
Motivations and Goal-Directed Autonomy

Felipe Meneguzzi
Robotics Institute

Carnegie Mellon University 5000 Forbes Ave.
Pittsburgh, Pennsylvania 15213

meneguzzi@cmu.edu

Abstract

As we move towards a richer model of computation
based on interactions among autonomous agents in lieu
of the more traditional numeric batch processing model,
it is necessary to devise techniques and abstractions for
the development of such autonomous agents. The abil-
ity to generate, reason about, and select the means to
achieve explicit goals is critical for autonomous agents,
the so called goal-driven autonomy. Reasoning about
goals demands a suitable abstraction for meta-level rea-
soning, so that an agent not only reasons about the ac-
tions it needs to take, but also about the viability of (and
interaction among) such goals. In this paper we dis-
cuss the use of motivations as an abstraction of meta-
reasoning for goal-driven autonomous agents. We re-
view recent developments in motivated agent architec-
tures and discuss possible directions for future research.

1 Introduction
“The success of the internet has changed way we think about
computing.” (Luck 2005) It has also changed the way we
work and interact using computers, as exemplified by appli-
cations such as social networking, online libraries and col-
laborative work platforms. We have moved away from a
model of computing focused on numeric computations and
serial data processing to one where interaction among peo-
ple and machines is a fundamental application of computing
power. With the growing use of computers as extensions
of human reasoning capabilities, it is necessary to provide
the means to tap into the possibilities of a networked world
without overwhelming people with all the information and
services available. Intelligent autonomous agents have been
proposed as a solution these challenges. Here, such agents
are generally understood to be agents capable of operating
effectively without supervision to achieve one or more de-
sign goals, while adapting their behaviour to cope with a
complex, dynamic environment (Jennings 2000).

Most widely used agent languages are based on an agent
model that reactively selects procedural plans from a library
of pre-defined plans without an explicit representation of
the agent’s ultimate goals (d’Inverno et al. 2004) aiming at
achieving quick reactions to changes in the world. However,

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

it has been shown that these agent models are inadequate to
allow the design of agents that can adapt to changing circum-
stances at runtime, with researchers arguing that an agent
must be ultimately guided by a set of explicit declarative
goals (Winikoff et al. 2002; Dastani, van Riemsdijk, and
Meyer 2005). When using this approach to goal specifica-
tion, an agent ceases to operate based on reactions to events
in the world, but rather performs goal-driven deliberation,
whereby an agent is aware of the goals it is trying to achieve
before it selects the means through which these goals are to
be pursued. An agent defined in terms of declarative goals
is able not only to choose different means to achieve these
goals, but also to generate new plans at runtime if it has ac-
cess to planning algorithms, further improving its flexibility
by being able to overcome situations not covered by its orig-
inal set of behaviours.

Since agents are often designed to achieve a variety of
goals, some of these goals might be mutually incompatible
if they are adopted at the same time. This creates the need
for a goal-driven agent to perform some kind of reasoning
over the existing goals in order to decide, at each point in
time, which goals must be adopted and which goals must
be dropped that are no longer relevant. This type of reason-
ing is often called meta-reasoning, which is a critical ability
of autonomous agents, as it enables them to explicitly con-
sider goals before committing to their achievement, as well
as consider courses of action before executing plans, as op-
posed to simply reacting to events in the environment.

More generally, it appears that meta-level control is more
easily applied to domains in which agent behaviour can be
evaluated as being effective through some existing criterion.
When there is no such criterion, it is necessary to create a
way to evaluate an agent’s mental state to guide plan selec-
tion. One particular reasoning model that has been stud-
ied in considerable depth within artificial intelligence for
the simulation of societies is based on the philosophical no-
tion of motivated reasoning (Mele 2003). In the context
of meta-reasoning, motivations can provide an elegant so-
lution for modelling domain-independent meta-level control
in an agent system. Motivations are regarded by many as
an orientation towards certain classes of goals (Luck and
d’Inverno 1998), and are used in various theories of animal
behaviour to explain why animals behave in certain patterns
(Balkenius 1993).

mailto:meneguzzi@cmu.edu


Motivations

Beliefs Goals

Plan Library Intentions

ControlPerceptions Actions

Figure 1: Griffiths and Luck mBDI architecture.

The application of motivations in the control of goal-
driven autonomous agent architectures is the subject of this
paper. We start by providing a background of motivation-
based architectures in Section 2, followed by a discussion of
why motivated reasoning is a suitable abstraction for meta-
reasoning in Section 3. Further, we exemplify how moti-
vated reasoning can be integrated to a traditional agent ar-
chitecture in Section 4. Finally, we end the paper with a
discussion of possible research directions for motivated rea-
soning in Section 5.

2 Background
In this section, we review previous efforts in practical moti-
vated agent architectures.

2.1 The Alarms Architecture
The Alarms architecture is one of the first implemented BDI-
based motivated architectures. It allows agents to generate
goals asynchronously and to focus resources on the accom-
plishment of important goals (Norman and Long 1995). This
process of asynchronous goal generation results in new goals
being generated before current ones are accomplished, so
that it is possible for an agent to adopt more goals than it
can effectively work on at the same time. Alarms uses mo-
tivations to allocate processing resources for scheduling and
planning towards adopted goals, so as to avoid reaching a
specified limit on its processing resources. Thus, the moti-
vated architecture tries to maintain the number of goals the
agent pursues simultaneously within an upper bound deter-
mined by the limit of an agent processing resources. Without
the motivated architecture, when this bound is exceeded, the
agent will no longer function effectively.

2.2 Griffiths’s mBDI model
(Griffiths and Luck 2003) provide a specific definition of
motivation as a tuple 〈m, i, t, fi, fg, fm〉, where m is the
motivation name, i is its current intensity, t is a threshold,
fi is an intensity update function, fg is a goal generation
function, and fm is a mitigation function. Here, motiva-
tions are updated by an agent’s beliefs, and in turn, influence

the adoption of goals and the selection of intentions, as illus-
trated in Figure 1, in which solid arrows represent the flow of
control and dashed arrows represent the flow of information.

The reasoning cycle for an mBDI agent starts with an
agent perceiving the environment, and using this informa-
tion to update its belief base. In turn, the now updated belief
base is used to calculate the intensity of each motivation, ac-
cording to the intensity update function fi. After updating
motivational intensity values, an agent compares the inten-
sity of each motivation against its threshold for activation,
and if this threshold is exceeded, the goal generation func-
tion fg is invoked to generate new goals. Once new goals
are generated, all goals are assessed in relation to the moti-
vation that generated them. The goal with the largest inten-
sity value is slated for achievement, resulting in a plan being
selected to achieve it, and it is adopted as an intention. Then,
the intention that provides the largest motivational reward is
selected from among the set of existing intentions, and a step
is executed from it. Finally, when an intention finishes exe-
cuting, the mitigation function fm is invoked to reduce the
intensity of the associated motivation.

2.3 mdBDI: introducing declarative goals
The mdBDI model was created in order to extend the mBDI
model described in Section 2.2 so that it can apply not only
to the notion of goal achievement as plan execution, but also
to goal achievement through desired world-states, or goals to
be (Meneguzzi and Luck 2007b). The idea here is that moti-
vations must be affected by an agent’s perception of world-
states, so a particular motivation must only be mitigated
when an agent acting to satisfy it perceives that a certain de-
sired world-state holds. This entails that the mitigation func-
tion, originally executed as a result of an intention finish-
ing execution must now be associated with the achievement
of particular world-states. Thus, the mitigation function in
mdBDI must use a mechanism similar to mBDI’s intensity
update function, so that it takes an agent’s beliefs as its in-
puts, and evaluates whether or not the currently perceived
world-state supports the mitigation of a given motivation.
Moreover, support for declarative goals leads to the dissoci-
ation of mitigation from intention execution. Mitigation can
only occur when a certain motivation is driving behaviour,
but since the original mBDI model keeps track of active mo-
tivations through the intention it adopted to achieve a moti-
vated goal, by dissociating mitigation with plan execution,
mdBDI introduces the notion of active motivations. An ac-
tive motivation is a motivation with its intensity level greater
than its activation threshold, signalling that a goal to miti-
gate it must be adopted. When a motivation is active, it can
be mitigated, and therefore the mitigation function is used
together with the intensity update function to determine mo-
tivational intensity.

Unlike mBDI, the mitigation function in mdBDI is no
longer associated with plan execution, but rather in the
achievement of world-states, so instead of using the origi-
nal mBDI fm function, mdBDI uses a declarative mitigation
function fmd containing a mapping between beliefs and new
motivational intensities. This is illustrated in the diagram of
Figure 2.



Intensity
Update

Goal
Generation

Mitigation

beliefs

beliefs

beliefs

motivational
intensity

goals

motivational
intensity

Figure 2: Inputs and outputs of the motivation functions.

Although the modifications to mBDI are small, they have
a number of implications to the way in which motivations
generate goals and are mitigated. First, due to the new
method of mitigating intentions introduced in mdBDI, the
last step of selecting an intention implies the capability of
an agent to predict the results of a plan after it is executed,
otherwise the agent cannot determine how motivationally re-
warding a plan is. This prediction of the effects of plans
is further developed in Section 4.3. Second, with this new
control cycle, plans may execute successfully and still fail
to bring about the desired world-state, but a motivation can
only be mitigated by achieving a certain desired world-state.
For example, if I want to mitigate a motivation to have a
video-game console in my home, I may execute my plan
to order one from an internet shop successfully, but if the
mail service delays the delivery or loses the package, my
motivation has not been mitigated by my plan. Moreover,
motivations may be mitigated regardless of the plan adopted
to do so. Using the same example, if a friend gives me the
video-game console as a gift after my initial plan failed, my
motivation is still mitigated.

This is the motivation model we use later in Section 4
within a concrete agent architecture to underpin the genera-
tion of goals.

3 The case for motivations
in goal-driven agents

We have seen that most agent languages are defined in
terms of a library of plans that contain action-directed steps
invoked by some kind of trigger-response mechanism, as
exemplified by the dMARS architecture (d’Inverno et al.
2004). Thus, if there is a possibility of conflict between
any two plans in the plan library, a designer must make sure
that these conflicts are handled through extra steps within
the plans themselves. As a consequence, the function of
meta-reasoning is typically not explicit, but mixed with the
action-directed plans in a way that the agent does not han-
dle conflicts not foreseen by the designer. Even in lan-
guages that have explicit goal constructs and separate goal-
generation rules, such as 3APL (Dastani, van Riemsdijk, and
Meyer 2005), goal adoption is a simple process consisting
of matching some condition in the agent’s perception of the
world, adopting a goal and then cease monitoring the rea-

sons for a goal to have been adopted.
While it is certainly possible to develop ad-hoc meta-level

reasoning using existing traditional agent languages, the ab-
sence of distinct processes responsible for meta-level control
increases the complexity of an agent’s plans while limiting
its runtime flexibility, since the function of meta-reasoning
must then be accomplished by extra steps within an agent’s
action-directed plans. Therefore, we believe the develop-
ment of effective goal-directed autonomous agents can be
facilitated by the inclusion of an explicit meta-reasoning ca-
pability. Motivations-based meta-reasoning can be used in a
variety of control functions, including the selection, prioriti-
sation and abandonment of goals (Cox and Raja 2008); the
control of plan selection; and in computationally expensive
processes such as planning (Meneguzzi and Luck 2007a;
Coddington 2007) (e.g. by determining when sufficient ef-
fort has been spent in trying to produce new plans). In the
specific case of plan-selection, as a plan library grows in size
and complexity, the decision to adopt specific courses of ac-
tion from among multiple possibilities ceases to be as trivial
as choosing the first plan that matches a certain condition.

Here, we propose the use of motivations as a suitable
generic abstraction for describing a meta-reasoning compo-
nent that provides an intuitive notion for programmers to de-
scribe an agent’s subjective notion of valuable world-states
to be achieved, or of preferred methods to achieve these
world states. Motivation offers a meaningful abstraction
that is useful for understanding the meta-reasoning process
(as humans), and for modelling the meta-reasoning of other
agents. Before we proceed, however, we must clarify the
two separate notions of goals in agent systems (Winikoff et
al. 2002). In the widely known and used BDI architectures,
goals are usually of two types – procedural and declarative
– and in both cases we can apply motivated meta-reasoning.
Procedural goals require detailed plans and triggers to be de-
scribed by the designer, hence conflicts between plans must
be foreseen, with conflict resolution strategies embedded in
each procedural plan as extra management steps. For ex-
ample, if two procedural plans require exclusive access to a
particular resource, a designer must make sure that each plan
checks whether the other plan is accessing the resource be-
fore trying to use it. The function of these extra steps is anal-
ogous to meta-reasoning, since they are not action-directed,
but rather are evaluating the agent’s internal state in query-
ing what other plans are being executed. Thus, in procedu-
ral languages specifying meta-reasoning separately from the
plans removes the need to replicate such internal manage-
ment steps throughout the plan library, facilitating develop-
ment. Alternatively, declarative goals are defined by desired
states to be achieved so that an agent is free to choose which
capabilities are employed to achieve goals. Here goal con-
flict resolution must be done by the underlying interpreter.
In declarative-goal architectures, the lack of a goal selection
policy means that goals and plans are selected arbitrarily,
since in theory the designer does not specify precisely how
goals are to be achieved.

Thus, motivated reasoning is applicable to the type of BDI
architecture we consider in this paper. In particular, the mo-
tivational model used to control the architecture must:



• associate motivations with the generation of declarative
(to be) goals;

• use motivational intensity to select and prioritise inten-
tions adopted to achieve the most rewarding goals; and

• mitigate motivations based on the fulfilment of declara-
tive goals.

An agent’s motivational intensities change in response to
the changes in the state environment and the actions chosen
by the agent. Accordingly, motivations-based architectures
(Mele 2003) typically provide a function that associates a
motivational intensity value with world-states and actions.
As far as the model of motivation is concerned, a motiva-
tion’s intensity serves two purposes: first to determine the
relative importance of a motivation compared to others, and
second to determine the point at which an agent is suffi-
ciently motivated to generate a goal and actively try to miti-
gate this intention. In terms of meta-level control, intensity
information indicates how important a certain world-state is,
which allows an agent to anticipate the motivational effect of
certain courses of action before committing to them, allow-
ing it to select plans more effectively.

Translating these functions of motivation to the BDI
model requires associating motivational intensity to the be-
lief database, and modifying the reasoning process responsi-
ble for committing to intentions so that it uses motivational
information. We look at these modifications in Section 4.

4 AgentSpeak(MPL)
We have so far argued for the applicability of motiva-
tions for the meta-level control of goal-directed agents. In
this section, we take a step further and describe Agent-
Speak(MPL): an agent interpreter that employs a meta-
level control module that uses motivations as an abstrac-
tion for meta-reasoning strategies in order to demonstrate
their practical application. This interpreter is an extension of
the traditional AgentSpeak(L) language, and implemented
and evaluated in our previous work (Meneguzzi and Luck
2007b). AgentSpeak(MPL) was created as a further exten-
sion of the AgentSpeak(PL) agent architecture (Meneguzzi
and Luck 2007a), which extends traditional AgentSpeak(L)
with declarative goals and the ability to generate new plans
at runtime. The idea behind adding a meta-reasoning com-
ponent in AgentSpeak(MPL) is that an agent capable of gen-
erating declarative goals must do so pro-actively instead of
simply reacting to discrete events in the environment. Gen-
erating goals pro-actively requires an agent to have a way
of assessing its current situation and anticipating how the
environment (or other agents in the environment) will be-
have, in order to provide a rational justification for the adop-
tion of a goal. Since motivations can be used to associate a
measure of importance to world-states (and thus declarative
goals), it is possible to use motivational intensity to guide an
agent’s choice of action when faced with multiple conflict-
ing courses of action.

In traditional AgentSpeak, plans are adopted as a reac-
tion to events in the environment in a direct sense. That is,
plans are expressed so that if a certain event e happens in

Agent

Belief
Base

Intention 
Selection

Plan 
Selection

Motivation
Goal 

Generation

Intensity 
Update Mitigation

Prediction
Environment 

Model

Figure 3: Modules of the motivated AgentSpeak.

a certain world-state, an agent having a plan with a match-
ing triggering event e always adopts this plan. Furthermore,
since goals in the procedural sense used by AgentSpeak(L)
are adopted as part of the execution of plans, an agent does
not generate them through deliberation, and they are instead
adopted in the process of reacting to some event in the en-
vironment. For instance, a plan may be described so that
whenever an agent believes that a given block is on a ta-
ble (e.g. on(block,table)), a procedure to remove such
a block is invoked. This amounts to simple reaction rather
than deliberate, future-directed behaviour. This method of
behaviour selection also fails to properly describe the rea-
sons for goal adoption in a declarative sense. Such short-
comings can be exemplified using the traditional example
of a block on a table, in which a declarative goal to re-
move the block from the table could be described as not
on(block,table). The question here is whether an agent
should always react to new events and start deliberation im-
mediately even if this agent might be pursuing other, more
important, goals. Meta-level control is intended to address
this issue by allowing reasoning to take place before action-
directed plans are adopted, and our motivation model pro-
vides the means with which to compare goals through their
relative worth to an agent.

AgentSpeak has three key reasoning processes that must
be modified in order to accommodate the meta-reasoning
model we define in Section 4.1: belief update, plan selection
and intention selection. In the following sections, we show
how we modify the reasoning processes of AgentSpeak to
take the motivations model into account. The components
of this architecture are summarised in Figure 3, which shows
the motivation module including its three functions and their
association with the belief base and intention selection pro-
cesses, explained in Sections 4.2 and 4.4, as well as the pre-
diction module associated with plan selection, explained in
Section 4.3.

4.1 An abstract model of motivation
Following the mdBDI model described in Section 2.3, each
motivation is composed of an identifier Id, an intensity value
Int, a threshold T , and the name of a concrete function to
be used for each of the required abstract functions of our



motivation model, as follows:

〈Id, Int, T, fi(Beliefs), fg(Beliefs), fmd(Beliefs)〉

Given the intended meta-level function of our motivational
model, we want the computational representation of the mo-
tivation to be as simple as possible, limiting the amount of
computational resources required in its processing. Thus,
we adopt a numeric representation of the intensity value of
a motivation in order to simplify motivational processing.
Moreover, since the threshold value must be defined in re-
lation to the intensity value, it must also be represented as a
numeric value. We have seen in Section 2.3 that each moti-
vation includes functions responsible for controlling the mo-
tivational intensity and generating goals when appropriate,
namely:

• an intensity update function fi(Beliefs) responsible for
updating inactive motivations based on the currently per-
ceived state of the world;

• a goal generation function fg(Beliefs) responsible for
generating goals when a motivation becomes active as a
consequence of its intensity reaching the threshold; and

• a mitigation function fmd(Beliefs) responsible for
updating active motivations in an analogous way to
fi(Beliefs).

The output of each motivation function must be defined
by a mapping process compatible with the purpose of the
function, so if we are dealing with the intensity update or
mitigation functions, the mapping consists of belief-value
correspondences, while if we are dealing with a goal gener-
ation function, the mapping is a series of belief-goal associ-
ations, since this function aims to generate goals given the
perceptions that activated a motivation.

4.2 Motivations and Belief Update

Given that motivation intensity is a function of the perceived
world-state, most of the motivation machinery is associated
with the agent’s belief update function. Each motivation data
structure comprises an intensity value, a threshold value, and
functions for intensity update, goal generation and mitiga-
tion. When an agent receives new perceptions, it updates
its belief base which is immediately supplied to the inten-
sity update function associated with all motivations affect-
ing this agent. During the update process, if the motiva-
tional intensity of any motivation reaches its threshold level,
the goal generation function is invoked, also inspecting the
belief base, and generating a set of goals based on the cur-
rent world-state. Finally, the belief base is inspected by the
mitigation function to determine if any of the motivations
triggered previously have been mitigated, in which case mo-
tivations are adjusted accordingly.

In practice, the intensity update performed by the miti-
gation function is equivalent to that of the intensity update
function. However, this update can only apply to motiva-
tions that had been previously activated as a result of their
threshold levels being reached, and had generated goals.

4.3 Motivations and Plan Selection
The second modified process in AgentSpeak(L) is plan se-
lection. Since goals are adopted based on a numerically
quantified (motivational) importance, it makes sense to use
this quantification as a criterion for plan selection. Infor-
mation regarding the motivation that led an agent to adopt a
certain goal can be used in the selection of the best course
of action to mitigate this motivation. Since our model pro-
vides separate functions for motivation intensity update and
mitigation, it is possible to use them along with a world-
state prediction model to determine the motivational reward
of executing the plans known by the agent. Therefore, we
need a motivation-driven plan selection function, which se-
lects the most motivationally rewarding plan from a set of
applicable plans.

In order to calculate this quantification, plans are submit-
ted to a prediction module that consists of a sandbox1 copy
of the current belief base, as well as a model of the envi-
ronment (Gong et al. 1997). This prediction module then
simulates the execution of the plan using the functions from
the motivation module to determine the expected overall de-
crease in motivational intensity. Once all predictions are col-
lected, the function selects the plan that provides the largest
mitigation reward. Alternatively, a designer may specify the
declarative outcome of each plan and use this outcome to
calculate the expected motivational reward.

4.4 Motivations and Intention Selection
When an agent has committed itself to achieving multiple
concurrent goals, their relative priorities may fluctuate as
events take place in the environment while the agent carries
out plans to achieve these goals. Achieving goals in a timely
fashion is crucial in a highly dynamic environment, and an
agent has to adapt to changing circumstances with minimum
overhead. As we have seen, an AgentSpeak interpreter cre-
ates a new intention for every external goal adopted by an
agent (i.e. not subgoals), which contains the plan to achieve
this goal, as well as the plans required to achieve any pos-
sible subgoal generated in the process of carrying out the
initial plan.

Subsequently, the interpreter selects an intention to ex-
ecute the steps from the plans included in them. In a tradi-
tional AgentSpeak interpreter, this selection works on a first-
come first-serve basis. In our motivated agent architecture,
external goals are generated by the goal generation function
whenever a threshold intensity is reached in a motivation.
Here, using motivation information to prioritise goals can
help an agent achieve important goals quickly by postpon-
ing the execution of plans to achieve less important goals.
Under this assumption, we require a module that evaluates
all active intentions and selects the intention associated with
the most motivated goal. However, one potential problem
with this approach to goal prioritisation is that it can lead to
problems in the case of plans that gradually mitigate a mo-
tivation as they are executed. In this scenario, this kind of

1In computer security and software development, a sandbox is
an insulated environment where tests can be performed without af-
fecting the main system.



plan will be constantly preempted by new plans adopted to
mitigate higher intensity motivations, possibly leading to it
never being finished. This behaviour might be undesirable
in certain situations, so it is important to ensure good moti-
vation design to avoid this problem in these situations.

5 Conclusion and Discussion
In this paper we have argued towards the use of motivations
as an abstraction for meta-level reasoning in goal-directed
agent architectures, enumerating what processes within an
agent architecture can be affected by motivations in an in-
tuitive way. We have shown how this abstraction can be
easily included in an existing agent architecture based on
the AgentSpeak(L) language, demonstrating the practical-
ity of such an approach in AgentSpeak(MPL) (described
in Section 4). This agent architecture includes an explicit
meta-reasoning module with an accompanying motivation-
based specification language, which allows the specification
of rules for adopting goals, selecting plans and prioritising
currently adopted intentions to satisfy some subjective def-
inition of importance, defined in terms of an agent’s moti-
vations. Motivations are specified separately from the agent
language, allowing for both the reactive plan adoption mech-
anism inherent to traditional agent languages and the proac-
tive type of goal adoption enabled by motivated reasoning.

Although the motivation mechanism described in Sec-
tion 4.1 is a modification of previous work on motiva-
tions associated with a PRS-like interpreter, the motivations
model is generic enough that it can be used in most cur-
rent agent interpreters, such as 3APL or JACK. While this
mechanism is not as precise as other attempts to quantify
rewards for certain behaviours (e.g. decision-theoretic mod-
els such as MDPs), it is a simple mechanism that involves
minimal overhead in the interpreter reasoning cycle. In
addition, specifying meta-level behaviour separately from
action-directed behaviour also results in a simpler agent de-
scription.

The potential application of motivated reasoning is not
limited to the agent processes shown in this paper, and moti-
vation intensities can be used whenever some valuation is
needed for an agent to decide between alternatives. Po-
tential directions of future work in motivated reasoning in-
clude agents interacting in an environment ruled by norms
(Meneguzzi and Luck 2009). Norms provide prescriptive
rules of behaviour within an agent society, specifying de-
sirable, undesirable and allowable behaviours in terms of
obligations, prohibitions and permissions. In this context,
an agent can use motivations to decide on whether to com-
ply with specific norms or not depending on the prospects
of mitigating motivations. Where norms have deadlines by
which they must be obeyed, motivational intensity can be
used to gradually prioritise behaviours needed to comply
with a norm as deadlines approach, thus providing an in-
tuitive mechanism for ordering norm-related goals.

Acknowledgement: The author would like to thank
Michael Luck and Nir Oren for their invaluable comments
and last minute feedback on the paper.

References
[Balkenius 1993] Balkenius, C. 1993. The roots of motivation. In

Proceedings of the Second International Conference on Simulation
of Adaptive Behavior, 513–523.

[Coddington 2007] Coddington, A. 2007. Integrating motivations
with planning. In Proceedings of the 6th International Joint Con-
ference on Autonomous Agents and Multiagent Systems, 1–3. New
York, NY, USA: ACM.

[Cox and Raja 2008] Cox, M., and Raja, A. 2008. Metareasoning:
A manifesto. In Proceedings of AAAI 2008 Workshop on Metarea-
soning: Thinking about Thinking.

[Dastani, van Riemsdijk, and Meyer 2005] Dastani, M.; van
Riemsdijk, M. B.; and Meyer, J.-J. C. 2005. Multi-Agent Program-
ming: Languages, Platforms and Applications. Springer-Verlag.
chapter 2: Programming Multi-Agent Systems in 3APL, 39–68.

[d’Inverno et al. 2004] d’Inverno, M.; Luck, M.; Georgeff, M.;
Kinny, D.; and Wooldridge, M. 2004. The dMARS Architecture:
A Specification of the Distributed Multi-Agent Reasoning System.
Autonomous Agents and Multi-Agent Systems 9(1 - 2):5–53.

[Gong et al. 1997] Gong, L.; Mueller, M.; Prafullchandra, H.; and
Schemers, R. 1997. Going Beyond the Sandbox: An Overview of
the New Security Architecture in the Java Development Kit 1.2. In
USENIX Symposium on Internet Technologies and Systems.

[Griffiths and Luck 2003] Griffiths, N., and Luck, M. 2003. Coali-
tion formation through motivation and trust. In Proceedings of the
Second International Joint Conference on Autonomous Agents and
Multiagent Systems, 17–24. ACM Press.

[Jennings 2000] Jennings, N. R. 2000. On agent-based software
engineering. Artificial Intelligence 117(2):277–296.

[Luck and d’Inverno 1998] Luck, M., and d’Inverno, M. 1998. Mo-
tivated behavior for goal adoption. In Springer-Verlag., ed., Se-
lected Papers from the 4th Australian Workshop on Distributed Ar-
tificial Intelligence, Multi-Agent Systems, 58–73.

[Luck 2005] Luck, M. 2005. 50 Facts About Agent-
Based Computing, AgentLink III. Available online at
http://bit.ly/bIBYM5.

[Mele 2003] Mele, A. R. 2003. Motivation and Agency. Oxford
University Press.

[Meneguzzi and Luck 2007a] Meneguzzi, F., and Luck, M. 2007a.
Composing high-level plans for declarative agent programming.
In Proceedings of the Fifth Workshop on Declarative Agent Lan-
guages, 115–130.

[Meneguzzi and Luck 2007b] Meneguzzi, F., and Luck, M. 2007b.
Motivations as an abstraction of meta-level reasoning. In Burkhard,
H.-D.; Lindemann, G.; Verbrugge, R.; and Varga, L. Z., eds.,
Proceedings of the 5th International Central and Eastern Euro-
pean Conference on Multi-Agent Systems, volume 4696 of LNAI.
Springer-Verlag. 204–214.

[Meneguzzi and Luck 2009] Meneguzzi, F., and Luck, M. 2009.
Norm-based behaviour modification in BDI agents. In Proceedings
of the Eighth International Conference on Autonomous Agents and
Multiagent Systems, 177–184.

[Norman and Long 1995] Norman, T. J., and Long, D. 1995.
Alarms: An implementation of motivated agency. In Intelligent
Agents II, volume 1037 of LNCS. Springer-Verlag. 219–234.

[Winikoff et al. 2002] Winikoff, M.; Padgham, L.; Harland, J.; and
Thangarajah, J. 2002. Declarative & Procedural Goals in Intelli-
gent Agent Systems. In Fensel, D.; Giunchiglia, F.; McGuinness,
D. L.; and Williams, M.-A., eds., Proceedings of the Eighth Inter-
national Conference on Principles and Knowledge Representation
and Reasoning, 470–481. Morgan Kaufmann.


	Introduction
	Background
	The Alarms Architecture
	Griffiths's mBDI model
	mdBDI: introducing declarative goals

	The case for motivations in goal-driven agents
	AgentSpeak(MPL)
	An abstract model of motivation
	Motivations and Belief Update
	Motivations and Plan Selection
	Motivations and Intention Selection

	Conclusion and Discussion

