Using Ontologies as Semantic Representations of
Hierarchical Task Network Planning Domains

Artur Freitas, Daniela Schmidt,
Felipe Meneguzzi, Renata Vieira and Rafael H. Bordini

Faculty of Informatics, PUCRS - Brazil
{artur.freitas,daniela.schmidt}@acad.pucrs.br,
{felipe.meneguzzi,renata.vieira,rafael.bordini}@pucrs.br

Abstract. Integrating knowledge representation approaches, such as ontologies,
with the field of automated planning is still an open research challenge. To explore
this issue, we present a semantic model to address the knowledge representa-
tion of planning domains. More specifically, we show an ontological approach to
represent HTN (Hierarchical Task Network) in OWL (Web Ontology Language)
ontologies. We explain our planning ontology, demonstrate one instantiation to
exemplify its use and propose algorithms to convert specifications from OWL to
HTN, and vice-versa. We also discuss some future directions towards the integra-
tion of planning formalisms and semantic representations.

1 Introduction

Knowledge representation approaches using ontologies are being studied as promising
techniques to enable semantic reasoning, knowledge reuse, interoperability, and so on.
Yet, the use of ontologies integrated with planning formalisms is a research path that is
currently at its initial steps. To address this issue, this paper proposes a semantic model
to represent planning domains. The proposed ontology was encoded in OWL (Web
Ontology Language) [1] to model planning problems based on the HTN (Hierarchical
Task Network) paradigm [2]. This conceptualisation was instantiated in ProtAl gAl'!
to demonstrate how planning domains can be modelled in ontologies. We also present
a bidirectional mapping among HTN domain formalisations and their respective OWL
ontology representations. We show the algorithms to automatically translate from OWL
to HTN specifications (and vice-versa) that were implemented in Java using the OWL
API [3]. Therefore, planning domains instantiated in the ontology can be automatically
translated to the HTN input specification (and the other way around) using these two
aforementioned methods. This work aligns the fields of knowledge representation and
reasoning with the domain of automated planning, and this opens the path to interesting
research directions that are still in their initial steps in the scientific community. For
instance, our approach enables to deriving planning domain models from existing onto-
logical knowledge, and also to convert again from the ontology to a planning domain.
In other words, we investigate the integration of ontologies and the HTN formalism
in order to explore semantic representations of planning domains. HTN planning is like

! http://protege.stanford.edu/

classical Al planning in that each state of the world is represented by a set of atoms,
and each action corresponds to a deterministic state transition [4]. However, HTN plan-
ners differ from classical Al planners in what they plan for, and how they plan for it.
In classical planning, the main aim of the planning task is to attain a goal-state, which
is usually specified in terms of a number of desired properties of the world. In this
context, JSHOP (Java Simple Hierarchical Ordered Planner) is a domain-independent
automated-planning system based on ordered task decomposition, which is a type of
HTN planning. On the other hand, ontology is a knowledge representation structure
composed of concepts, properties, instances, relationships, and axioms, which is de-
fined as an “explicit specification of a conceptualisation” [5]. Thus, our goal with this
research is to explore and demonstrate the utilisation of ontologies more expressively
in automated planning.

This paper is organised as follows. Next section provides a background on ontolo-
gies. A section of related work is presented afterwards. Then, a section explaining our
conceptualisation (TBox, i.e., Terminological Box) in OWL is presented. This concep-
tualisation is composed of classes and properties to represent the HTN domain. Next,
we show an instantiation (ABox, i.e., Assertion Box) of this TBox in order to demon-
strate how to use the proposed ontology to model a corresponding HTN specification.
Also, we present the two algorithms coded in Java with the OWL API [3] to, respec-
tively convert from OWL to HTN, and vice-versa. Then, we conclude this research
direction and point out other possible investigations towards the integration of ontology
and planning.

2 Background

Ontology was born as a philosophical study of reality aiming at defining which things
exists in reality and what we can say about them. Researchers in Artificial Intelligence
and Computer Science define ontology as an “explicit specification of a conceptualisa-
tion” [5]. In this context, a conceptualisation means an abstract model of some aspect
of the world which defines the properties of important concepts and relationships. From
this definition, we can observe that an ontology is a knowledge representation struc-
ture composed of concepts, properties, individuals, relationships and axioms [6], as
described in sequence. A concept is an abstract group, set, class or collection of objects
that share common properties. This component is represented in hierarchical graphs,
such that it looks similar to object-oriented systems. A property is used to express
relationships between concepts in a given domain. More specifically, it describes the
relationship between the first concept (i.e., the domain), and the second, which repre-
sents that property range. For example, “study” could be represented as a relationship
between the concept “person” (as the property domain) and “university” or “college”
(as range). An individual is the “ground-level” component of an ontology which rep-
resents a specific element of a concept or class. Individuals are also called instances,
objects or facts. A relationship is an instance of a property, which relates two individ-
uals: one as domain of the relationship, and another as its range. It is important that
those individuals obey the constraints represented in the property specification in order
to guarantee the consistency of the ontology instantiation. An axiom is used to impose

constraints on the values of classes or individuals, so axioms are generally expressed
using logic-based languages, such as first-order logic. Axioms, also called rules, are
used to verify the consistency of the ontology and to perform inferences.

The use of ontology empowers the execution of some interesting features, such as
semantic reasoners and semantic queries. Semantic reasoners, for example Pellet [7],
provide the functionalities of consistency checking, concept satisfiability, classifica-
tion and realisation. Consistency checking ensures that an ontology does not contain
contradictory facts; concept satisfiability checks if it is possible for a concept to have
instances; classification computes the subclass relations between every named class to
create the complete class hierarchy; and realisation finds the most specific classes that
an individual belongs to [7]. In other words, semantic reasoners are able to infer log-
ical consequences from a set of axioms. Reasoners are also used to apply rules such
as the ones coded in SWRL (Semantic Web Rule Language). Moreover, ontologies can
be semantically queried through SQWRL (Semantic Query-enhanced Web Rule Lan-
guage), which is a simple and expressive language for implementing semantic queries
in OWL [8]. OWL is a semantic web standard formalism intended to explicitly represent
the meaning of terms in vocabularies and the relationships between those terms [1].

OWL is based on Description Logics (DL), which formed the basis of several well-
known ontology languages [6]. The name DL is motivated by the fact that the impor-
tant notions of the domain are specified by concept descriptions, i.e., expressions that
are built from atomic concepts (unary predicates) and atomic roles (binary predicates)
using the concept and role constructors provided by the particular DL. DLs are usu-
ally equipped with a terminological and an assertional formalism [6]. On one hand,
terminological axioms can be used to introduce names (abbreviations) for complex de-
scriptions, and a set of terminological axioms is called a TBox. On the other hand, the
assertional formalism can be used to state properties of individuals. A set of such as-
sertions is called an ABox, and the named individuals that occur in ABox assertions
are called ABox individuals [6]. DL systems provide their users with various inference
capabilities that deduce implicit knowledge from the explicitly represented knowledge
[6]. For example, the subsumption algorithm determines subconcept-superconcept re-
lationships; the instance algorithm infers instance relationships; and the consistency al-
gorithm identifies whether a knowledge base (consisting of a set of assertions and a set
of terminological axioms) is non-contradictory. Therefore, the classes, properties and
axioms of an ontology compose its TBox (Terminological Box), while the individuals
and relationships comprise its ABox (Assertion Box).

OWL is a language based on DL, and as such uses first-order predicate logic as
its underlying knowledge representation and reasoning paradigm. OWL is a language
for processing web information that became a W3C recommendation in February 2004
[1]. W3C classifies OWL into three sublanguages, each of which is intended to sup-
ply different aspects affecting their expressiveness and inference complexity (i.e., per-
formance): OWL Lite, OWL DL and OWL Full [9]. OWL Lite is the most simple
and restricted version of OWL in terms of expressiveness. OWL DL is so called be-
cause it uses Description Logic to represent the relations between objects and their
properties, providing maximum expressiveness while preserving the completeness of
computational properties. Finally, OWL Full provides highest expressiveness and the

syntactic freedom of RDF (Resource Description Framework) but without preserving
guarantees on computational complexity.

OWL basic components are classes, properties and individuals. We can say that a
class is disjoint from other classes using the owl:disjointWith element, and equivalence
between classes can be defined using a owl:equivalentClass element. Considering the
definition of concepts, suppose we wish to declare that the class C satisfies certain
conditions, that is, every instance of C satisfies these restrictions, and/or that every in-
stance that satisfies these restrictions can be inferred as belonging to C. OWL provides
the following elements to represent these class conditions [9]: owl:allValuesFrom to
define the class of possible values that the property can take (in terms of logic, it is
an universal quantification, i.e., all values of the property must come from this class);
owl:minCardinality to represent a cardinality restriction, requiring a minimum number
of relationships (it is the opposite of the owl:maxCardinality, which imposes an upper
limit of relationships); owl:someValuesFrom to represent the existential quantification;
and owl:hasValue to state that the property must have a specific value. OWL was de-
fined with two kinds of properties [9]: object properties, which relate objects (instances
of classes, that is, interesting elements in the domain of discourse) to other objects; and
datatype properties, which relate objects to datatype values. Also, OWL allows the def-
inition of some characteristics of property elements directly [9], such as if the property
is transitive, symmetric, functional, and so on.

Ontologies and rules are two established paradigms in knowledge modelling [10],
and OWL ontologies can be combined with rules, such as the Semantic Web Rule Lan-
guage (SWRL) [11]. To improve the expressiveness of OWL ontologies, SWRL was
proposed as a rule extension of OWL DL that adheres to the open-world paradigm.
SWRL adds to the expressive power of OWL by allowing the modelling of certain ax-
ioms which lie outside the capability of OWL DL [10]. SWRL includes a high-level
abstract syntax for Horn-like rules in both the OWL DL and OWL Lite sublanguages
of OWL. The proposed rules are of the form of an implication between an antecedent
(body) and a consequent (head). The intended meaning can be read as: whenever the
conditions specified in the antecedent hold, then the conditions specified in the conse-
quent must also hold (be true). A rule has the form [11]:

antecedent = consequent

where both antecedent and consequent are conjunctions of atoms written al A... A
an. Variables are indicated using the standard convention of prefixing them with a ques-
tion mark (e.g., 7x). Using this syntax, a rule asserting that the composition of parent
and brother properties implies the uncle property would be written as follows [11]:

parent(?x,?y) Abrother(y,?z) = uncle(?x,?z)

Both the antecedent and the consequent of a rule might consist of zero or more
atoms. On one hand, an empty antecedent is treated as trivially true (i.e., satisfied by
every interpretation), so the consequent must also be satisfied by every interpretation.
On the other hand, an empty consequent is treated as trivially false (i.e., not satisfied by

any interpretation), so the antecedent must also not be satisfied by any interpretation.
Multiple atoms are treated as a conjunction [11]. A SWRL atom can be [10] unary (such
as a class expression) or binary (such as an object property). Moreover, the arguments
in atoms are of the form of individuals or data values.

This section presented a background on ontologies, where we can observe that sev-
eral advantages can emerge by using them more expressively in planning, i.e., com-
bining ontologies with planning. Next section investigates the state of the art regarding
related researches that currently integrate ontologies with planning.

3 Related Work

The work in [12] demonstrates how an OWL reasoner can be integrated with an artifi-
cial intelligence planner. Investigations on the efficiency of such an integrated system
and how OWL reasoning can be optimized for this context were also presented. In their
approach, the reasoner is used to store the world state, answer the planner’s queries
regarding the evaluation of preconditions, and update the state when the planner sim-
ulates the effects of operators. Also, they described the challenges modelling service
preconditions, effects and the world state in OWL, examining the impact of this in the
planning process. Specifically, the SHOP2 HTN planning system was integrated with
the OWL DL reasoner Pellet to explore the use of semantic reasoning over the ontology
[12].

A generic task ontology to formalise the space of planning problems was proposed
by [13]. According with its authors, this task ontology formalises the nature of the plan-
ning task independently of any planning paradigm, specific domains, or applications
and provides a fine-grained, precise and comprehensive characterization of the space
of planning problems. The OCML (Operational Conceptual Modelling Language) was
used to formalise the task ontology proposed in [13], since it was argued that this
language provides both support for producing sophisticated specifications, as well as
mechanisms for operationalising definitions to provide a concrete reusable resource to
support knowledge acquisition and system development.

Another related work [14] defines a series of translations from ontologies to plan-
ning formalisms: one from OWL-S process models to SHOP2 domains; and another
from OWL-S composition tasks to SHOP2 planning problems. They implemented and
described a system which performs these translations, using an extended SHOP2 im-
plementation to plan with over the translated domain, and then executing the resulting
plans. In summary, the work of [14] explored how to use the SHOP2 HTN planning sys-
tem to do automatic composition in the context of Web Services described in OWL-S
ontologies.

The work of [15] proposes a planning and knowledge engineering framework based
on OWL ontologies that facilitates the development of domains and the use of Descrip-
tion Logic (DL) reasoning during the planning steps. In their model, the state of the
world is represented as a set of OWL facts (i.e., assertions on OWL individuals), rep-
resented in an RDF (Resource Description Framework) graph; actions are described as
RDF graph transformations; and planning goals are described as RDF graph patterns.
Their planner integrates DL reasoning by using a two-phase planning approach that per-

forms DL reasoning in an off-line manner, and builds plans on-line, without doing any
reasoning. Their planner uses a subset of DL known as DLP (Description Logic Pro-
grams) that has polynomial time complexity and can be evaluated using a set of logic
rules.

We can observe from these related work that several authors are proposing semantic
representation of planning domains in ontologies. Also, approaches to translate from
planning formalisms to ontologies and vice-versa are usually explored, so as the use
of semantic reasoners before or during the planning steps. However, to the best of our
knowledge, our work is the first to address the integration of ontologies in OWL with
the HTN planning formalism to propose the ontology that will be presented in next
section.

4 The HTN Ontology Conceptualisation

In classical planning, the main aim of the planning task is to attain a goal-state, which is
usually specified in terms of a number of desired properties of the world. To model this
domain, we developed an ontology, encoded in OWL [1] and built with ProtAl' gAl’, to
represent HTN planning domains. ProtAl' gAl’ is an open source ontology editor which
also enables the visualisation of ontologies in different ways, the execution of semantic
reasoners, and several other interesting features. The concepts and properties modelled
in our proposed HTN planning ontology can be visualised in Figure 1. The conceptu-
alisation was created based on the definitions of [2], [16] and [4], and a description of
these concepts can be found next:

— DomainDefinition: A domain description is a description of a planning domain,
consisting of a set of methods, operators, and axioms.

— Operator: Each operator indicates how a primitive task can be performed. It is
composed of: name, parameters, preconditions, a delete list and an add list giving
the operator’s negative and positive effects.

— Method: Each method indicates how to decompose a compound task into a par-
tially ordered set of subtasks, each of which can be compound or primitive. The
simplest version of a method has three parts: the task for which it is to be used, the
preconditions, and the subtasks that need to be done in order to accomplish it.

— Axiom: Axioms can infer preconditions that are not explicitly asserted in the cur-
rent state. The preconditions of methods or operators may use conjunctions, dis-
junctions, negations, universals and existential quantifiers, implications, numerical
computations and external function calls.

— Predicate: A predicate has a name and it contains any number of parameters. Pred-
icates are used to represent the preconditions and postconditions of actions, as well
as the state of the world (i.e., the state of affairs).

— Parameter: A parameter is a variable symbol whose name begins with a question
mark (e.g., as ?x or ?agent), and it is used by operators, methods and predicates.

— MethodFlow: Each method must contain at least one flow, and each flow has a
specific position. A method flow contains an ordered list of preconditions and an
ordered list of methods or operators invocations.

— ProblemDefinition: Planning problems are composed of logical atoms (i.e, initial
state) and task lists (high-level actions to perform), which means, a set of goals.

— Goal: Goals in HTN are method invocations with specific parameters that the plan-
ner will have to decompose in a sequence of operators (i.e., a plan).

— InitialState: An initial state is composed of a set of predicates representing the
state of the world at the beginning of the simulation.

Glass hierarchy (infened) Object property hierarchy: [=]0]E|
Class hierarchy |

v--mtopObjectProperty
...... ® adds-predicate
v othing -l deletes-predicate
R |] R - ® has-axiom
------ Axiom . --mhas-domain
------ DomainDefinition —-mhas-flow
------ Gu_a_l -~ mhas-goal
------ InitialState --mhas-method
------ Method --mhas-operator
------ MethodFlow -~ has-parameter
------ Operator --mmhas-postcondition
------ Parameter --mhas-precondition
------ Predicate o ~-mhas-predicate
------ ProblemDefinition --muses-parameter

Fig. 1. Concepts and properties of the planning ontology

The concepts that are used as domain or range of the properties in the proposed
HTN planning ontology are presented in Table 1. Some object properties have only one
concept as domain and/or range (e.g., the property has-operator has DomainDefinition
as domain and Operator as range). However, it is possible to use logical expressions
that include more than one concept in this slot (such as the case of the has-precondition
property that has the MethodFlow concept as domain and the expression “Operator or
Method” as range). Figure 2 illustrates these properties in a more intuitive way using
the OntoGraf plug-in, which can be found in ProtAI'gAl'. In this representation, the
ontology is viewed as a graph, where the nodes are concepts and the edges represent
object properties relating the concepts.

Besides the classes and properties, OWL annotations were used to represent addi-
tional information in the relationships of this ontology instantiations. Three new an-
notations were designed with this purpose, named: position, parameters and logical-
Expression. The position annotation stores the location where that element must be
written in the corresponding jshop file, and it can be used in the following proper-
ties: has-flow, has-precondition, adds-predicate, deletes-predicate, uses-parameter and
has-parameter. The logicalExpression annotation was created to be used only in rela-
tionships involving the has-precondition property. Finally, the parameters annotation
must be used only within the properties has-precondition, adds-predicate and deletes-
predicate. This annotation was employed in order to relate instances of predicates used
to define specific operators and methods with instances of parameters.

Table 1. Domain and range of each HTN ontology property

Domain Property Range
DomainDefinition |has-operator Operator
DomainDefinition |has-method Method
DomainDefinition |has-axiom Axiom
InitialState has-predicate Predicate
Method has-flow MethodFlow
Operator adds-predicate |Predicate
Operator deletes-predicate |Predicate
Predicate uses-parameter |Parameter
ProblemDefinition |has-domain DomainDefinition
ProblemDefinition |has-goal Goal
Method, Operator or|has-parameter |Parameter
Predicate
MethodFlow has-precondition |Operator

or Method
MethodFlow or has- Predicate
Operator postcondition

This section presented how we model the concepts and properties of our HTN plan-
ning ontology using OWL. Next section shows an instantiation (ABox) of this previ-

ously explained ontology conceptualisation (TBox).

DomainDefinito
n

. -
; ~ess

]
I
1

!

H ~
ProblemDefinti
on /
Method /
!

Arc Types

Predicate I

/

/
/
4

/\

\

\
\
3

\
\
\
\
\

MethodFlow] [

il
v InitialState
|
I
G

5] 1

Parameter

Fig. 2. Visual representation of the planning ontology

5 Instantiating the HTN Ontology

To investigate the feasibility of defining an HTN planning domain as an instantiation
of our OWL ontology, we used the ProtAl'gAl’ ontology editor to create a simple HTN
problem domain scenario. The following code illustrates the corresponding HTN do-
main definition (named goldminers) that includes only one operator (named move) and
one method (named pursuitPosition). The operator move has two preconditions, one

negative effect and one positive effect, all represented as predicates. The method pur-
suitPosition has two different flows, each one with its corresponding preconditions and
effects.

(defdomain goldminers (

(:operator (!move ?agent ?from ?to)
((at ?agent 7from) (next ?from ?to))
((at ?agent from))

((at 7agent 7t0)))

(:method (pursuitPosition ?agent ?from ?to)

((at ?agent ?from) (next ?from ?to))

(('move ?agent ?from ?to))

((at ?agent ?from) (next ?from ?x))

(('move ?agent ?from ?x) (pursuitPosition ?agent ?x ?to)))

)

A snapshot of the instantiation using the previously presented scenario (goldminers)
can be seen in Figure 3. It is important to highlight that Figure 3 illustrates the ontology
instantiation in ProtAl'gAl’ that corresponds exactly to the previously explained HTN
specification. Thus, it is possible to convert from the ontology formalism to the planning
specification. In fact, the two implemented methods, one for converting from HTN to
OWL and the other to translate from OWL to HTN, will be explained later in this paper.

Individuzls by type: DomainDefinition HEEE omain-defintion

’E K Object propert tions
Y

% DomainDefinition (1) ®mhas-operator

‘- #® domain-definition operator-move
® Operator (1) mhas-method
-4 operator-move method-pursuitPosition
O Method (1)
-4 method-pursuitPosition
MathodFlaw (2) Data property assertions
@ pursuitPosition-flow1 mhas-name "goldminers”

pursuitPosition-flow?2
Parameter (4)

parameter-agent

parameter-to

@ parameter-from Negative data property assertions
@ parameter-x

¥ Predicate (2)

- predicate-at

L predicate-next

Megative ohject property assertions

Fig. 3. Instantiating the planning ontology according to the goldminers specific planning domain

One advantage of using an ontology editor is the capability of enhancing the graphic
visualisation of problem domains instances and their relationships, as illustrated in Fig-
ure 4. This visualisation was obtained using a ProtAl'gAl’ plugin known as OntoGraf.
However, it is possible to explore the ontologies using different approaches and edi-

tors. Moreover, an ontology representation makes possible to explore features such as
rules in SWRL and inferences empowered by semantic reasoners. Next section shows
how to convert from our planning ontology in OWL to specifications used by artificial
intelligence planners such as JSHOP.

Arc Types L
. — [# operator-move J —' & paramster-from | =
an A RN g adds-predicate
MooN # pursuitPasition = deletes-predicate
by & flow2
- ! \;./":(/ = has incivicual
- ¢ \ N) I
=7 e YN N - Ml = has subclass
v s Y~
arameter-agent
YT ,,—_‘. pre— N ——
.,Usmnn) i Ll has-method
- g dicate-next
/ B L S T
el - # paramster-to AN —— has-parameter
L] p#rsl#\(Posman _ . — # predicate-at = has-postcondiion
-flow’
~—— has-precondition

Fig. 4. Visualising the instances of the planning ontology

6 Planning and Ontology Conversions

This section demonstrates, in a high level of abstraction, the algorithms implemented
in Java to convert OWL ontologies to HTN specification files, and vice-versa, which is
from HTN domain definitions to the corresponding OWL ontology instances. Thus, we
established a bidirectional mapping among the elements of our OWL planning ontology
and the elements represented in the HTN domain specifications.

6.1 Converting from the OWL Ontology to HTN

The OWL API [3] was used to read the ontology in Java and write the correspond-
ing jshop file. The instances and properties in the ontology are queried and the corre-
sponding HTN component is generated to that specific ontology element. The concepts,
properties and annotations previously presented in this paper are queried to construct
the corresponding jshop file. The algorithm for converting the OWL to a jshop file is
the following:

for each instance d f of DomainDefinition concept do
create the jshop corresponding file
operators < has-operator relationships of d f
for each Operator op in operators do
extract op information from the ontology
write op parameters, conditions and effects in order
end for
methods < has-method relationships of d f

for each Method met in methods do
extract met information from the ontology
write met parameters and flows in order
end for
end for

6.2 Converting from HTN to the OWL Ontology

The OWL API [3] was also used to write the ontology, after implementing a parser in
Java to read and interpret the jshop file. This approach makes the opposite direction
from the previous one, which converted from the OWL planning ontology to an HTN
specification. In this approach, for each component found when parsing the jshop file,
such as a new operator, method or axiom, then the equivalent OWL individual is cre-
ated with the OWL API and included in the ontology instantiation being created. It is
important to note that some components become instances, but others become object
properties, data properties or annotations. The algorithm for converting the jshop file to
a corresponding OWL is the following:

while there are tokens remaining in the jshop file do
token < nextToken()
if token = defdomain then
create corresponding DomainDefinition instance
end if
if token = operator then
create corresponding Operator instance
read its parameters, preconditions and effects
create the corresponding ontology elements
end if
if token = method then
create corresponding Method instance
read its parameters and flows
create the corresponding ontology elements
end if
end while

7 Final Remarks

This paper proposed an HTN (Hierarchical Task Network) ontology in order to repre-
sent planning formalisms using semantic technologies. More specifically, we presented
an ontology coded in OWL to represent HTN domains and problems in the context of
automated planning. The proposed ontology was instantiated using ProtAl' gAl' to ex-
emplify how it can be used and to demonstrate its feasibility. Also, we presented algo-
rithms to convert specifications from OWL to HTN, and vice-versa, that were coded in

Java using the OWL API [3]. As pointed out in [15], the use of OWL ontologies as a ba-
sis for modelling domains allows the reuse of existing knowledge in the semantic web.
However, research in this direction is still in their initial steps yet. We briefly shown the
state of the art of approaches that integrate ontologies with planning, commenting their
contributions.

As future work, it would be interesting to investigate further ontology reasoning
mechanisms and semantic technologies features within the scope of the proposed HTN
ontology. One example would be creating rules (e.g., in SWRL - Semantic Web Rule
Language) to infer new knowledge such as inconsistencies in this ontology instantia-
tion. Thus, as next step in this direction, we are going to explore advantages of using
semantic representations of planning domains, such as the reasoning enabled by on-
tologies. The ability to use ontologies to infer and generate knowledge over a domain
is a motivation to continue investigating integrations of ontology representations with
planning.

This work demonstrated new possibilities that can be explored in the direction of in-
tegrating the areas of ontologies and automated planning. Given the similarities among
HTN planning and agent programming plans, we will also explore as future work how
to convert from this ontology to automatically generate a corresponding AgentSpeak
code, which is a logical language to program agent plans. As examples of relations
between concepts in these two formalism we can currently highlight: method & plan;
precondition & context; and operator & external action. Thus, we also want to investi-
gate and develop algorithms to convert from this OWL ontology to AgentSpeak plans,
and vice-versa.

Another interesting possibility to explore based in our work is extending the plan-
ning ontology to address further planning characteristics, such as non deterministic
HTN planning formalisms. However, if the conceptualisation changes, the parsers may
have to be adjusted accordingly to handle the new concepts and properties in the on-
tology. Currently, we plan to continue assessing the correctness of our algorithms (for
converting from HTN to OWL and from OWL to HTN) by further testing them with
more complex examples.

8 Acknowledgements

Will appear in final version.

References

1. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, PF., Stein, L.A.: OWL Web Ontology Language Reference. Technical report,
W3C (February 2004)

2. Erol, K., Hendler, J.A., Nau, D.S.: HTN planning: Complexity and expressivity. In Hayes-
Roth, B., Korf, R.E., eds.: AAAI, AAAI Press / The MIT Press (1994) 11231128

3. Horridge, M., Bechhofer, S.: The OWL API: A Java API for OWL ontologies. Semant. web
2(1) (January 2011) 11-21

4. Nau, D., Au, T.C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, E.: SHOP2: an
HTN planning system. J. Artif. Int. Res. 20(1) (December 2003) 379-404

10.
11.

12.

14.

15.

16.

. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing.

Int. J. Hum.-Comput. Stud. 43(5-6) (December 1995) 907-928

. Baader, F., Horrocks, 1., Sattler, U.: Description logics. In: Handbook on Ontologies. (2004)

3-28

. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL rea-

soner. Web Semant. 5(2) (June 2007) 51-53

. O’Connor, M.J., Das, A.K.: SQWRL: a query language for OWL. In Hoekstra, R., Patel-

Schneider, P.E, eds.. OWLED. Volume 529 of CEUR Workshop Proceedings., CEUR-
WS.org (2008)

. Antoniou, G., van Harmelen, F.: Web Ontology Language: OWL. In: Handbook on Ontolo-

gies. (2004) 67-92

Hitzler, P., Parsia, B. In: Ontologies and rules. Springer (2009) 111-132

Horrocks, 1., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web Rule Language combining OWL and RuleML. W3c member submission,
World Wide Web Consortium (2004)

Sirin, E., Parsia, B.: Planning for semantic web services. In: Semantic web services work-
shop at 3rd international semantic web conference (iswc2004). (2004)

. Rajpathak, D., Motta, E.: An ontological formalization of the planning task. In: International

Conference on Formal Ontology in Information Systems (FOIS 2004). (2004) 305-316
Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service composition
using SHOP2. Web Semant. 1(4) (October 2004) 377-396

Bouillet, E., Feblowitz, M., Liu, Z., Ranganathan, A., Riabov, A.: A knowledge engineering
and planning framework based on OWL ontologies. In: Proceedings of the Second Interna-
tional Competition on Knowledge Engineering. (2007)

Ilghami, O.: Documentation for JSHOP2. Technical report, University of Maryland, Depart-
ment of Computer Science, College Park, MD 20742, USA (May 2006)

