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Abstract
Goal recognition is the problem of recognizing the
goal of an agent based on an incomplete sequence
of observations. Recognizing goals with minimal
domain knowledge as an agent executes its plan re-
quires efficient algorithms to sift through a large
space of hypotheses. In this paper, we develop an
online approach to recognize goals in both continu-
ous and discrete domains using a combination of
goal mirroring and a generalized notion of land-
marks adapted from the planning literature. Ex-
tensive experiments demonstrate the approach is
more efficient than state-of-the-art online recogni-
tion, and substantially more accurate.

1 Introduction
Goal recognition is the problem of recognizing the goal
of an agent based on an incomplete sequence of observa-
tions. Real-world applications include human-robot interac-
tion [Wang et al., 2013], intelligent user interfaces [Blay-
lock and Allen, 2004; Hong, 2001], and recognizing navi-
gation goals [Liao et al., 2007]. Most approaches to goal
recognition rely on a plan library describing the plans as-
sumed known by the agent being observed to achieve its
goals [Sukthankar et al., 2014]. While these approaches
can be computationally efficient, they require substantial do-
main knowledge, and make strong assumptions about the
preferences of observed agents. A different approach is
plan recognition as planning [Ramı́rez and Geffner, 2009;
Sohrabi et al., 2016] whereby a planner is used in the recog-
nition process to generate recognition hypotheses as needed,
eliminating the need for a plan library. This approach has
shown that it is possible to perform effective plan and goal
recognition using only a domain-theory describing actions in
the environment as domain knowledge. However, such ap-
proaches are computationally expensive as they require multi-
ple executions of a planning algorithm to compute alternative
ways in which the observed agent can achieve a goal. Fur-
thermore, most existing approaches assume all observations,
even if noisy or incomplete, are received at once (offline)
at the end of their execution [Pereira and Meneguzzi, 2016;
Pereira et al., 2017b]. This assumption fails in many realis-
tic environments, where one must recognize goals online. In

online recognition, observations are provided incrementally,
and the objective is to recognize the goal as soon as possible,
without knowledge that the final observation is received.

In this paper, we develop an efficient approach for online
goal recognition as planning that generalizes over both dis-
crete (STRIPS style) and continuous (navigation) domains.
Our approach achieves substantial runtime efficiency by re-
ducing the complexity of the problems sent to an underly-
ing planning algorithm using an online goal mirroring tech-
nique [Vered et al., 2016] and minimizing the number of goal
hypotheses to be computed using landmarks once during run-
time, and a landmark-based heuristic [Pereira and Meneguzzi,
2016; Pereira et al., 2017a]. To achieve the generalization
over discrete and continuous domains we adapt the notion of
planning landmarks [Hoffmann et al., 2004] to comprise its
original planning semantics as well as continuous spatial do-
mains and develop a new and efficient algorithm to generate
hierarchically ordered spatial landmarks. Since our approach
can use any type of PDDL [McDermott et al., 1998] plan-
ning algorithm or path planner [Sucan et al., 2012], we can
leverage current and future advances in efficiency in such al-
gorithms.

This paper makes three key contributions: (a) a novel goal
recognition approach, for both discrete and continuous do-
mains; (b) an online approach to efficiently recognize goals
early in the observed agent’s plan execution; (c) a novel no-
tion of landmarks that covers discrete and continuous do-
mains and an algorithm to generate such landmarks. We
evaluate the resulting approach empirically over hundreds of
recognition problems in classical and motion planning do-
mains. The results demonstrate superior efficiency and gen-
erally superior recognition quality over the state of the art.

2 Background and Related Work
Library-based goal recognition assumes the existence of a li-
brary of plans leading to known goals. Such methods include
probabilistic inference [Bui, 2003; Avrahami-Zilberbrand
and Kaminka, 2007], grammar-based approaches [Pynadath
and Wellman, 2000; Geib and Goldman, 2009; Sadeghipour
and Kopp, 2011; Geib, 2015; Mirsky and Gal, 2016], and oth-
ers (see [Sukthankar et al., 2014] for a larger enumeration).
While often efficient, these methods are limited to recogniz-
ing goals for which plans are a-priori known, and encoded in
the plan library. Nonetheless, the majority of these methods



can be used for both online and offline recognition, whereby
observations may be incrementally revealed or given a-priori
to the recognition process.

Plan recognition based on domain-theory removes the re-
liance on a plan-library, instead using the domain descrip-
tion in the recognition process. For example, plan recogni-
tion as planning (PRP) [Ramı́rez and Geffner, 2009; Sohrabi
et al., 2016] uses a planner to generate plan hypotheses dy-
namically, based on the domain-theory and the observations.
A more efficient approach [Pereira and Meneguzzi, 2016;
Pereira et al., 2017b] avoids planning altogether, instead gen-
erating planning landmarks from the domain theory prior
to recognition. Such landmarks are actions (or state prop-
erties) that must be included in plans that achieve specific
goals [Hoffmann et al., 2004]. When observed, landmarks
provide strong evidence for recognizing these goals (indeed,
we use them here), and all of these methods work offline.

Some domain-theory methods address online recognition.
Early seminal work by Hong [2001] uses a goal graph repre-
sentation for online goal recognition, constructed from a do-
main theory and incoming observations; recognized goals are
not probabilistically ranked. In contrast, Baker et.al [2005]
present a bayesian framework to calculate goal likelihoods by
marginalizing over possible actions and generating state tran-
sitions. Martin et al. [2015] take an extreme approach, invest-
ing in significant offline computation to completely eliminate
online planner calls by pre-computing cost estimates.

In contrast, Vered et al. [2016] present an online PRP algo-
rithm for continuous spaces, using off-the-shelf motion plan-
ners to estimate goal likelihoods. Like other PRP methods,
they repeatedly call on a planner. We generalize their al-
gorithm to also work in discrete domains, and show how to
heuristically use landmarks, computed only once at run-time,
to reduce the number of planner calls and improve accuracy.
To do this, we generalize the notion of landmarks to motion
planning in continuous spaces, and show how to use land-
marks in an online fashion.

3 Combining Landmarks and Planning
We introduce an online goal recognition approach which
combines the online use of a planner, and landmark
information—computed once—for increased efficiency and
accuracy. We define the online recognition problem and
the baseline algorithm, originally developed by Vered et
al. [2016], in Sec. 3.1. We then provide a general definition
of landmarks (including in continuous domains), and their use
for online recognition in Sec. 3.2. We develop an algorithm to
extract landmarks in continuous spaces in Sec. 3.3 and finally,
we introduce a combined algorithm in Sec. 3.4 that uses both
a planner and landmarks in recognition.

3.1 Online Goal Recognition Using Planning
We refer to [Vered et al., 2016] to define the goal recognition
problem R as as a tuple 〈W,G,O,M〉. W is the set of possi-
ble states of the world (in discrete domains, this is implicitly
represented by the domain theory; in continuous spaces, it is
the standard motion planning work area [LaValle, 2006]); G
is a set of k ≥ 1 goals g1, . . . , gk; each goal gj ∈W ; The set

of observations O is defined for a subset of W ; and M is a
set of plans where at least one of the plans is assumed to be
consistent with the observations in O. Given the problem R,
the task is to choose a specific goal g ∈ G that best matches
the observationsO. Vered et al. [2016] define best matches as
minimizing matching error, this refers to minimizing the dif-
ference between the accumulated distance, measured by the
observations, against the hypothesized generated trajectory to
reach goal g.

We build on goal mirroring, an online goal recognition ap-
proach described in [Vered et al., 2016], and applied to recog-
nition in continuous domains and generalize this algorithm
to admit discrete domains as well. The goal mirroring algo-
rithm works as follows. Assume we are given a set of goals
G, and an initial state of the observed agent’s plan, I . For
each goal g ∈ G goal mirroring compares the costs of two
plans: an ideal plan denoted ig , and an observation-matching
plan, denoted mg . In the 3D navigation domain cost is de-
fined according to distance, as the distance reflects the “ef-
fort” needed to achieve the goal; and the optimality is de-
termined according to cost alone. For continuous variables
we consider cost to be the euclidean distance between obser-
vations whereas for discrete ones we consider cost to be the
number of observations.

The ideal plan ig is an optimal plan, computed once
for each goal g, from the initial state I to the goal. The
observation-matching plan mg is constructed for each new
observation such that it always passes through all the obser-
vations thus far, and then optimally reaches the goal. Ramirez
and Geffner [2009, Theorem 7] show that necessarily, a goal
g for which the two plans, mg and ig , have equal costs is
a solution to the goal recognition problem. We use this to
probabilistically rank the goals. The closer two costs for ig
and mg are, the higher the likelihood of g.

The plan mg is constructed for each new observation by
concatenating two parts:

• A plan prefix m−g which is a concatenation of all obser-
vations received to date. This is very efficiently done by
simply adding the latest observation to the current prefix
(which is initially ∅).
• a plan suffixm+

g which is a new plan, issued by a motion
planner, from the last state of the prefix (after incorpo-
rating the observations), to the goal state. The bulk of
the computation takes place here using the planner.

The plan prefix m−g and suffix m+
g are handled differently

in continuous and discrete domains. In continuous domains,
plans and observations are both trajectories in Rn. Thus up-
dating m−g with a new observation o is a straightforward op-
eration of adding the point o to a trajectory, or (if o is an ob-
served trajectory segment) connecting the end-point ofm−g to
the new observation o. The suffix trajectory, connecting the
end point of o to the goal g, is generated by a motion planner.
In discrete domains, observations are of actions, not states.
Thus m−g is not a trajectory through states, but rather an or-
dered sequence of actions. Adding an action to this is trivial.
However, the synthesis of the sequence m+

g by calling a sym-
bolic planner, is more involved. The initial state provided to
the planner is computed by adding the effects of the observed



action o to the previous state. Thus alongside the sequence of
actions in m−g , we keep track of the current state induced by
ordered application of m−g to the initial state I .

3.2 Online Goal Recognition Using Landmarks
In the planning literature, landmarks are facts (alternatively,
actions) that must be true (alternatively, executed) at some
point along all valid plans that achieve a goal from an ini-
tial state [Hoffmann et al., 2004]. Landmarks are often par-
tially ordered based on the sequence in which they must be
achieved. Figure 1 shows an example of landmarks and
their ordering for a Blocks-World example. The root node
is the goal state, whereas leafs are facts of the initial state.
Connected boxes represent facts that must be true together,
i.e., conjunctive facts. For example, to achieve the fact (on
A B), immediately before the facts (and (holding A)
(clear B)) must be true, and so on.

on A B

holding A clear B

clear A handempty ontable A

on B A handempty clear B

Landmarks

Figure 1: Blocks-World landmarks example.

Given their usefulness for planners and planning heuris-
tics [Richter and Westphal, 2010], research has yielded mul-
tiple notions of landmarks [Porteous and Cresswell, 2002],
including that of disjunctive landmarks. Pereira et al. [2016;
2017b] have shown that it is possible to carry out offline plan
recognition by reasoning heuristically about landmarks. The
key idea is to maintain a list of ordered landmarks associated
with each goal, though partial overlaps are allowed. The goal
completion heuristic from Pereira et al. [2017b] matches the
observations against this list. This heuristic marks a landmark
as achieved when facts in the preconditions and effects of an
observation match a landmark. Then, the heuristic uses the
ratio of the number of landmarks achieved to the total num-
ber of landmarks associated with the goal, inducing a ranking
of the goals, used as a proxy for estimating P (g|O).

In principle, it is possible to translate the same idea into
recognition in continuous domains. In such domains, land-
marks can be defined as areas surrounding goals, as illus-
trated in Figure 2 where black dots represent goals and the
surrounding rectangles represent the continuous landmark ar-
eas. In this case, to reach a goal, the observed motion must
intersect (go through) the corresponding landmark area. Nat-
urally, we would prefer such areas to be maximal, but must
maintain the restriction that landmarks cover only obstacle-
free space, and do not intersect completely with other land-
marks. In Section 3.3 we report on a novel algorithm for ex-

tracting such landmarks in 2D continuous domains.
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Figure 2: Landmarks for Cubicles environment.

In what follows, we define the characteristic operations be-
tween observations and landmarks: testing whether a land-
mark has been observed, what constructs an achieved land-
mark and, in continuous environments, how to distinguish a
passed landmark (a landmark that has recently been achieved
but but does not currently fit the last observations).

Online Recognition with Landmarks Algorithm 1 uses
landmarks for recognition, in an online fashion and works
as follows. First we maintain FL, the ordered set of fact
(achieved) landmarks (Line 2). We will also need to remem-
ber the last achieved landmark to compare to every additional
observation, lastF l (Line 3) and to maintain PruneG, the
group of goals that has been pruned out during the recogni-
tion process, it is necessary to maintain this group in case of
backtracking in which we will have to re-introduce a recently
pruned goal back into G.

For every incrementally revealed observation, o, we check
if this observation has caused any landmarks to be achieved
(Line 7). If so, we include this landmark in the set of achieved
landmarks FL and update the last seen landmark (Lines
8 – 9). This differentiates from the last achieved landmark,
lastFL, and the other landmarks in FL which may now be
defined as passed. We then proceed to attempt to prune out
goals (Line 12).

ACHIEVEDLANDMARK Analogously to the discrete case,
we match observations to landmarks, by intersecting obser-
vations (points) with each landmark. We therefore define
the method ACHIEVEDLANDMARK(O,L) as follows: For ev-
ery landmark l ∈ L the method checks if the landmark is
achieved, i.e., a fact landmark, if for the observations o,
o∩ l 6= ∅. If the intersection is non-empty, then the landmark
is considered achieved and the method returns true, otherwise
it returns false. If the landmark has indeed been achieved, we
can then go on to update FL to include the achieved landmark
l (Line 8).

However, unlike the discrete case, where the next obser-
vation will no longer be equal to the landmark (i.e., the next



Algorithm 1 ONLINE RECOGNITION WITH LANDMARKS.
1: function CONTONLINELANDMARKS(R,L)
2: FL← ∅
3: lastF l← ∅
4: PruneG← ∅
5: for all o ∈ O do
6: for all l ∈ L do
7: if ACHIEVEDLANDMARK(o, l) then
8: FL← FL ∪ l
9: lastF l = l

10: for all g ∈ G do
11: if lg ∈ FL then
12: if PRUNEGOAL(lg, o) then
13: PruneG← PruneG+ g
14: else
15: PruneG← PruneG− g
16: for all g ∈ G ∩ PruneG do
17: P (g|O)← RANK(g)

18: return P

step will go out of the landmark), in the continuous case this
may not be the case. We may see several observations, all
in the same landmark area. Only once the observations no
longer match the landmark we can mark it as passed. Thus
continuous landmarks, in the form of areas in spaces, define
an inclusive disjunction: multiple observations within an area
cause the landmark to be marked achieved. We therefore de-
fine lastFL as the last (maximal) element in FL, the last
landmark achieved (Line 9).

PRUNEGOAL Given that we can now mark landmarks as
achieved, we can consider when to use them in order to indi-
cate that a goal g can be removed from further consideration
for recognition, as it has been passed. Because landmarks
are uniquely associated with each goal we can define for each
goal, g ∈ G, a corresponding lg ∈ L as the landmark area
that contains that goal position. Therefore, for every goal, we
may check the corresponding landmarks lg .

We define the method PRUNEGOAL(lg, o) as follows. The
method goes over all lg ∈ FL, i.e., all achieved landmarks, if
the last observation does not originate from lg , i.e., o∩ lg = ∅
we know that the landmark has been achieved but is not the
current leading landmark, lastF l. Therefore we know that
the landmark is passed and the method returns true, meaning
we have already passed this goal and may proceed to prune it
out (in Line 13). Otherwise, lg has only been achieved but not
passed, and the method returns false, so we cannot yet prune
it out. In Line 15 we make sure to remove it from PruneG
in case of agent backtracking.

Finally we rank the goals (Line 16). Our ranking proce-
dure iterates over all non eliminated goals and ranks them in
decreasing order according to percentage of achieved land-
marks. Consequently, the goals with the highest completion
percentage will be ranked first and so on in consecutive order.

3.3 Extracting Landmarks in Continuous Space
We can use any one of a number of landmark extraction algo-
rithms to extract landmarks in discrete environments. Here,
we choose to use the algorithm proposed by Hoffman et al.
in [2004] due to its runtime efficiency. This algorithm builds
a tree in which nodes represent landmarks and edges repre-
sent necessary prerequisites between landmarks, thus repre-
senting the landmarks and their ordering. A node in this tree
represents a conjunction of facts that must be true simultane-
ously at some point during the execution of a plan, and the
root node is a landmark representing the goal state (Figure 1).

Since the interpretation of landmarks we rely on for plan
recognition is that of bottlenecks in the state space, we try to
partition a continuous space so that such bottlenecks become
identifiable areas in the continuous space. Specifically, to ex-
tract landmarks in continuous environments we partition the
area using the wall corners as references, to eventually iden-
tify pathways between individual “rooms” in the space.

The extraction of continuous landmarks algorithm receives
the world configuration W and the set of goals G, and maps
each g ∈ G to a rectangular area that represents a landmark
position. Each landmark area starts as the outermost bound-
ing box for each goal, (Alg. 2 Line 3), and the algorithm
iteratively updates it using each wall present in the world
that is also visible as a horizontal or vertical limit, (Alg. 2
Line 6). We define visibility as there being no obstacles be-
tween the goal and the wall in question and assume that walls
correspond to axis-aligned rectangles. If a single landmark
area contains more than one goal, we partition this area again
based on the midpoint between an arbitrary goal and the re-
maining ones to obtain new non-overlapping areas for each
goal, (Alg. 2 Line 13), discarding the original area.

Figure 2 illustrates an example of such landmark parti-
tion: the black lines represent walls; black dots representing
goal candidates; and the different colored rectangles repre-
sent landmark areas. We can see the leftmost wall limiting
the width of the landmarks areas B and C of the two leftmost
goals while the center wall limits their height. A repartition
happens in the middle-right area to obtain areas G and I. Now
that we can compute landmarks for both discrete and contin-
uous domains, we proceed to employ them to perform online
goal recognition.

3.4 Goal Mirroring with Landmarks
In general, PRP recognizers issue repeated calls to a plan-
ner in order to carry out the recognition. This is exacerbated
in online recognition, as the goal monitoring recognizer de-
scribed above, (Sec. 3.1), calls the planner to compute a new
m+

g suffix with every observation, and for every goal. To
address this challenge, we use the evidence provided by com-
paring observations to planning landmarks. By combining
these two approaches we aim to exploit both the flexibility of
a PRP approach and the efficiency of reasoning about land-
marks.

To improve the efficiency, we can therefore use the infor-
mation conveyed by the landmarks as a pruning mechanism
with which we may rule out hypotheses. In this way, we may
reduce |G| and therefore reduce the number of calls to the
planner and overall run-time.



Algorithm 2 EXTRACT CONTINUOUS LANDMARKS.
1: function EXTCONTINUOUSLANDMARKS(W,G)
2: landmarks← map
3: for all g ∈ G do
4: rect← BOUNDINGBOX(g,W )
5: for all wall ∈W do
6: if VISIBLEFROMCENTROID(g, wall,W ) then
7: rect← updateBoundingBox(rect, wall)
8: if ¬rect ∈ landmarks then
9: landmarks[rect]← ∅

10: landmarks[rect]← landmarks[rect] ∪ goal
11: for all (rect, goals) ∈ landmarks do
12: if |goals| > 1 then
13: for all g ∈ goals do
14: landmarks[midpointBox(g, goals)]← g

15: remove(landmarks[rect])

16: return landmarks

The original goal mirroring algorithm had to undergo sev-
eral adjustments to be able to use landmark information as a
pruning mechanism, see Alg. 3. For simplicity we assume
rationality of the agent, in that sense there will be no back-
tracking and therefore no need to monitor the last achieved
landmark and to maintain a separate set of pruned out goals.

The algorithm now begins with the run-time generation of
domain specific landmarks for all monitored goals in Line 2,
and the initialization of the previously introduced FL in Line
3. For every incoming observation o ∈ O, we must ascer-
tain whether any of the conditions for the existing landmarks
l ∈ L have been met (Line 8). If the landmarks have been
achieved we update FL and can now proceed to use the ex-
isting fact landmarks to prune unlikely goals (Line 13). In
which case we will only call the planner to compute plans for
those goals whose landmarks have been satisfied in the cor-
rect order and have not been exceeded (Lines 16–17). Finally,
the rankings are transformed into probabilities P (G|O) via
the normalizing factor η = 1/

∑
g∈G score(g) and the rank-

ing is returned (Lines 18–20).

4 Experiments and Evaluation
We empirically evaluated our approach on both discrete and
continuous environments, over hundreds of goal recognition
problems while measuring both efficiency and performance.

4.1 Setup
As our continuous environment we used the domain of 3D
navigation, where the target is to recognize navigational goals
as soon as possible while the observations, i.e., observed
agents’ positions, are incrementally revealed. We used TRRT
(Transition-based Rapidly-exploring Random Trees), an off-
the-shelf planner that guarantees asymptotic near-optimality
by preferring shorter solutions, available as part of the Open
Motion Planning Library (OMPL [Sucan et al., 2012]) along
with the OMPL cubicles environment and default robot dis-
played in Figure 3. The yellow polygon representing the
robot and the green polygons representing obstacles in the

Algorithm 3 GOAL MIRRORING WITH LANDMARKS.
1: function ONLINEGMWLANDMARKS(R, planner)
2: L← EXTCONTINUOUSLANDMARKS(W,G)
3: FL← FL← ∅
4: for all g ∈ G do
5: ig ← planner(I, g)
6: for all o ∈ O do
7: for all l ∈ L do
8: if ACHIEVEDLANDMARK(o, l) then
9: FL ∪ l

10: m−g ← m−g ∪ o
11: for all g ∈ G do
12: if PRUNEGOAL(lg, o) then
13: G← G− g
14: else
15: m+

g ← PLANNER(o, g)

16: score(g)← rank(cost(ig), cost(m−g ), cost(m′g+))

17: for all g ∈ G do
18: P (g|O)← η · score(g)
19: return P

environment. Each call to the planner was given a time limit
of 1 sec; and the cost measure being the length of the path.
We set 11 points spread through the cubicles environments.
We then generated two observed paths from each point to all
others, for a total of 110× 2 goal recognition problems. The
observations were obtained by running the asymptotically op-
timal planner RRT* on each pair of points, with a time limit
of 5 minutes per run.

We evaluated our approaches in discrete environments us-
ing datasets provided by Ramı́rez and Geffner [2009; 2010]1.
These datasets comprise six domains with hundreds of non-
trivial goal recognition problems. Each goal recognition
problem contains a domain description, an initial state, a set
of candidate goals, a hidden goal, and an observation se-
quence, representing a plan that achieves the hidden goal.
To evaluate our approaches in discrete domains, we used
JavaFF2, a Fast-Forward [Hoffmann and Nebel, 2001] imple-
mentation in Java.

Figure 3: Cubicles environment.

1https://sites.google.com/site/prasplanning/
2https://github.com/Optimised/JavaFF



4.2 Evaluation on Continuous and Discrete
Domains

We evaluated our combined approach, (GOAL MIRRORING
WITH LANDMARKS) both in terms of improvement in ef-
ficiency and in terms of overall performance in order to
show that the improvement in efficiency did not come at the
expense of performance but rather improved it. We then
contrasted the performance with the existing PRP approach
(GOAL MIRRORING) and an approach utilizing only the land-
marks for ranking and pruning out goals (ONLINE RECOG-
NITION WITH LANDMARKS).

Efficiency Measures We used two separate measures to
evaluate the overall efficiency of our approach: (1) the amount
of times the planner was called within the recognition pro-
cess; and (2) the overall time (in sec.) spent planning. Both
these parameters measure the overhead of the PRP approach
of using the planner and while they are closely linked, they
are not wholly dependent. While a reduction in overall num-
ber of calls to the planner necessarily results in a reduction in
planner run-time, the total amount of time allowed for each
planner run may vary according to the difficulty of the plan-
ning problem and therefore create considerable differences.
Naturally, lower values are better.
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Figure 4: Average number of calls to planner comparison.

Performance Measures We use two measures of recogni-
tion performance : (1) convergence to the correct answer. We
measure the time step in which the recognizer converged to
the correct hypothesis from the end of the observation se-
quence (or 0 if it failed). Higher values indicate earlier con-
vergence and are therefore better; and (2) the number of times
they ranked the correct hypothesis at the top (i.e., rank 1),
which indicates their general accuracy. The more frequently
the recognizer ranked the correct hypothesis at the top, the
more reliable it is, hence a larger value is better.

Results Table 1 shows the experimental results for both
continuous and discrete domains across all criteria. For the
continuous domain, the combined GOAL MIRRORING WITH
LANDMARKS approach achieved the best performance with
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Figure 5: Time Improvement Percent comparison.

an improvement both in convergence and the amount of times
the recognizer ranked correctly. The pure ONLINE RECOG-
NITION WITH LANDMARKS approach performed worst in
terms of convergence but was on par with the GOAL MIR-
RORING approach in terms of correct rankings.

In the discrete domain, we see corresponding results.
For domain problems: Campus, Easy-IPC-Grid, Intrusion-
Detection, Kitchen and Logistics we see that the overall
best results in terms of convergence and correct ranking of
the chosen goal were achieved by the combined approach
of GOAL MIRRORING WITH LANDMARKS. However, un-
like in the continuous domain, we see that using the ON-
LINE RECOGNITION WITH LANDMARKS technique also pro-
vided good results, once even considerably surpassing that
of the GOAL MIRRORING approach (Campus). For the do-
main problem of the Blocks-World we see that both GOAL
MIRRORING and GOAL MIRRORING WITH LANDMARKS
approaches failed to find solutions within the given, 60 sec.
time limit. This dataset is considerably more complex than
the rest, containing 20.3 goals for non-trivial stackable blocks
problems. In this instance we see the strength of the ON-
LINE RECOGNITION WITH LANDMARKS approach, which
does not employ a planner and therefore evades the consider-
able overhead calculations.

The improvement of run time over the baseline GOAL
MIRRORING approach is presented in Figure 5. For the
continuous domain, ONLINE RECOGNITION WITH LAND-
MARKS, introducing landmarks, reduces the run time to 80%
while ONLINE RECOGNITION WITH LANDMARKS was by
far the most efficient with a reduction to only 0.019% of the
original GOAL MIRRORING runtime. For the discrete domain
as well we see that ONLINE RECOGNITION WITH LAND-
MARKS more than doubles the reduction in run-time vs. the
ONLINE RECOGNITION WITH LANDMARKS, which in it-
self reduces the run-time considerably to between 17%–46%.
Figure 4 shows a comparison regarding the amount of times
the planner was called within the recognition process for both
continuous and discrete domains.



Continuous Domains
GOAL MIRRORING GOAL MIRRORING WITH LANDMARKS ONLINE RECOGNITION WITH LANDMARKS

Domain (# problems) |G| |O| |L| Time Ranked First Convergence Time Ranked First Convergence Time Ranked First Convergence
Cubicles

(220)
10.0 26.5 11.0 104.7 20.23% 21.8% 85.99 24.34% 26.23% 0.02 21.7% 15%

Discrete Domains
GOAL MIRRORING GOAL MIRRORING WITH LANDMARKS ONLINE RECOGNITION WITH LANDMARKS

Domain (# problems) |G| |O| |L| Time Ranked First Convergence Time Ranked First Convergence Time Ranked First Convergence
Blocks-World

(75)
20.3 8.4 15.6 Time-out 0% 0% Time-out 0% 0% 0.12 31.49% 30.68%

Campus
(15)

2.0 5.4 8.6 0.46 65.65% 50.22% 0.13 96.44% 96.44% 0.06 92.88% 92.88%

Easy-IPC-Gird
(45)

7.7 13.2 11.8 3.71 44.62% 43.88% 1.42 54.95% 52.65% 0.41 40.18% 38.75%

Intrusion-Detection
(45)

16.6 13.1 16.0 1.65 55.31% 55.31% 0.33 67.11% 67.11% 0.11 57.18% 55.15%

Kitchen
(15)

3.0 7.5 5.0 0.13 52.22% 42.77% 0.06 66.51% 51.11% 0.04 23.91% 23.91%

Logistics
(45)

10.0 18.6 18.7 7.96 27.71% 26.65% 1.36 54.11% 53.41% 0.33 43.11% 43.11%

Table 1: Experimental results for both continuous and discrete domains.

5 Conclusions
We developed an online approach to recognize goals in both
continuous and discrete domains using a combination of goal
mirroring and a generalized notion of landmarks. We have
shown how to dynamically generate continuous and discrete
landmarks and empirically evaluated the efficiency and per-
formance of our approach over hundreds of experiments in
both continuous and discrete domains; comparing our results
to an existing PRP approach and a newly defined continuous
landmark approach. We have shown that not only is our ap-
proach more efficient than the existing PRP recognizer but
also outperforms both other approaches. As future work, we
aim to refine the notion of spatial landmarks for more infor-
mative heuristics.



References
[Avrahami-Zilberbrand and Kaminka, 2007] Dorit

Avrahami-Zilberbrand and Gal A. Kaminka. Incor-
porating observer biases in keyhole plan recognition
(efficiently!). In AAAI-07, pages 944–949, 2007.

[Baker et al., 2005] Chris Baker, Rebecca Saxe, and
Joshua B Tenenbaum. Bayesian models of human
action understanding. In Advances in neural information
processing systems, pages 99–106, 2005.

[Blaylock and Allen, 2004] Nate Blaylock and James F
Allen. Statistical goal parameter recognition. In ICAPS,
volume 4, pages 297–304, 2004.

[Bui, 2003] Hung Hai Bui. A general model for online prob-
abilistic plan recognition. In IJCAI, volume 3, pages
1309–1315, 2003.

[Geib and Goldman, 2009] Christopher W Geib and
Robert P Goldman. A probabilistic plan recognition algo-
rithm based on plan tree grammars. Artificial Intelligence,
173(11):1101–1132, 2009.

[Geib, 2015] Christopher Geib. Lexicalized reasoning. In
Proceedings of the Third Annual Conference on Advances
in Cognitive Systems, 2015.

[Hoffmann and Nebel, 2001] Jörg Hoffmann and Bernhard
Nebel. The FF Planning System: Fast Plan Generation
Through Heuristic Search. JAIR, 14(1):253–302, 2001.

[Hoffmann et al., 2004] Jörg Hoffmann, Julie Porteous, and
Laura Sebastia. Ordered Landmarks in Planning. JAIR,
22(1):215–278, 2004.

[Hong, 2001] Jun Hong. Goal recognition through goal
graph analysis. JAIR, 15:1–30, 2001.

[LaValle, 2006] Steven M. LaValle. Planning Algorithms.
Cambridge University Press, 2006.

[Liao et al., 2007] Lin Liao, Dieter Fox, and Henry Kautz.
Hierarchical conditional random fields for gps-based ac-
tivity recognition. In Robotics Research: The 11th Inter-
national Symposium (ISRR), Springer Tracts in Advanced
Robotics (STAR). Springer Verlag, 2007.

[Martin et al., 2015] Yolanda E. Martin, Maria D. R.
Moreno, David E Smith, et al. A fast goal recognition
technique based on interaction estimates. In IJCAI, pages
761–768, 2015.

[McDermott et al., 1998] Drew McDermott, Malik Ghallab,
Adele Howe, Craig Knoblock, Ashwin Ram, Manuela
Veloso, Daniel Weld, and David Wilkins. PDDL—The
Planning Domain Definition Language. In The Fourth In-
ternational Conference on Artificial Intelligence Planning
Systems 1998 (AIPS’98), 1998.

[Mirsky and Gal, 2016] Reuth Mirsky and Ya’akov (Kobi)
Gal. SLIM: Semi-lazy inference mechanism for plan
recognition. In IJCAI, 2016.

[Pereira and Meneguzzi, 2016] Ramon Fraga Pereira and
Felipe Meneguzzi. Landmark-Based Plan Recognition. In
ECAI, 2016.

[Pereira et al., 2017a] Ramon Fraga Pereira, Nir Oren, and
Felipe Meneguzzi. Detecting commitment abandonment
by monitoring sub-optimal steps during plan execution. In
AAMAS, pages 1685–1687, 2017.

[Pereira et al., 2017b] Ramon Fraga Pereira, Nir Oren, and
Felipe Meneguzzi. Landmark-based heuristics for goal
recognition. In AAAI. AAAI Press, 2017.

[Porteous and Cresswell, 2002] J. Porteous and S. Cress-
well. Extending Landmarks Analysis to Reason about Re-
sources and Repetition. In Proceedings of the 21st Work-
shop of the UK Planning and Scheduling Special Interest
Group (PLANSIG ’02), 2002.

[Pynadath and Wellman, 2000] David V. Pynadath and
Michael P. Wellman. Probabilistic state-dependent gram-
mars for plan recognition. In UAI-2000, pages 507–514,
2000.

[Ramı́rez and Geffner, 2009] Miquel Ramı́rez and Hector
Geffner. Plan recognition as planning. In IJCAI, pages
1778–1783, 2009.

[Ramı́rez and Geffner, 2010] Miquel Ramı́rez and Hector
Geffner. Probabilistic plan recognition using off-the-shelf
classical planners. In AAAI, 2010.

[Richter and Westphal, 2010] Silvia Richter and Matthias
Westphal. The LAMA Planner: Guiding Cost-based Any-
time Planning with Landmarks. JAIR, 39(1):127–177,
2010.

[Sadeghipour and Kopp, 2011] Amir Sadeghipour and Ste-
fan Kopp. Embodied gesture processing: Motor-based
integration of perception and action in social artificial
agents. Cognitive Computation, 3(3):419–435, 2011.

[Sohrabi et al., 2016] Shirin Sohrabi, Anton V. Riabov, and
Octavian Udrea. Plan recognition as planning revisited.
IJCAI, pages 3258–3264, 2016.

[Sucan et al., 2012] Ioan A Sucan, Mark Moll, and Lydia E
Kavraki. The open motion planning library. IEEE Robotics
& Automation Magazine, 19(4):72–82, 2012.

[Sukthankar et al., 2014] Gita Sukthankar, Robert P. Gold-
man, Christopher Geib, David V. Pynadath, and Hung Bui,
editors. Plan, Activity, and Intent Recognition. Morgan
Kaufmann, 2014.

[Vered et al., 2016] Mor Vered, Gal A Kaminka, and Sivan
Biham. Online goal recognition through mirroring: Hu-
mans and agents. The Fourth Annual Conference on Ad-
vances in Cognitive Systems, 2016.

[Wang et al., 2013] Zhikun Wang, Katharina Mülling,
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