
Nu-BDI: Norm-aware BDI Agents

Felipe Meneguzzi1, Wamberto Vasconcelos2, Nir Oren2, and Michael Luck3

1 Faculdade de Informática, PUCRS, Porto Alegre, Brazil
2 Department of Computing Science, University of Aberdeen, Aberdeen, UK

3 Department of Informatics, King’s College London, London, UK
felipe.meneguzzi@pucrs.br, wvasconcelos@acm.org, nir.oren@abdn.ac.uk,

michael.luck@kcl.ac.uk

Abstract Systems of autonomous and self-interested agents interact-
ing to achieve individual and collective goals may exhibit undesirable or
unexpected properties if left unconstrained. Using deontic concepts of
obligations, permissions and prohibitions to describe, what must, may
and should not be done, norms have been widely proposed as a means
of defining and enforcing societal constraints. Recent efforts to provide
norm-enabled agent architectures that limit plan choices suffer from in-
terfering with an agent’s reasoning process, and thus limit autonomy
more than is required by the norms alone. In response, in this paper we
describe an extension of the BDI architecture which enables normative
reasoning, providing agents with a means to choose and customise plans
(and their constituent actions), so as to ensure compliance with norms.

1 Introduction

Systems of autonomous and self-interested agents interacting to achieve indi-
vidual and collective goals may exhibit undesirable or unexpected properties if
left unconstrained. Norms have been proposed as a means of defining and en-
forcing constraints aimed at ensuring that such undesired behaviour is avoided
[12,18]. Norms are generally specified using deontic concepts of obligations, per-
missions and prohibitions to identify, respectively, what must, may and should
not be done so as to ensure certain system properties. Early work on normative
systems focused on model-theoretic or philosophical aspects of deontic logics [26],
but more recent work has addressed how norms may be more suitably represen-
ted in computational systems [20,21], their enforcement [13] and their impact on
the society as a whole, abstracting away the details of mechanisms through which
individual agents reason with and about norms and how individual behaviours
are affected by norms [1,12,18].

However, practical normative systems require analysis and specification of the
processes through which norms are recognised, decisions about whether to com-
ply with them are taken, and behaviour is adjusted appropriately. Some recent
efforts have sought to provide norm-enabled architectures [19,22] to constrain
an agent’s behaviour to comply with norms in terms of permitted or forbidden
mental states. For example, compliance with an obligation to move to a certain

location limits an agent’s choice of plans containing moving actions to only those
in which the target of the actions is the obliged location. While such architec-
tures capture this notion at a basic level, for example in preventing parts of a
plan library from being adopted [22], or replacing the goals of an agent with
the fulfilment of specific norms [19], they suffer from interfering with an agent’s
reasoning process, and thus limit autonomy more than required by norms alone.

In response, in this paper we introduce ν-BDI,4 an extension of the BDI
architecture [23] that enables normative reasoning, and provides a means for
agents to choose and customise plans (and their constituent actions), so as to
ensure compliance with norms. The paper makes three significant contributions
in providing: fine-grained tailoring of plan restrictions; a plan annotation mech-
anism to identify violating plan instances, and limit their adoption; and a tech-
nique permitting the selective and incremental violation of norms in cases where
goal achievement would not otherwise be possible.

We start by reviewing the BDI agent model and introducing a basic in-
terpreter in Section 2. In Section 3 we introduce the notation used for precisely
specifying normative restrictions, including restrictions over acceptable domains.
Using this, we develop in Section 4 an agent architecture capable of reasoning
with these norms, thus affecting specific plan instances that are adopted, de-
ciding on norm compliance as plan instances are selected. In doing so, we fulfil
the need for pragmatic normative agent architectures capable of filtering norm
compliant plans and deciding upon them. We review related work in Section 5,
finally drawing conclusions in Section 6.

2 Preliminaries

In this section we review the well-known BDI architecture, which is the found-
ation of our norm-aware architecture.

In order to explain the operation of our agent interpreter, we need to in-
troduce some notation and definitions. We use first-order constructs for various
elements of the agents and norms.

Definition 1 (Term). A term, denoted generically as τ , is a variable w, x, y, z
(with or without subscripts), a constant a, b, c (with or without subscripts) or
fn(τ0, . . . , τn), that is, an n-ary function fn applied to (possibly nested) terms
τ0, . . . , τn. �

Definition 2 (Predicate). A predicate (or a first-order atomic formula), de-
noted as ϕ, is any construct of the form pn(τ0, . . . , τn), where pn is an n-ary
predicate symbol applied to terms τ0, . . . , τn. A first-order atomic formula, de-
noted as Φ, is defined as Φ ::= Φ ∧ Φ|¬Φ|∀x.Φ|ϕ. �

We assume the usual abbreviations: Φ∨Φ′ stands for ¬(¬Φ∧¬Φ′), ∃x.Φ stands
for ¬∀x.¬Φ, Φ→ Φ′ stands for ¬Φ∨Φ′ and Φ↔ Φ′ stands for (Φ→ Φ′)∧ (Φ′ →
4 ν-BDI, is a pun involving the Greek letter ν we use to refer to norms and the English

word “‘new”, the approximate pronunciation of ν in English.

Φ). Additionally, we also adopt the equivalence {Φ1, . . . , Φn} ≡ (Φ1∧· · ·∧Φn) and
use these interchangeably. In our mechanisms we use first-order unification [11]
which is based on the concept of substitutions.

Definition 3 (Substitution). A substitution σ is a finite and possibly empty
set of pairs x/τ , where x is a variable and τ is a term. �

The application of a substitution is defined as:

1. c · σ = c for a constant c.

2. x · σ = τ · σ if x/τ ∈ σ; otherwise x · σ = x.

3. pn(τ0, . . . , τn) · σ = pn(τ0 · σ, . . . , τn · σ).

Unifications can be composed ; that is, for any σ1 = {x1/τ1, . . . , xn/τn} and σ2 =
{y1/τ ′1, . . . , yk/τ ′k}, their composition, denoted as σ1σ2, is defined as {x1/(τ1 ·
σ2), . . . , xn/(τn ·σ2), z1/(z1 ·σ2), . . . , zm/(zm ·σ2)}, where {z1, . . . , zm} are those
variables in {y1, . . . , yk} that are not in {x1, . . . , xn}. A substitution σ is a unifier
of two terms τ1, τ2, if τ1 · σ = τ2 · σ.

Definition 4 (Unify Relation). unify(τ1, τ2, σ) holds iff τ1·σ = τ2·σ, for some
σ. unify(pn(τ0, . . . , τn), pn(τ ′0, . . . , τ

′
n), σ) holds iff unify(τi, τ

′
i , σ), 0 ≤ i ≤ n. �

Two terms τ1, τ2 are related through the unify relation if there exists a substi-
tution σ that makes the terms logically equivalent. We denote as ϕ̄ a first-order
predicate whose terms are either constants or variables associated (via a substi-
tution) with constants. Here, we adopt Prolog’s convention [3] and use strings
starting with a capital letter to represent variables and strings starting with a
small letter to represent constants. We assume the availability of a sound and
complete first-order inference mechanism which decides if Φ′ can be inferred
from Φ, denoted as Φ ` Φ′. In this paper we use a mechanism to determine if
a formula Φ can be inferred from a set of ground predicates, and, if so, under
which substitution; that is, {ϕ̄0, . . . , ϕ̄n} ` Φ · σ.

In this work we consider an abstract BDI interpreter, inspired by the dMARS
architecture [10]. We define an agent in terms of its information model as fol-
lows.5

Definition 5 (Agent). An agent is a tuple 〈Ag ,Ev ,Bel ,Plib, Int〉, where Ag
is the agent identifier, Ev is a queue of events, Bel is a belief base, Plib is a plan
library, and Int is an intention structure. �

Recently perceived events are stored in a queue and ordered by arrival time.
An event may be a belief addition or deletion, or a goal addition or deletion.
Belief additions are positive ground predicates perceived as true, and belief de-
letions are negative ground predicates perceived as false. Goal additions indicate
new goals posted, and goal deletions represent goals dropped for some reason.

5 We use Greek letters to denote elements of the underlying logic system as well as
norms, and use Latin letters to denote elements of the agent interpreter.

Definition 6 (Events). An event queue Ev is composed of ground first-order
predicates representing events [e1, . . . , en] ordered by occurrence time. Events ei
can be one of four possible cases: i) a belief addition +ϕ̄, whereby belief ϕ̄ is
added to the belief base; ii) a belief deletion −ϕ̄, whereby belief ϕ̄ is removed
from the belief base; iii) a goal addition +!ϕ̄, whereby the goal to achieve ϕ̄ is
posted to the agent; or iv) a goal deletion −!ϕ̄, whereby the goal to achieve ϕ̄
has been dropped by the agent. �

The belief base comprises a set of logic predicates, which can be queried
through an entailment relation, as follows.

Definition 7 (Beliefs). A belief base Bel is a finite and possibly empty set of
ground first-order predicates {ϕ̄1, . . . , ϕ̄n}, with an associated logical entailment
relation ` for first-order formulae. �

The plan library, defined below, stores the plans of action available. Each
step in a plan body may be either an action (causing effects in the environment)
or a subgoal (causing the addition of a new plan from the plan library to the
intention structure).

Definition 8 (Plans). A plan library Plib is a finite and possibly empty set
of uninstantiated plans {P1, . . . ,Pn}. Each plan Pi is a tuple 〈t, c, bd〉 where t
is an invocation condition, namely, an event of the form +ϕ̄,−ϕ̄,+!ϕ̄, or −!ϕ̄
(cf. Definition 6), indicating the event that causes the plan is to be adopted, c
is a context condition in the form of a first-order formula over the agent’s belief
base, and bd is a body consisting of a finite and possibly empty sequence of steps
[s0, . . . , sn], with each si representing either the invocation condition of a plan,
or an action (cf. Definition 9). �

Actions are identified by first-order atomic formulae, and in order to deal
with declarative world-states we must define what an action entails, so that
we are able to use action execution as the target of normative stipulations in
Section 3. Thus, we define an action’s consequences in Definition 9, as follows:

Definition 9 (Action). An action is a tuple 〈ϕ,$, ε〉 where

– ϕ is an action identifier, represented as a first order predicate pn(τ0, . . . , τk)
with variables τ0, . . . , τl.

– $ is the action’s precondition, represented as a formula Φ containing first
order predicates ϕp0, . . . , ϕ

p
m, which in turn contain variables τl+1, . . . , τn.

– ε is a set of first order predicates representing the effects of the action. ε
is composed of two sets, ε+ and ε−. These sets represent new beliefs to be
added to the belief base (if they are members of ε+), or beliefs to be removed
from the belief base (if they are members of ε−).

All variables in the predicates of ε must be contained in the set of variables
τ0, . . . , τn used in the action identifier and preconditions. We refer to an action
by its identifier, ϕ. We refer to the preconditions of an action ϕ as $(ϕ), and
its effects as ε(ϕ). We refer to the set of all possible actions as Actions. �

Within an agent’s plans action invocations and belief modifications are both
represented as first order predicates. However, within the body of a plan, belief
predicates only appear associated with the symbols for addition and deletion
(cf. Definition 8), denoting updates to the belief base. Conversely, predicates
referring to actions (i.e. their identifier, cf. Definition 9) appear on their own
within the body a plan denoting that an action is to be executed, as shown in
Example 1.

Example 1. The plan of our scenario is represented as follows:〈
+level(X,medium), (high risk(X)),

 isolate(X),
evacuate(X,Y),
reroute(X,Z)

〉

That is, if a belief level((X),medium) is added to the belief base, stating that
the level of emergency of area X is medium, and X is a high risk area, then the
plan is to:

i) isolate area X (thus preventing anyone from entering the area);
ii) evacuate the area, moving everyone from X to Y , and

iii) reroute traffic through X to go through Z. �

Finally, the intention structure comprises the agent’s intentions, each of which
contains partially instantiated plans to be executed by the agent.

Definition 10 (Intentions). An intention structure Int is a finite and possibly
empty set of intentions {int1, . . . , intn}. Each int i is a tuple 〈σ, s̄t〉, where σ is
a substitution and s̄t is an intention stack (containing the steps remaining to be
executed to achieve the intention). �

The specification above provides a minimal information model required for
BDI agent execution. This model is used with little or no modifications in vari-
ous agent interpreters such as PRS [16], Jason [4] and others. However, these
interpreters have no mechanism for normative processing, relying on a designer
to hard-code any norm-influenced behaviour. As discussed in the introduction,
an agent’s ability to act while considering its norms provides an increase in the
agent’s capabilities and our goal is to enable BDI agents to become norm aware.
An overview of the basic BDI interpreter is illustrated as the white boxes in
Figure 1, together with our proposed additions represented as grey boxes. While
we do not provide further details on the operation of the basic BDI interpreter,
we refer the reader to the original description of this type of interpreter at [16].
Thus, in the following sections we specify the framework within which ν-BDI
operates and the algorithms necessary for generalised normative behaviour.

3 Norm Representation

Using deontic concepts of obligations, permissions and prohibitions to describe,
what must, may and should not be done, norms have been widely proposed
as a means of defining and enforcing societal constraints. In this paper, since

Resolve Conflicts

Annotate Plans

Execute
Intentions

Select Relevant
Plans

Perceive
Events

Select Applicable
Plans

Select Compliant
Plans

Add Plan to
Intentions

Update Beliefs Update Norms

Figure 1: Control flow for the reasoning process

we are concerned with the impact of norms on reasoning and behaviour, we
pay particular attention to the scope of influence of norms. In this respect, we
consider two distinct means of addressing this: first, we draw on aspects similar
to those presented in [12] and [19] in that our norms are conditional, both for
activation (when they come into force) and expiration (when they cease effect),
limiting application to periods of time; and second, we add constraints [17],
limiting application to particular plans and actions, and ensuring that norms
are not over-restrictive. In this section, we adapt and extend the notation for
specifying norms of [25].

Definition 11 (Constraint). Constraints, represented as γ, are constructs of
the form τ C τ ′, where τ, τ ′ are first-order terms (that is, a variable, a constant
or a function applied to terms) and C is one of the infix binary operators =, 6=,
>,≥, <, or ≤. A conjunction of constraints is denoted as Γ = (γ1 ∧ · · · ∧ γn). �

We use arithmetic functions to build terms τ . For example, 10 > Temp and
Price < (Cost +Z), and for readability, we write 3 ≤ X∧X ≤ 10 as 3 ≤ X ≤ 10.
Since constraints limit the acceptable range of parameters within instantiated
plan steps, when determining plan compliance with current norms, satisfiabil-
ity must be checked. We use existing constraint satisfaction techniques [17] to
implement a satisfy predicate that holds if a given conjunction of constraints
admits a solution (if each variable of the constraints admits at least one value
that simultaneously fulfils all constraints).

Definition 12 (Satisfy Relation). satisfy(γ0 ∧ · · · ∧ γn, σ) holds iff (γ0 · σ ∧
· · · ∧ γn · σ) is true for some σ. �

Constraints are associated with first-order predicates, imposing restrictions on
their variables. We represent this association as ϕ ◦ Γ , as in, for instance,
move(b1, X, Y) ◦ (100 ≤ X ≤ 500 ∧ 5 ≤ Y ≤ 45). Now, to define for the core as-
pect of norms, we use atomic deontic formulae annotated with such constraints.

Definition 13 (Deontic Formula). An annotated deontic formula ν is any
construct of the form Oαϕ ◦Γ (an obligation) or Fαϕ ◦Γ (a prohibition), where
α is a term, and ϕ ◦ Γ is a first-order atomic formula ϕ with constraints Γ . �

Term α identifies the agent(s) to which the norm is applicable and ρ is the role
of such agent(s). Oα:ρϕ ◦ (γ1 ∧ . . .∧ γn) thus represents an obligation on agent α

taking up role ρ to bring about ϕ, subject to all constraints γi, 0 ≤ i ≤ n. The
γi terms express constraints on variables of ϕ. The relation between constraints
and the deontic formula is akin to the quantifier restrictions introduced in [7]. If
we assume a universal quantification in our annotated deontic formulae, that is,
∀α.∀ρ.∀x(Xα:ρϕ ◦ Γ) (where x are all variables occurring in ϕ and Γ , and X is
either O or F) then our formula stands for ∀α.∀ρ.∀x(Γ → Xα:ρϕ). Alternatively,
if we assume an existential quantification, that is, ∃α.∃ρ.∃x(Xα:ρϕ◦Γ), then the
formula stands for ∃α.∃ρ.∃x(Γ ∧ Xα:ρϕ).

Thus, norms are defined as follows.

Definition 14 (Abstract Norm). An abstract norm ωA is a tuple 〈ν,Act ,Exp,
id〉 where: ν is an annotated deontic formula (cf. Definition 13); Act, the activ-
ation condition, is a conjunction of possibly negated first-order atomic formulae
ϕ1 ∧ · · · ∧ ϕn specifying the condition that must hold in the agent’s belief base
for the norm to take effect; Exp, the expiration condition, is a conjunction of
possibly negated first-order atomic formulae ϕ1∧· · ·∧ϕn specifying the condition
that must hold in the agent’s belief base for the norm to stop being in effect; id
is a unique norm identifier. �

We denote a set of abstract norms as ΩA. If the activation condition of an
abstract norm holds, then a specific norm is obtained, whereby variables may be
instantiated to specific values. Abstract norms generically define circumstances
when norms should be adopted and dropped; when norms are adopted, the
abstract formulation is instantiated to specific circumstances.

Definition 15 (Specific Norm). A specific norm ωS is a tuple 〈ν,Act ,Exp,
σ, id〉 where ν,Act ,Exp, id are as above and are bound by a substitution σ. We
denote a set of specific norms as ΩS. �

As agents interact with their environment and with other agents, their per-
ception of reality, as recorded in their sets of beliefs, change. Agents use their
beliefs to update their normative positions, adding norms whose activation con-
ditions hold, and removing norms whose expiration conditions holds. Given a
set of beliefs Bel and a specific norm ωS of the form 〈ν,Act ,Exp, σ, id〉, then ωS

holds (or is in effect) if, and only if, the following two conditions hold:

1. Bel ` Act · σ; that is, we can deduce Act · σ from the set of beliefs, and
2. Bel 6` Exp · σ; that is, we cannot deduce Exp · σ from the set of beliefs.

Since beliefs change, norms also change as their activation and expiration
conditions may no longer hold, capturing dynamic aspects in our representation.

Example 2. The norms of our scenario are the following abstract norms:
1. 〈FA:Revacuate(X,Y) ◦ {Y = W},¬safe(W), safe(W), 1〉
2. 〈OA:Rreroute(X,Z) ◦ {X + 1 ≤ Z ≤ X + 3},¬safe(X), safe(X), 2〉
The first norm states that all agents (in all roles) are forbidden to evacuate an
area X to an area Y ; the prohibition becomes active if area Y (constrained to
be W) is unsafe and expires when area Y (constrained to be W) becomes safe;

unifications are dealt with like constraints, hence the need to use a third variable
W . The second norm states that all agents (in all roles) are obliged to reroute
traffic through Z to avoid area X, but the rerouting must be within nearby
zones. The norm becomes active when area X is deemed not safe, and the norm
is deactivated when area X becomes safe again. Now, suppose these norms give
rise to the following specific norms:
3. 〈FA:Revacuate(X,Y) ◦ {Y = W},¬safe(W), safe(W), {W/3}, 1〉
4. 〈FA:Revacuate(X,Y) ◦ {Y = W},¬safe(W), safe(W), {W/6}, 1〉
5. 〈OA:Rreroute(X,Z) ◦ Γ,¬safe(X), safe(X), {X/2}, 2〉
That is, abstract Norm 1 gives rise to two specific norms, one instantiating W
to 3 and another W to 6. Abstract Norm 2 (shown with constraints abbreviated
as Γ to save space) gives rise to one specific norm, instantiating X to 2. �

For simplicity, we assume an implicit universal quantification over variables in
ν,Act and Exp, but our approach can be extended for any quantification.

4 ν-BDI: a Normative BDI Interpreter

Given the representation of norms as detailed above, we can now address the
issues surrounding their integration into an effective BDI architecture. First,
we describe the key processes required in the agent interpreter to manage the
activation and expiration of norms. Although beliefs are generally [10] assumed
to contain exclusively ground first-order predicates, in this paper we store both
abstract and specific norms in the belief base. In doing so we avoid adding extra
components to the architecture. We extend and adapt the mechanisms to update
beliefs and to reason with beliefs, enabling them to deal with norms.

A set of abstract norms is used, together with the current set of beliefs Bel , to
obtain an updated set of beliefs with all norms with a valid activation condition
added, and all norms with a valid expiration condition removed. This is detailed
in Algorithm 1: it adds or removes specific norms, preserving abstract norms
and ground predicates.

Algorithm 1 uses function getNormsA(Bel) = ΩA = {ωA0 , . . . , ωAn } which,
given a belief base Bel as input, returns the possibly empty set of abstract
norms in Bel ; getNormsS(Bel) = ΩS , similarly, returns the specific norms in Bel .
We also make use of function getPreds(Bel) = {ϕ̄0, . . . , ϕ̄m} which returns the
ground predicates of a belief base. The algorithm initialises (Lines 2–4) working
sets of abstract norms, specific norms and ground predicates, respectively; it
also initialises the working belief base Bel ′, setting it to Bel . Lines 5–9 loop
through all abstract norms, checking if the ground predicates in the belief base
trigger norms’ activation conditions. For each norm, the algorithm exhaustively
finds possible substitutions σ in which the activation condition holds in Bel ,
and adds the substitution σ to the abstract norm, resulting in the creation of
a newly activated, specific norm. Lines 11–15 loop through all specific norms,
generating new possible substitutions σ′ for which the expiration condition holds,
after application of the original substitution σ. This gives rise to a composite

Algorithm 1 Update norms in belief base
1: function updateNorms(Bel)

2: ΩA ← getNormsA(Bel)
3: Φ← getPreds(Bel)
4: Bel′ ← Bel
5: for all 〈ν,Act,Exp, id〉 ∈ ΩA,, do
6: for all σ such that Φ ` Act · σ do
7: Bel′ ← Bel′ ∪ {〈ν,Act,Exp, σ, id〉} % add activated norms
8: end for
9: end for
10: ΩS ← getNormsS(Bel′)

11: for all ωS ∈ ΩS , ωS of the form 〈ν,Act,Exp, σ, id〉, do
12: for all σ′ such that Φ ` Exp · σσ′ do
13: Bel′ ← Bel′ \ {ωS} % remove expired norms
14: end for
15: end for
16: return Bel′

17: end function

substitution σσ′ that ensures the algorithm only removes those specific norms
whose expiration conditions hold.

Example 3. Let us suppose we have an abstract norm ωA:

〈OA:Ruse(hlc, X) ◦ Γ, high risk(X),weather(X, poor), 3〉

This represents an obligation on all agents/roles to fly a helicopter (represented
as hlc) over X; the norm becomes active if X is a high-risk area, and the norm
expires if the weather conditions in X are poor. The Γ stipulates which areas
can be flown over, and its details are not relevant to our example. If we have
a belief base Bel = {high risk(10), ωA}, where ωA is the abstract norm above,
then we would add to Bel the specific norm

〈OA:Ruse(hlc, X) ◦ Γ, high risk(X),weather(X, poor), {X/10}, 3〉

If, however, the belief base also had a predicate weather(10, poor), then no spe-
cific norms would be added, as the expiration condition of the newly added norm
would hold – the algorithm adds a specific norm in loop 5–9, then removes it in
loop 11–15. �

4.1 Actions and Norms

As indicated previously, our key concern in this paper is with the impact of norms
on plans. Critical to this is determining when an action (represented as an atomic
formula ϕ) is within the scope of influence of a specific norm ωS . Algorithm 2
defines predicate inScope which, given an agent specified by its unique identifier
Ag and one of the roles R ∈ Rl of the agent, holds if a first-order predicate ϕ
is within the influence of a specific norm ωS (c.f. Definition 15). Line 1 states
the format of norm ωS (where X is either F or O). Line 2 tests if Ag , ϕ, unify
with, respectively, α,ϕ′; that is, if the agent identifier and the action formula
unifies with the corresponding components of a norm. By considering actions

Algorithm 2 Check if action in scope of norm.
1: function inScope(Ag, ϕ, 〈Xαϕ′ ◦ Γ,Act,Exp, σ, id〉)
2: if [(¬isAction(ϕ) ∧ unify(〈Ag, ϕ〉, 〈α, ϕ′〉 · σ, σ′))∨
3: (isAction(ϕ) ∧

∃φ ∈ ε(ϕ) s.t. unify(〈Ag, φ〉, 〈α, ϕ′〉 · σ, σ′))]∧
4: satisfy(Γ · σ, σ′) then
5: return σ′

6: else return ⊥
7: end if
8: end function

as having explicit effects in the world-state (c.f. Definition 9), we can check if
a norm referring to a world state is affected by the changes introduced by each
action. Thus, Line 3 checks that a norm does not unify with the declarative
effects ε(ϕ) of an action ϕ. The final part of the condition for an action to be
in the scope of a norm, in Line 4, checks if the constraints on ϕ′ (instantiated
with the substitution σ obtained via unify) can be satisfied. This check factors
in the substitution σ obtained when the norm was activated (cf. updateNorms
in Algorithm 1), thus guaranteeing that different versions of the same abstract
norm (obtained due to specific values of activation conditions) are adequately
handled. If the action is in the scope of a norm, the algorithm terminates in
Line 5, returning substitution σ′ satisfying the constraints of the specific norm.
Conversely, if the conditions of Lines 2–4 are not met, Algorithm 2 terminates
with ⊥ (false) at Line 6.

4.2 Annotating Plans

As indicated in Section 3, one of our primary concerns is with the impact of norms
on agent plans in terms of constraints on the values of variables of an action.
Since actions and achievable world-states are components of plans, instances
of restricted actions and world states must be found and marked with these
constraints.

To achieve this, we propose Algorithm 3, which scans a plan, annotating each
step within the scope of a norm with constraints stemming from that norm. Each
step of the plan is checked against the predicates specified in the specific norms of
ΩS . If a step is within the scope of a norm (Line 9), then the algorithm gradually
assembles the constraints of the norms Γi, and annotates the plan step with them.
If the norm is an obligation, the constraints are added as they appear in the norm
(Line 13), refined to the substitutions σ, σ′. If the norm is a prohibition, the
constraints are then negated (Line 11); formally, neg((γ1, . . . , γn)) = (neg(γ1),
. . . ,neg(γn)), and each constraint can be negated as neg(τ > τ ′) = (τ ≤ τ ′),
neg(τ < τ ′) = (τ ≥ τ ′), neg(τ ≥ τ ′) = (τ < τ ′), and so on. If the step is not in
the scope of any norm, then no constraints are added.

Algorithm 3 always terminates as all its loops are over finite constructs and
all tests carried out terminate. Its complexity is |Plib| × |s| × |ΩS |; that is, the
product of the number of plans, the number of steps of each plan (for simplicity

Algorithm 3 Plan annotation
1: function annotatePlans(Ag,Plib,Bel)

2: Plib′ ← ∅ ;ΩS ← getNormsS(Bel)
3: for all plans P ∈ Plib of the form 〈t, c, [s1, . . . , sn]〉 do
4: Γ ′ ← > % initialise plan’s annotation
5: for all steps si in [s1, . . . , sn] do
6: Γi ← > % initialise step’s annotation
7: for all ωS ∈ ΩS , ωS of the form 〈Xαϕ ◦ Γ,Act,Exp, σ, id〉, do
8: σ′ ← inScope(Ag, si, ω

S)
9: if σ′ 6= ⊥ then % if in scope of norm
10: if X = F then
11: Γi ← Γi ∧ (neg(Γ) · σσ′) % negate/add cnstrs.
12: else if X = O then
13: Γi ← Γi ∧ (Γ · σσ′) % add constraints.
14: end if
15: end if
16: end for
17: Γ ′ ← Γ ′ ∧ Γi % collect annotations
18: end for
19: Plib′ ← Plib′ ∪ {〈t, c, [(s1 ◦ Γ1), . . . , (sn ◦ Γn)], Γ ′〉}
20: end for
21: return Plib′

22: end function

we use the number of steps s of the largest plan), the number of norms, and the
number of roles. The algorithm is correct in that it provides a version of the input
plan library Plib in which every step of each individual plan has been annotated
with constraints stemming from norms; if these constraints are satisfiable, the
plan can be executed without violating any active norm. Section 4.3 describes
how these plan annotations affect the reasoning cycle.

Once plan steps have been annotated, it is possible for an agent to check
before executing each step if its execution violates a norm. However, it is inef-
ficient to adopt a plan and execute it partially before discovering that the plan
was not, in fact, desirable from the perspective of norm compliance. Fortunately,
since the specific values of the variables within a plan are bound when a plan
is instantiated, it is possible to determine at plan instantiation if any normative
restriction applied to individual plan steps would be violated if the plan is ad-
opted. In order to do this, we must make all annotations available for checking
when the plan is instantiated so, at the end of each iteration over the steps of
a plan, we collect the annotations into a global plan annotation Γ ′ (Line 17 of
Algorithm 3), which we use later when selecting norm compliant plans.

4.3 Selection of Annotated Plans

We have also developed an algorithm as an extension of the traditional plan selec-
tion mechanism used in interpreters such as Jason [4], but with the requirement
that the plan annotation, customised (via substitution σ) to the instantiation of
the plan to event e, be satisfiable. While this new plan selection algorithm en-
ables compliance with norms that change at runtime, it does not give agents the
option of non-compliance. It also selects the first norm-compliant plan, without
considering other plans that might not only avoid prohibitions, but also achieve
a number of obligations.

Simple compliance with norms as just described does not afford an agent
freedom to exploit opportunities when rewards outweigh norm penalties or, more
importantly, when a task is impossible to accomplish without violating some
norms. Plan selection in this form is inadequate; we require a plan selection
algorithm that allows norm violation in a controlled manner. In this paper, we
take a utilitarian approach to violation: successful plans bring a certain positive
utility, as does norm compliance, but norm violation brings some negative utility,
or penalty. By defining utility functions for baseUtility(), benefit() and cost(),
respectively, we are able to rank the plans according to the utility gained by
their execution.

We have thus developed an algorithm for an agent capable of ranking plans
by utility gain, taking an additional input, l. It identifies the plan with highest
net utility on each possible plan, and selects the highest utility plan. Then it
updates the intention set according to the plan.

We can now bring together these various steps to build an agent interpreter
that includes the norm processing mechanisms just described. This is shown as
Algorithm 4 and operates similarly to the original interpreter, but includes extra
processes to update norms based on newly perceived beliefs in Line 5 as well as
a modified plan selection algorithm in Line 6 that annotates plans and takes into
consideration not only the applicability of plans but also their norm compliance
before committing to them as intentions. Algorithm 4 is illustrated in Figure 1,
with the new processes shown as shaded boxes.

Algorithm 4 Norm-aware BDI interpreter.
1: procedure nuAgentInterpreter(〈Ag,Ev ,Bel, P lib, Int, l〉)
2: loop
3: Ev ← updateEvents(Ev)
4: Bel ← updateBeliefs(Ev ,Bel)
5: Bel ← updateNorms(Bel)
6: Int ← selectBestPlan(Ev ,Bel,Plib, Int,Ag, l)
7: Int ← executeIntention(Int,Ev)
8: end loop
9: end procedure

5 Related Work

In this section we review some of the most influential previous efforts at creating
autonomous agent architectures that are affected by norms, and contrast these
with our proposal. In [19] Kollingbaum proposes a language for the specifica-
tion of normative concepts together with a programming language for norm-
governed reasoning agents. The normative concepts (namely, obligations, pro-
hibitions and permissions) and the programming language are given their oper-
ational semantics via the NoA Agent Architecture using the Java programming
language to explain the meaning of each construct. This approach addresses
practical reasoning agents developed using the proposed language and architec-
ture, and although the approach is practical and has clear advantages such as the

possibility to check for norm conflict and potential inconsistencies, heterogeneous
agents cannot be accommodated.

The BOID framework [6] is an often cited approach to creating agents capable
of reasoning with the usual BDI mental entities, together with obligations. Unlike
more traditional BDI approaches, all mental entities are represented as sets of
rules. Implementations of BOID make use of propositional rules, containing a
set of antecedents and one conclusion. Rules may conflict, and priorities are
assigned to rules in order to resolve these conflicts. Most commonly, each mental
attitude is assigned the same priority, with beliefs having a higher priority than
desires, intentions and obligations. While conceptually elegant, BOID has not
been widely used in practical systems, due to a lack of a robust implementation;
computational complexity issues when dealing with descriptive languages; and
finally, difficulties for the designer in understanding how complex sets of rules
may interact. Furthermore, work on BOID represents addresses only a single part
of the problem of building an autonomous agent, namely how to infer certain
conclusions from certain inputs, in isolation of any other issues.

Recent efforts on the implementation of agent organisations have resulted in
theMoise+ [15] model, which includes of an organisational modelling language
that includes constructs for structural, functional and deontic elements [14]. This
is primarily a model for the specification of organisational structures, goals and
plans. Although some preliminary work has been done on the implementation
of individual agents following this model in J -Moise+ [15], this work considers
a domain-specific individual agent as largely transforming organisational events
into agent plan invocations while using special actions to affect the organisation
as a whole. It is important to point out that the only deontic modalities handled
inMoise+ are those that drive an agent to certain behaviours, whereas our work
defines generic language-independent algorithms for dealing with obligations and
prohibitions.

More recent research reported in [2] proposes an extension to the BDI pro-
gramming language 2APL [9], enabling the representation of normative concepts
with associated mechanisms for agents to process these. The work addresses as-
pects our research did not consider (e.g., norms with deadlines and explicit sanc-
tions/rewards); however, we note that our proposal extends a reference architec-
ture, rather than advocating a particular technology (namely, 2APL, a specific
programming language). Another approach by [8] proposes MaNEA (Magentix2
Norm-Enforcing Architecture), a distributed architecture based on the Magen-
tix2 platform [24], enabling agents to handle uncertainty (of facts about the
world), and the salience (i.e., important for a given context) and relevance (i.e.,
the norm does not apply to a given context) of norms when deciding to comply
or not with norms. The proposal is very expressive, but designers would face
a challenge to properly model probabilities of beliefs, cognitive states, salience
and relevance. Additionally, the approach is aimed only at agents developed in
Magentix2.

6 Conclusions

We have described a new norm representation formalism, using constraints as
means to precisely specify the target of normative stipulations. These constraints
are used to determine specific plan instantiations that comply with active norms,
effectively determining the acceptable domains for operation. Based on this, we
have specified reasoning mechanisms that enable these plan instantiations to re-
strict behaviour in support of compliance, avoiding violating plans. Importantly,
our work enables selective and incremental norm violation in a controlled man-
ner in cases where goal achievement would not otherwise be possible, or where
norms are explicitly chosen to be ignored.

We have implemented these algorithms within ν-BDI, extending a traditional
BDI interpreter. However, our algorithms are sufficiently generic to enable in-
clusion in any BDI interpreter and sufficiently detailed that implementation
is straightforward. In addressing normative reasoning to this level of analysis,
we have tackled various technical challenges posed by norm processing, such
as the detection of activation and expiration conditions and the management
of the norm life cycle between these two conditions, through the management
of abstract and specific norms. Finally, we have shown the applicability of the
mechanisms developed in an emergency evacuation scenario. In future work, we
intend to refine the evacuation scenario as a testbed for our interpreter, and
handle norm deadlines as well as normative conflicts.

References

1. H. Aldewereld, F. Dignum, A. Garćıa-Camino, P. Noriega, J. A. Rodŕıguez-Aguilar,
and C. Sierra. Operationalisation of norms for usage in electronic institutions. In
Proc. 5th Int. Joint Conf. on Autonomous Agents and Multiagent Systems, pages
223–225, 2006.

2. N. Alechina, M. Dastani, and B. Logan. Programming norm-aware agents. In
Procs. 11th Int’l Conf. on Autonomous Agents & Multiagent Systems (AAMAS
2012), volume 2, pages 1057–1064, Valencia, Spain, June 2012. IFAAMAS.

3. K. R. Apt. From Logic Programming to Prolog. Prentice-Hall, U.K., 1997.
4. R. H. Bordini and J. F. Hübner. BDI Agent Programming in AgentSpeak Using

Jason. In Computational Logic in Multi-Agent Systems, 6th Int. Workshop, pages
143–164. Springer, 2006.

5. R. H. Bordini, J. F. Hübner, and M. Wooldridge. Programming multi-agent systems
in AgentSpeak using Jason. Wiley, 2007.

6. J. Broersen, M. Dastani, J. Hulstijn, Z. Huang, and L. van der Torre. The boid
architecture: conflicts between beliefs, obligations, intentions and desires. In Pro-
ceedings of the Fifth International Conference on Autonomous Agents, pages 9–16,
2001.

7. H. Bürckert. A resolution principle for constrained logics. Artificial Intelligence,
(66):235–271, 1994.

8. N. Criado, E. Argente, P. Noriega, and V. J. Botti. A distributed architecture
for enforcing norms in open MAS. In Advanced Agent Technology, volume 7068 of
LNCS, pages 457–471. Springer, 2012.

9. M. Dastani. 2APl: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems, 16(3):214–248, June 2008.

10. M. d’Inverno, M. Luck, M. Georgeff, D. Kinny, and M. Wooldridge. The dMARS
Architecture: A Specification of the Distributed Multi-Agent Reasoning System.
Autonomous Agents and Multi-Agent Systems, 9(1 - 2):5–53, July 2004.

11. M. Fitting. First-Order Logic and Automated Theorem Proving. Springer, 1990.
12. A. Garćıa-Camino, J.-A. Rodŕıguez-Aguilar, C. Sierra, and W. W. Vasconcelos.

Constraint Rule-Based Programming of Norms for Electronic Institutions. Journal
of Autonomous Agents & Multiagent Systems, 18(1):186–217, Feb. 2009.

13. D. Grossi, H. Aldewereld, and F. Dignum. Ubi lex, ibi poena: Designing norm
enforcement in e-institutions. In COIN II, volume 4386 of LNCS, pages 101–114.
Springer, 2007.

14. J. Hübner, O. Boissier, R. Kitio, and A. Ricci. Instrumenting multi-agent organisa-
tions with organisational artifacts and agents. Autonomous Agents and Multi-Agent
Systems, 20(3):369–400, 05 2010.

15. J. F. Hübner, J. S. Sichman, and O. Boissier. Developing organised multiagent
systems using the moise+ model: programming issues at the system and agent
levels. Int. J. Agent-Oriented Softw. Eng., 1(3/4):370–395, 2007.

16. F. F. Ingrand, R. Chatila, R. Alami, and F. Robert. PRS: A high level supervision
and control language for autonomous mobile robots. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 43–49, Minneapolis,
USA, 1996.

17. J. Jaffar, M. J. Maher, K. Marriott, and P. J. Stuckey. The Semantics of Constraint
Logic Programs. Journal of Logic Programming, 37(1-3):1–46, 1998.

18. A. J. I. Jones and M. Sergot. Deontic Logic in Computer Science: Normative Sys-
tem Specification, chapter Chapter 12: On the characterisation of law and computer
systems: the normative systems perspective, pages 275–307. Wiley Professional
Computing Series. Wiley, 1993.

19. M. J. Kollingbaum and T. J. Norman. Norm adoption in the NoA agent architec-
ture. In Proc. 2nd Int. Joint Conf. on Autonomous Agents & Multi-Agent Systems,
2003.

20. A. Lomuscio and M. Sergot. Deontic interpreted systems. Studia Logica, 75(1):63–
92, 2003.

21. F. Lopez y Lopez, M. Luck, and M. d’Inverno. A normative framework for agent-
based systems. In Proc. 1st Int. Symposium on Normative Multi-Agent Systems,
2005.

22. F. Meneguzzi and M. Luck. Norm-based behaviour modification in BDI agents.
In Proc. 8th Int. Conf. on Autonomous Agents and Multiagent Systems, pages
177–184, 2009.

23. A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture.
In Proc. 2nd Int. Conf. on Principles of Knowledge Representation & Reasoning,
pages 473–484, 1991.

24. J. M. Such, A. Garćıa-Fornes, A. Espinosa, and J. Bellver. Magentix2: A privacy-
enhancing agent platform. Engineering Applications of Artificial Intelligence, 2012.
Available on-line 9 July 2012.

25. W. W. Vasconcelos, M. J. Kollingbaum, and T. J. Norman. Normative conflict
resolution in multi-agent systems. Autonomous Agents and Multi-Agent Systems,
2009.

26. G. H. von Wright. An Essay in Deontic Logic and the General Theory of Action.
North-Holland Publishing Company, 1968.

