finite set of actions, Pr is a
state-transition system and u is a reward (or utility) function
[Ghallab et al., 2004]. The state-transition system defines a
probability distribution for each state transition. Here, given
{s, s′} ∈ S and a ∈ A, Pra(s′|s) denotes the probability of
transitioning from state s to state s′ when executing action a.
The solution of an MDP is a policy, which indicates the best
action to take in each state. A policy π here is a total function
π : S → A mapping states into actions. The analogous to
goal states in MDPs are indirectly represented through util-
ity functions, which typically assign a value u(aj , si) to the
choices of actions aj in states si. Such information makes it
possible to compute the value of a given state under a partic-
ular policy π — it is the expected value of carrying out the
policy from that state (where a = π(s)), given a discount fac-
tor.The optimal policy π∗(s) is then one that maximizes this
value, and can be found by various means.

2.2 HTNs
An HTN planning domain is a pair D = (A,M) where A
is a finite set of actions (or operators) and M is a finite set
of methods, and an HTN is a pair H = (T,C) where T

mailto:meneguzz@cs.cmu.edu
mailto:katia@cs.cmu.edu
mailto:ytang@cs.gc.cuny.edu
mailto:parsons@sci.brooklyn.cuny.edu

is a finite set of tasks to be accomplished and C is a set
of partial ordering constraints on tasks in T [Kuter et al.,
2009]. Constraints specify the order in which certain tasks
must be executed and are represented by the precedes rela-
tion, where ti ≺ tj means that task ti must be executed be-
fore tj . The set of tasks contains primitive and non-primitive
tasks. All tasks have preconditions, specifying a state that
must be valid before the task can be carried out, and primi-
tive tasks (associated with actions that are executed in the en-
vironment) have effects, specifying changes in the state that
was valid before the action was executed. Preconditions and
effects are propositions pi, so each task ti has a set of pre-
conditions preconds(ti) = {p1, . . . , pn}, and each primitive
task/action has a set of effects effects(ti) = {p1, . . . , pm}.
In the planning literature effects are generally represented as
add and delete lists of true facts about the world. Here we
modify this concept and specify effects as a list of positive
and negated propositions. Thus, if the positive version of a
proposition is present in the state prior to the execution of
an action with a negated effect, that proposition is removed
from the resulting state in order to preserve consistency, while
if a negated proposition is present in a state and its positive
version is present in the effects of an action then that propo-
sition becomes true in the resulting state. For example, if
a state si = {p1,¬p2, p3} is valid before an action ai with
effects(ai) = {¬p1, p2} is executed, the state resulting from
the execution of ai is si+1 = {¬p1, p2, p3}. Primitive tasks
are action instances from a ∈ A (formalized in Definition 1),
while non-primitive tasks denote tasks that can be decom-
posed using an appropriate method m ∈M.

Definition 1 (Action execution). Let s and s′ be two states
in the environment and a an action. An action a is exe-
cutable in state s if s |= preconds(a), and the execution
of a in state s, denoted γ(s, a) is a new state s′ such that
s′ = (s−neg(effects(a)))∪pos(effects(a)), where pos and
neg denote, respectively, the positive and negative atoms in a
set, and s′ 6|= ⊥.

Methods describe how non-primitive tasks can be de-
composed into subtasks. We represent methods as tuples
m = (S, t,H ′), where S is a precondition corresponding
to a set of states that satisfy this precondition, also denoted
by preconds(m), specifying what must hold in the current
state for a task t (also denoted task(m)) to be refined into
H ′ = (T ′, C ′) (also denoted network(m)), which decom-
poses t into new tasks ti ∈ T ′ with constraints cj ∈ C ′. De-
composing an HTN through a method m consists of remov-
ing task task(m) from the network into which m is applied,
adding the tasks and constraints from the method networkH′
while linking the constraints that refer to the task being de-
composed to the new tasks from H′. This is formalized in in
Definition 2 (adapted from [Ghallab et al., 2004]). To express
the constraints to be changed in the HTN being decomposed,
we denote the set of tasks that have no predecessors in a net-
work H = (T,C) as first(H), whereas the set of tasks that
have no successors are represented by last(H), or formally
first(H) = {t|t′ ≺ t 6∈ C} and last(H) = {t|t ≺ t′ 6∈ C}
Definition 2 (Method Application). Let mt =
(S, t,H ′) be a method in a domain D for refining a

task ti and H = (T,C) be an HTN, where ti ∈ T is a task
to be refined, Ct ⊆ C are all the constraints referring to
ti. Furthermore, let all tasks tj ∈ T such that tj ≺ ti form
a sequence [t0, . . . , ti], and si be the state resulting from
executing si = γ(γ(si−1, ti−1), ti) recursively until γ(s0, t0)
is executed. A method mt is applicable in H if and only if
si |= preconds(mt) and t · σ = ti · σ under some unifier σ,
and the application of mt to an HTN H = (T,C), denoted
δ(H, ti,mt, σ), results in a new HTNH′′ = (T ′′, C ′′) where:

• T ′′ = (T − {ti}) ∪ T ′; and

• C ′′ = (C − Ct) ∪ (C ′t ∪ C ′)
HereCt is the set of constraints containing the decomposed

task ti (i.e. {c ∈ C|c = tj ≺ ti ∨ (c = ti ≺ tj)}), and C ′t
is a new set of constraints created by replicating each pre-
viously removed constraint (i.e. the constraints of Ct) with
each element of T ′ replacing ti. For example if HTNH con-
tains a task tu and a task ti and one constraint including tu,
tu ≺ ti, and a method m = (>, tu, {a1, a2}, {a1 ≺ a2}) is
applied, the resulting set of constraints will be {a1 ≺ ti, a2 ≺
ti, a1 ≺ a2}. All non-primitive tasks must be fully decom-
posed into primitive tasks before a full plan can be derived
from the HTN, i.e. it must contain no non-primitive tasks.

3 Using HTNs to represent MDPs
Given an HTN and an MDP that represent the same domain,
using the same set of actions and the same set of states, there
must be some relationship between them. They both, after all,
capture the same information. The MDP model of a domain
can be visualized as a directed hypergraph where the nodes
are states and the edges that connect states represent actions
– where an arc connects one state to many other states, that
action can lead to those other states. A trajectory through
the state-space is the result of a single outcome of a specific
action in each state, and is close to the notion of a plan in an
HTN [Simari and Parsons, 2006].

3.1 States in a fully expanded HTN
From an HTN domain D and an HTN H, it is possible to
induce a directed hypergraph by considering all possible de-
compositions of each non-primitive task, obtaining a struc-
ture that models a multitude of possible states depending on
user choices and error rates, which in turn can model MDP
states and rewards. Here, each primitive task ti in the HTN
associated with an action a ∈ A will map to a state represent-
ing the world state achieved immediately after the execution
of a. Moreover, state transitions will be determined via the
ordering constraints in the HTN, so that there will be a non-
zero probability of transitioning from a state ti to a state tj in
the MDP if and only if it can be determined that ti immedi-
ately precedes tj in any potential plan generated by the HTN.
We represent this immediate sequential precedence relation
as ti ≺1 tj .We shall use these relations in our algorithm to
derive the transition functions for each action in the MDP.

In order to create a fully decomposed HTN (containing all
possible method decompositions), instead of choosing one
method to apply to each non-primitive task, we apply all ap-
plicable methods and collect all constraints resulting from

all possible method applications.2 We create a fully decom-
posed HTN by slightly modifying the task decomposition
algorithms used in HTN planning. First, we create a new
method application function δ∗ that takes a set of methods
applicable to a task and adds all possible expansions of it to
the HTN, making sure that the precedence relations are only
added when the last primitive task of the preceding networks
supports the preconditions of the method being applied. Ver-
ification that a certain primitive task t supports the precondi-
tions of a method requires the evaluation of the possible states
that could be reached by the time task t is executed, which in
turn depends on the possible sequences of primitive tasks that
could be generated before t, given the constraints on a task
network. Thus, we use function pState(s0, t,H) to generate
one possible state for a primitive task t in networkH from an
initial state s0, defined recursively as follows:

pState(s0, t,H) =

{
γ(s0, t) if t ∈ first(H)
γ(pState(s0, ti,H), t) if (ti ≺1 t) ∈ C

We say that a primitive task ti in a network H can sup-
port a certain state si, given an initial state s0, and denoted
ti |=s0,H si, if and only if ∃si.si = pState(s0, ti,H). Fi-
nally, we restrict the addition of constraints in the fully ex-
panded HTN deriving from tasks ti preceding task tj being
expanded by only adding constraints referring to methods that
can potentially be supported by ti. We denote the set of meth-
ods that are potentially applicable given a previous task ti as
M ′ti,tj = {m ∈Mtj ∧ ti |=s0,H tj}. Given the notion of pos-
sible support for a state, we define the application of multiple
methods for the full expansion of an MDP in Definition 3.
Definition 3 (Multi-Method Application). Let Mt =
{m1

t , . . . ,m
n
t } be a set of methods in the form mi

t =
(S, t,H′i) in a domain D for refining a task t and H =
(T,C) be an HTN, where t ∈ T is a task to be refined
and Ct ⊆ C are all the constraints referring to t. Fur-
thermore, let si be the state resulting from the execution
of all primitive tasks from the current decomposition of all
tasks preceding t in H. The application of a set of methods
Mt, denoted δ∗(H, t,Mt, σ), under some substitution σ to
an HTN H = (T,C) results in a new fully expanded HTN
H∗ = (T ∗, C∗) where:
• T ∗ = (T − {t}) ∪ T ′; and
• C∗ = (C − Ct) ∪ (C∗t ∪ C∗).

with the sets Ct and C∗t denoting, respectively, the sets of
constraints to be removed and added to the expanded HTN,
as follows:

Ct = {t ≺ ti|t ≺ ti ∈ C} ∪ {ti ≺ t|ti ≺ t ∈ C}

C∗t = {t ≺ tj |(t ≺ tj ∈ C) ∧ (tj ∈
⋃
∀mi

t∈M
′
ti,tj

first(H′i))}

∪ {tj ≺ t|(tj ≺ t ∈ C) ∧ (tj ∈
⋃
∀mi

t∈M
′
t,tj

last(H′)i}

Using the expanded the notion of method application of
Definition 3 we can generate a fully expanded HTN H∗ with

2In the propositional case, the MDP resulting from an HTN H
has the same number of states as the number of non-primitive task
nodes in the fully decomposed HTN plus an initial state.

Algorithm 1 Expanding HTN.
1: function FULLDECOMPOSITION(s0,H = (T,C),A,M)
2: T ∗ ← T ∪ {s0} // Add a primitive task as initial state
3: C∗ ← C ∪ {s0 ≺ ti|ti ∈ first(H)}
4: H∗ ← (T ∗, C∗)
5: while T ∗ has non-primitive tasks do
6: tu ← any non-primitive t ∈ T , s. t. @tv ∈ A, tv ≺ tu
7: Mtu ← {m ∈M|task(m) unifies with tu with σ}
8: if Mtu 6= ∅ thenH∗ = δ∗(H∗, tu,Mtu , σ)
9: else return failure

10: returnH∗

Algorithm 1. This expansion differs from the traditional HTN
expansion by the addition of an initial state to the task net-
work in the form of a new primitive task (in Line 2) and en-
suring that this state is connected by precedence constraints in
the fully expanded HTN (Line 3). Moreover, instead of using
a recursive approach, with the help of the notion of possi-
ble state induced by a task and the new multiple method ap-
plication function, we define an iterative approach that tries
to expand tasks until only primitive tasks are left in Lines 5
through 9. We expand the HTN from left to right in order to
make sure that function pState only finds primitive tasks in
the path to the initial state, which is accomplished in Line 6.
Finally, if we have relevant methodsMt in Line 7, we can use
function δ∗ to refine a task into all its possible expansions in
Line 8, otherwise return failure as the resulting HTN contains
unexpandable non-primitive tasks. Notice that the condition
for this algorithm to fail is exactly the same as the one for the
HTN planning algorithm, since if an HTN is not solvable the
resulting MDP cannot lead to any of the desired solutions.

3.2 Generating transition functions
The collection of constraints resulting from the full decom-
position of the original HTN can then be used to construct
the transition functions for each action. We represent a fully
decomposed HTN as H∗ = (T ∗, C∗), and consider that each
task ti ∈ T ∗ (i.e. the set of primitive tasks in H∗) is labelled
with an action a ∈ A. For ease of presentation, we assume
the ability to make inferences to determine≺1 on the sequen-
tial constraints in C∗.3 We denote the label(ti) of a primitive
task ti to be the name of the action associated with that task.

We start by defining the set of states in the MDP. From
Definition 3, we have that each primitive task in the fully ex-
panded HTN leads to a macro state comprising the states re-
sulting from all possible execution paths that lead to the exe-
cution of that task. Such a macro state is captured by function
mState in Definition 4 below, and is defined in terms of the
multiple possible states, each of which is created by pState.
Definition 4 (Possible States at Task). Let ti ∈ T ∗ be a task
in a fully expanded HTN H∗ = (T ∗, C∗) and s0 an initial
state. The possible MDP state mState(s0, ti,H∗) at task
is the formula corresponding to the disjunction of all pos-
sible states pState(s0, ti,H∗) resulting from the execution of
primitive tasks before ti starting at s0, so

mState(s0, ti,H∗) =
∨
∀ti∈T∗ pState(s0, ti,H

∗)

3In practice, we keep track of first(H) and last(H) when apply-
ing methods using δ∗ so that all constraints are ≺1.

Algorithm 2 Creating MDP states.
1: function CREATEMDPSTATES(s0,H∗ = (T ∗, C∗))
2: for all Tasks ti ∈ H∗ in some fixed order do
3: Si ← mState(s0, ti,H∗)−

⋃i−1
j=1 Sj

4: states[ti]← Si
5: for all {tj ∈ H∗|tj ≺ ti} in some fixed order do
6: if mState(s0, ti,H∗) ∩ Sj 6= ∅ then
7: states[ti]← states[ti] ∪ {Sj} // Keep track

of which MDP states ti has effects onto
8: return states

Algorithm 3 Creating transition function.
1: function CREATETRANSITIONTABLES(A,H∗,states,ε)
2: Create |A| square matrices of size |T ∗|, call each matrix Pa
3: for all a ∈ A do
4: Initialize Pa with 0s
5: for all c = (ti ≺1 tj) ∈ C∗, where label(tj) = a do
6: for all Si ∈ states[ti] and Sj ∈ states[tj] do
7: Pa(Si, Sj)← Pa(Si, Sj) + 1/|states[tj]|

8: for all Si do

9: Pa(Si, Sj)←

{
Pa(Si,Sj)−ε(a)∑n

j=0 Pa(Si,Sj)
, if Si 6= Sj

ε(a), if Si = Sj

It is easy to see that such macro states are likely to intersect
as the number of possible paths that lead to a certain primitive
task in the fully expanded HTN increases. In an HTN that has
single methods to decompose each task, each primitive task
in H∗ could be made to correspond to a single state in the
resulting MDP. However, when there are alternative paths to
a certain state, we must devise a way to uniquely identify the
possible ways in which a macro state is formed. This unique
identification is necessary to allow an agent planning with
the resulting MDP to identify, through its perceptions, which
state it is in. Thus, we develop Algorithm 2 to detect over-
lapping states and partition them so that there is no ambiguity
over the current state of an agent planning with the resulting
MDP. Algorithm 2 creates a table of the MDP states states[ti]
corresponding to each primitive task ti ∈ T ∗ by iterating over
these tasks in a fixed order (preferably increasing complexity
of the state) to ensure that the partition of states is consistent.
If one macro Si state overlaps with another, the resulting set
of MDP states is mapped into one state consisting of the non-
overlapping part of the original macro state (Line 4) as well
as all the states Sj that originally overlapped with Si (Line 7).

Each primitive task in the fully decomposed HTN is con-
sidered to represent the state achieved immediately after ex-
ecuting the action associated with it. So Algorithm 3 com-
putes, for each action in the domain with an error rate ε, the
transition probabilities between the states achieved by primi-
tive tasks inH∗, given the state overlaps and correspondences
computed by Algorithm 2. Notice from Line 7 that, as the
probability is conditional on (Si, a), there is no need to factor
the probability by 1/|states[ti]|. Finally, in order to account
for some uncertainty in the world, we introduce an error rate
function ε, that, given an action a, returns the probability that
this action will fail and the agent remains in the same state.
In consequence, the resulting transition tables uniformly dis-

HTN

s0 t1 t2 t3-a2

t4-a1 t5-a2 t6-a1 t7-a3

m1 m2 m3

t8-a4 t9-a1

Figure 1: Fully decomposed HTN. Rectangles denote non-
primitive tasks while ellipses denote primitive tasks. Dashed
elements are added to the HTN for the MDP conversion.

tribute the probability of transitioning from all possible im-
mediately preceding states into those resulting from the task
currently under consideration. For example, consider an HTN
H1 = ({t1, t2, t3}, {t1 ≺ t2, t2 ≺ t3}), with a domain
D = ({a1, a2, a3, a4}, {t1, t2, t3}, {m1,m2,m3}), in which:

• m1 = (>, t1, ({a1, a2}, {a1 ≺ a2}))
• m2 = (>, t1, ({a1, a3}, {a1 ≺ a3}))
• m3 = (>, t2, ({a4, a1}, {a4 ≺ a1}))

where t1 and t2 are non-primitive tasks and t3–t9 are primi-
tive task to execute actions a1 to a4.

The full decomposition ofH1 is shown in Figure 1. The re-
sulting MDP has eight states: the seven primitive tasks t3, t4,
t5, t6, t7, t8 and t9, plus the initial state s0. Furthermore the
transition function for action a1 would have 0.5 probability
of transitioning from s0 to either t4 or t6, and probability 1 of
transitioning from t8 to t9; while a2 would have probability 1
for transitioning from t4 to t5, as well as for t9 to t3.

Proposition 1. If a plan ∆ = [a1, . . . , an] possible in D for
an HTNH and a starting state s0 induces a sequence of states
s1, . . . , sn, then the probability P∆ =

∏n
i=1 Pan(sn−1, sn)

induced from the transition function generated from Algo-
rithm 3 is greater than zero.

Proof. Given that all sequences of action executions will be
captured through ≺ constraints in H∗ generated from Algo-
rithm 1, and the corresponding states induced from these ac-
tions are captured in the mapping of Algorithm 2. Now, if
there is any sequence of two tasks ti, tj inH∗, then the prob-
ability of a transition Plabel(ti)(Si, Sj) will necessarily be
greater than zero due to Line 7 of Algorithm 3. Thus the mul-
tiplication of the proposition must be greater than zero.

3.3 Generating a reward function
With the transition function in place, the only element miss-
ing from a full MDP description is the reward function. The
purpose of a reward function in an MDP is to induce the
solver to select actions that lead an agent towards certain de-
sirable states. Correspondingly, in an HTN, the sequence of
ordered tasks is also intended to lead an agent towards certain
desirable outcomes. A similar analogy was made in earlier
efforts [Simari and Parsons, 2006] regarding the conversion
of Belief-Desire-Intention agent plans (so called i-plans) into

Algorithm 4 Creating reward values.
1: function CREATEREWARDFUNCTION(A,H∗ = (T ∗, C∗))
2: initialize all rewards u(aj , Si) to zero
3: for all c = (ti ≺1 tj) ∈ C∗ do
4: Si, Sj ← states in MDP corresponding to ti, tj ∈ T
5: aj ← label(tj) ∈ A
6: κ← maxpath(ti,first(H∗))
7: for all sk ∈ Si do u(aj , sk)← κ ·

∑
sl∈Sj

u(sl)

8: return u

reward functions. Such a conversion consists of assigning an
increasing reward value to the states resulting from actions
that occur later in order of the steps in an i-plan. The same
correspondence is leveraged in our work, as it has been shown
by Sardiña et al.[Sardiña and Padgham, 2011] that i-plans and
HTN methods are formally related in the sense that the order-
ing of tasks within the HTN used to decompose a task through
a method has the same purpose to the action sequences in i-
plans. As a consequence, we adapt the conversion algorithm
in [Simari and Parsons, 2006] to generate a reward function
from a fully expanded HTNH∗ as Algorithm 4.

For our modified algorithm, we consider that each state si
in the MDP (that was created from a primitive task ti from
H∗) has some base utility u(si), which can either be sup-
plied by the user, or assumed to be 1. In order to obtain this
gradient of rewards from the first possible tasks to the last
ones in a plan, we use the ordering constraints in the fully
expanded HTN to determine the maximum possible length
of a plan before a certain state and action combination for
which a reward is needed. Formally, the maximum length
of plan that reaches a state si derived from a fully expanded
HTN H∗, denoted maxpath(si,first(H∗)), is computed by
following constraints pathtn = [t0 ≺1 t1, . . . , tn−1 ≺1 tn]
in C∗ such that tn is the task inH∗ that generated state si and
t0 ∈ first(H∗). Thus, the MDP reward function u(aj , si) for
choosing an action aj at a state si is generated by multiplying
the base utility of sj by the length of longest path between the
state sj being considered and the states first(H∗) that have no
predecessors in the constraints forH∗.

4 Experiments
In order to evaluate the computational demands of our con-
version algorithm, as well as the efficiency of the resulting
MDPs, we created an implementation of the conversion pro-
cess and used it to create MDPs for an adaptation of the
“Blogohar” scenario from [Sycara et al., 2010]. In this sce-
nario the objective is to plan the best allocation of resources
and routing (from HQ) to neutralize various target insurgent
strongholds using a set of resources, which consists of a
combination of military vehicles of various types, including
Humvees, Armored Personnel Carriers (APCs), and attack
helicopters. Each vehicle has a certain probability of succeed-
ing in its actions (both attack and movement) can use multiple
routes to reach its target, and once a vehicle is committed to
a target, it cannot be used to attack another target.4

4Due to space constraints, we shall not go into further detail
about the scenario.

Our experiments consisted of an increasing number of ve-
hicles and targets, which result in much larger fully expanded
HTNs. The number of vehicles varied from 7 to 11 while the
number of targets varied from 1 to 3, with at least two routes
between HQ and each target. The domain encoding we used
for this planning problem resulted in a Herbrand base that
varied in size from about 15 to 25 thousand predicates for
each planning instance. First, we measured the number of
primitive tasks generated in the fully expanded HTN for each
problem, and compared this to the number of unique states (in
terms of true and false predicates) used in the resulting MDP,
which is illustrated in the graph of Figure 2a. This shows
that, while the number of primitive tasks in the fully expanded
HTN explodes quite quickly, the MDP states resulting from
Algorithm 2 grow much more slowly (notice the logarithmic
scale of the graph). Second we measured the runtime of the
conversion process, as well as the computation of an optimal
MDP policy using policy iteration with a discount factor of
1. The conversion process as well as the MDP solver were
implemented in Java, and the experiments were conducted in
a 2.53Ghz 64-bit Intel processor running Mac OS X with a
2GB limit on VM memory usage.5 The runtimes in the graph
of Figure 2b show that, while the conversion process is rather
expensive due to the huge size of the HTN state space, the re-
duced state space led to very efficient MDP encodings, which
were solved by policy iteration always in under 100ms.

5 Increasing Efficiency
The calculation of the precedence relations for the fully ex-
panded HTN in function δ∗ requires verification for the pos-
sible states to support a method’s precondition performed by
the relation |=s0,H, but has a complexity that grows expo-
nentially with the branching factor of the expanded HTN tree
(that is, the maximum number of methods applicable to any
task). We can significantly increase the efficiency of the ver-
ification of method preconditions by adapting a technique
used in the Yoyo planner [Kuter et al., 2009], whereby states
and actions are represented as BDDs. BDDs are directed
acyclic graphs that represent logical formulas in a canoni-
cal form in which nodes correspond to propositions, each
of which has two outgoing edges representing whether the
proposition is true or not. The terminal nodes of a BDD rep-
resent either true or false, indicating whether the path chosen
for traversing the graph (i.e. the truth value assigned to each
proposition along the path) is true or false. Logical operations
of conjunction, disjunction, negation and quantifiers can be
implemented fairly efficiently among BDDs as long as good
variable orderings are found for the results.

Using these properties of BDDs, it is possible to encode
the execution of an action s′ = γ(s, a) Definition 1 as a BDD
representing the conjunction of the logical formula for the
propositions that hold at state s, the propositions that repre-
sents action a and the propositions that represent the result-
ing state s′. More importantly, the execution of an action
over a set of states can be encoded even more efficiently us-
ing BDDs in order to mitigate the complexity of the mState
operation from Definition 4. We denote this new operation

5Implementation available at: http://goo.gl/5SZRc

http://goo.gl/5SZRc

 40
 50
 60
 70
 80
 90

 100
 110
 120

 1 10 100 1000

M
D

P
St

at
es

HTN* States/Primitive Tasks

Number of States

(a) States in the HTN and corresponding MDP.

 0

 20

 40

 60

 80

 100

 120

 8 9 10 11 12 13 14 15 16

R
un

tim
e

Targets/Vehicles

Conversion (s)
Policy Iteration (ms)

(b) Runtime results for our prototype.
Figure 2: Results of the experiments for the Blogohar scenario.

as S′ = γ∗(S, a), whereby S encodes the disjunction of the
BDDs representing all possible previous states s ∈ S and S′
encodes the disjunction of all states s′ ∈ S′ that are possi-
bly true after a is executed. Using this encoding of states and
actions as BDDs, we can also significantly increase the effi-
ciency with which the ti |=s0,H tj relation can be computed,
as the entailment of two BDD encoded (sets of) states pos-
sible for two primitive tasks ti and tj can be checked with
complexity O(|ti| ∗ |tj |), where|ti| and |tj | are the size of the
BDDs representing the models of ti and tj .

6 Conclusions and future work
The complexity of planning in the real world is best captured
by non-deterministic planning, but the available representa-
tions are cumbersome and hard to use — adopting them may
therefore increase rather than decrease the burden on the plan-
ners. However, as we describe here, it is possible to specify
the planning problem as if it were a deterministic problem,
and then convert the representation into a non-deterministic
one. The main technical challenge has been to develop a con-
version scheme that maintains the properties of the plan paths
described by the HTN. In this paper we have shown how this
conversion can be carried out. This conversion process has
been implemented and tested for finite domains and initial re-
sults show that the conversion can be done fairly efficiently.

The techniques that perform the conversion are initial ef-
forts with inherent limitations. The main limitation is that
the MDP probabilities automatically generated by our con-
version process refer mainly to the uncertainty in the planning
process, with a simple action error model providing the un-
certainty from the world, but we envision richer ways of hav-
ing this information supplied with the input. For example,
subjective probabilities can be annotated in the HTN meth-
ods and then used to calculate state transition probabilities in
the resulting MDP. Alternatively, probabilities on the effect
propositions of each action can also be supplied. Many tech-
niques for expressing non-deterministic planning problems in
a more compact form (e.g. factored MDPs [Boutilier et al.,
2000]) or in a more user-friendly way (e.g. PPDDL [Younes
et al., 2005]) have been created. These techniques provide
significant improvements of performance for the planning al-
gorithms, or readability of the planning domain, but not nec-
essarily both at the same time. We claim that the technique

developed in this paper comprises the initial steps for a com-
promise between user-friendliness and algorithmic efficiency.
Moreover, our technique can be applied with little modifica-
tion in traditional BDI-based agent languages [Sardiña and
Padgham, 2011] to perform decision-theoretic planning.

Acknowledgement. This research was sponsored by the Army
Research Laboratory and was accomplished under Cooperative
Agreement Number W911NF-09-2-0053. The views and conclu-
sions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either ex-
pressed or implied, of the Army Research Laboratory or the U.S.
Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any
copyright notation here on.

References
[Bellman, 2003] R. E. Bellman. Dynamic Programming. Dover

Publications, Incorporated, 2003.
[Boutilier et al., 2000] Craig Boutilier, Richard Dearden, and

Moisés Goldszmidt. Stochastic dynamic programming with fac-
tored representations. Artif. Intell., 121:49–107, August 2000.

[Erol et al., 1994] K. Erol, J. Hendler, and D. S. Nau. HTN plan-
ning: Complexity and expressivity. In Proceedings of the Twelfth
National Conference on Artificial Intelligence, 1994.

[Ghallab et al., 2004] M. Ghallab, D. Nau, and P. Traverso. Auto-
mated Planning: Theory and Practice. Elsevier, 2004.

[Kuter et al., 2009] U. Kuter, D. Nau, M. Pistore, and P. Traverso.
Task decomposition on abstract states, for planning under nonde-
terminism. Artificial Intelligence, 173(5-6):669 – 695, 2009.

[Sardiña and Padgham, 2011] Sebastian Sardiña and Lin Padgham.
A BDI agent programming language with failure handling,
declarative goals, and planning. Autonomous Agents and Multi-
Agent Systems, 23(1):18–70, 2011.

[Simari and Parsons, 2006] G. I. Simari and S. Parsons. On the re-
lationship between MDPs and the BDI architecture. In Proc. 5th
Intl. Joint Conf. on Auton. Agents and Multiagent Systems, 2006.

[Sycara et al., 2010] K. Sycara, T. J. Norman, J. A. Giampapa, M. J.
Kollingbaum, C. Burnett, D. Masato, M. McCallum, and M. H.
Strub. Agent support for policy-driven collaborative mission
planning. The Computer Journal, 53(5):528–540, 2010.

[Younes et al., 2005] Håkan L. S. Younes, Michael L. Littman,
David Weissman, and John Asmuth. The first probabilistic track
of the international planning competition. J. Artif. Intell. Res.
(JAIR), 24:851–887, 2005.

	Introduction
	Background
	MDPs
	HTNs

	Using HTNs to represent MDPs
	States in a fully expanded HTN
	Generating transition functions
	Generating a reward function

	Experiments
	Increasing Efficiency
	Conclusions and future work

