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Abstract
We describe an abstract multilayered architecture
for the organisation of robotic systems that takes
into account some of the key functionalities of ex-
isting robotic hardware and software in the liter-
ature. We demonstrate a concrete instance of the
architecture by combining the popular AgentSpeak
agent/robot programming language with standard
motion planning algorithms. Our work offers some
first insights into developing a more formal agent
architecture for programming autonomous robots.

1 Introduction
Programming autonomous robotic controllers is an often hard
task that requires various types of algorithms ranging from
the inverse kinematics used to control actuators and sig-
nal processing used to generate sensing information to the
highest-level decision making that an autonomous system un-
dertakes to decide which goals are possible and how they
can be decomposed. Recent work on robot programming
has acknowledged the need to clearly separate concerns in
cognitive architectures from the lower level details of the
robotic platforms [Ingrand and Ghallab, 2014], thus diverging
from earlier work on robot programming [Fleury et al., 1997;
Quigley et al., 2009] that often relied on a somewhat ad-hoc
process that sees development as a single-step process using
virtually the same abstraction throughout the range of robotic
functions. Given the complexities of developing autonomous
robots, designing the various functions of a robotic system
at the right level of abstraction should facilitate development
and debugging of complex overall robotic functionality.

In this paper we discuss the main issues in designing
symbolic-geometric online planning systems in the form of a
desiderata for a multilayered autonomous robot architecture.
Our main contribution is a desiderata of the main functions
and representational abstractions included at each layer, and
linking these layers with existing work in both autonomous
agent control and symbolic-geometric planning. We describe
the key issues that should be addressed when designing the
various layers in a robotic system, enumerate features re-
quired to address these issues (in Section 3), and propose one
instantiation with an agent architecture (in Section 4) that ei-
ther addresses specific items in the desiderata or points to-

wards their solution in a modular way using existing tech-
niques (reviewed in Section 2). This is a significant first step
in the development of a modular, easily programmable and
extensible agent architecture for programming autonomous
robots, which we compare with related work in Section 5.

2 Background
2.1 Classical (Symbolic) Planning
Automated planning can be broadly classified into domain in-
dependent planning (also called first principles planning) and
domain dependent planning. In domain independent plan-
ning, the planner takes as input the models of all the actions
available to the agent, and a planning problem specification:
a description of the initial state of the world and a goal to
achieve––i.e., a state of affairs, all in terms of some formal
language such as STRIPS [Fikes and Nilsson, 1971]. States
are generally represented as logic atoms denoting what is true
in the world. The planner then attempts to generate a se-
quence of actions which, when applied to the initial state,
modifies the world so that the goal state is reached. The plan-
ning problem specification is used to generate the state-space
over which the planning system searches for a solution, where
this state-space is induced by all possible instantiations of the
set of operators (i.e. all ground instances of operators) using
the Herbrand universe, derived from the symbols contained
in the initial and goal state specifications. Although some
planning systems use lifted inference (i.e. without generating
a fully-grounded subset of the state-space), the vast majority
of efficient planners actually does create the set of ground op-
erators, albeit with some strategies to compress it and avoid
impossible states. Domain dependent planning takes as in-
put additional domain control knowledge specifying which
actions should be selected and how they should be ordered at
different stages of the planning process [Nau et al., 1999]. In
this way, the planning process is more focused and generates
plans faster in practice than with first principles planning.

2.2 Geometric Planning
At the lowest level, geometric planning involves motion plan-
ning: looking for a collision-free trajectory that achieves the
given goal configuration from the robot’s current configura-
tion. In this section we only introduce motion planning. In



general, however, geometric planning may also include addi-
tional, higher-level reasoning, such as taking user preferences
into account when planning trajectories.

As usual, we use the 3-dimensional world R3, and define
the obstacle region as O ⊂ R3. For simplicity, suppose that
there is only one rigid robot/body A ⊂ R3 in the world.1 An
example of such a body A is the definition of a polygon in the
world with each a ∈ A being a vertex of the polygon. Then,
the configuration space C, which is the set of all possible con-
figurations (or poses) of the robot, is a specification of all the
possible transformations that could be applied to A. More
specifically, a pose c ∈ C is the tuple p = 〈x,y,z,h〉, where
(x,y,z) ∈ R3 and h is the unit quaternion—basically, a four
dimensional vector that is used to perform 3D rotations.

We follow the definition of motion planning from Srivas-
tava et al. [2014]. The authors define a motion planning prob-
lem as a tuple 〈C,col,cI ,cG〉, where col : C→ {true, f alse}
is a function from poses to truth values indicating whether a
pose c ∈C is in collision (col(p) = true) with some object or
not, and cI ,cG ∈C are the initial and goal poses. A collision-
free motion plan solving a motion planning problem, then, is
a sequence ~c = c1, . . . ,cn such that cI = c1, cG = cn, and for
each pose ci, it is the case that ci ∈C and col(ci) = f alse.

2.3 BDI-logic Programming
In order to represent the large class of BDI-logic-based [Rao
and Georgeff, 1991] programming languages in this work,
we adapt the syntax and semantics of the widely extended
AgentSpeak(L) [Rao, 1996] programming language. An
AgentSpeak agent Ag is a tuple Ag = 〈Ev,Bel,PLib, Int〉 rep-
resenting four data structures: a belief base Bel consisting
of ground logic atoms following the Prolog convention, on
which logic inferences are possible like in Prolog; an event
queue Ev to store both external events (environment percep-
tion) and internal events (subgoals); a plan library PLib con-
taining BDI plan-rules as defined below; and an intention
structure Int containing partially instantiated plan steps de-
rived from the adoption of plan-rules.

A plan-rule 〈event〉 : 〈context〉 ← 〈body〉 contains three el-
ements: a triggering event 〈event〉 denoting when a plan-rule
is relevant for execution; a context condition 〈context〉 de-
noting when a relevant plan-rule is applicable for execution
given an agent’s beliefs; and a plan body 〈body〉 containing a
sequence of actions to be executed by the agent. The 〈event〉
in a plan-rule represents the type of goal the plan-rule han-
dles, as follows: +ϕ or −ϕ where ϕ is a belief atom, repre-
sents that a belief in the agent’s belief base has been, respec-
tively added or removed, meaning that the goal is a reaction to
events (often) from the environment; +!ψ or +?ψ , represent,
respectively, an achievement or test goal, meaning that the
agent aims to either achieve ψ or test for the validity of ψ in
its belief base; and −!ψ or −?ψ , represent, respectively, that
an achievement or test goal has failed, meaning that either
the plan to achieve ψ failed in its execution, or that the be-
lief ψ was not valid. Construct 〈context〉 is a logical formula,
formed using the traditional connectives of conjunction (∧),

1We refer the reader to [LaValle, 2006] for the complete defini-
tions involving non-rigid bodies and those that are not free-floating.

disjunction (∨) and negation (¬), which represents the mini-
mal condition necessary for the plan body in the plan-rule to
be executed. Finally, 〈body〉 is a possibly empty sequence of
steps separated by semicolons, where a step is one of the fol-
lowing: (i) the execution of an action φ in the environment;
(ii) the adoption of a subgoal !ψ or ?ψ (generating an inter-
nal event); or (iii) the explicit modification of a belief +ϕ or
−ϕ . Thus, the plan below is an example of a plan-rule in our
AgentSpeak-like language:2

+!move(R,F,T ) : canMove(R,F,T )←
+moving(R);navigate(R,F,T );−moving(R); ?pos(R,T ).

While a plan-rule is being executed step by step, if an
achievement goal such as !move(robot1, table1, table2) is en-
countered, AgentSpeak then looks up the plan library for a
plan-rule that is both relevant and applicable for the goal. Our
plan-rule above is relevant for the goal because we can unify
move(R,F,T ) and move(robot1, table1, table2), by applying
substitution θ = {R/robot1,F/table1,T/table2} to the for-
mer. Next, if the plan-rule is also applicable with respect to
the agent’s current beliefs Bel, then the plan body, after ap-
plying the substitution to it, is included in the agent’s current
set of pursued intentions Int. Executing the new intention in-
volves temporarily adding belief moving(robot1) to Bel while
the navigate(robot1, table1, table2) action is executed, and
then testing the belief base via ?pos(robot1, table2) to check
whether the navigation was successful. Note that the steps
of such plan-rules are executed without any verification of
whether the rest of the plan is executable, effectively resulting
in an agent that plans and executes online, rather than trying
to decompose plan-rules, backtracking when necessary.

3 Desiderata for Symbolic-Geometric Online
Planning Systems

The development of autonomous robotic behaviour often di-
vides reasoning into at least two levels of abstraction. At the
lowest level, a robot needs to be concerned about the physical
constraints of the environment (including static obstructions
and moving objects) and its own capabilities (actuators, de-
grees of freedom, and limitations in sensing), in order to gen-
erate motion and sensing plans. At the highest level, a robot
needs to reason about goals, user preferences, and temporal
constraints. We call these levels, respectively the geometric
and the symbolic planning levels, both of which are often em-
bedded within a larger autonomous agent architecture.

There is rich literature about how to represent behaviour at
these two levels, such as the work on AgentSpeak(L) [Rao,
1996] and its various descendants [Bordini et al., 2007;
Ingrand et al., 1996] and HTN Planning [Nau et al., 1999]
on the one hand, and ROS [Quigley et al., 2009] and
Genom [Fleury et al., 1997] on the other. In order to have a
complete development framework, we need to connect these
two levels of reasoning both in terms of data exchanged
within their underlying software, but more importantly in
terms of translating primitives between abstractions to rep-
resent the reasoning occurring at both levels. There are a
number of alternatives to do so, which we discuss in terms of

2R is short for Robot, F is short for From and T is short for To



the “dominant” abstraction and the direction in which the ab-
stractions are translated.In what follows, we briefly describe
three possible approaches, before developing an abstract ar-
chitecture of robot control that integrates reasoning at various
levels, each of which uses a particular abstraction, and com-
municates abstractions between layers.

First, a naïve approach, as described in Srivastava et
al. [2014], consists of “one way” discretisation of the geo-
metric level into the symbolic level, essentially defining an
arbitrary level of granularity in the geometric model of the
world and creating a symbolic reference to each geometric el-
ement. This approach is clearly unfeasible due to explosion in
symbolic state space [Srivastava et al., 2014]. Alternatively,
a robotic system may use some automated source of symbols
that can create an unbounded number of potentially useful
symbolic anchors (e.g. create symbols for sets of points in
R) as they are generated by events from the geometric world.
This is essentially another “one way” translation from geo-
metric to symbolic levels; however, some kind of rule system
can be used to decide which geometrical properties (features)
are worthy of the high-level reasoner’s attention. Finally, one
could reason only about a limited set of features predefined
at the symbolic level, or “one way” conversion of symbols to
geometric elements [Dornhege et al., 2009]. However, this
raises the question of how one decides which geometric fea-
tures should be predefined. Variations of this approach are
currently used by most systems that perform symbolic geo-
metric planning; e.g. Srivastava et al. [2014] and Pandey et
al. [2012] read and adapt predefined goal poses during plan-
ning, but do not generate relevant goal poses from scratch.

Effective mechanisms for autonomous robotic control op-
erate at different levels of abstraction, each having distinct
representational requirements [Ingrand and Ghallab, 2014;
Ahmadzadeh and Masehian, 2015], which calls for an archi-
tecture that separates such levels both conceptually as well as
in the implementation. Thus, we envision robotic control or-
ganised into a tiered architecture, where each layer represents
a separate layer of abstraction that insulates (some) details
from the layers above it. This architecture was partially in-
spired by the levels of integration between robotics and AI by
Ingrand and Ghallab [2014]. Our architecture, illustrated in
Figure 1, contains five distinct layers with specialised “meta-
layers” between some of them.

Deliberation

Symbolic Planning/Execution

Geometric Planning/Execution

Action Perception

Robotic Devices

Monitoring

Anchor Filtering

Figure 1: An abstract robot control architecture

Deliberation Level
The deliberation level comprises the highest level of reason-
ing within an agent, including goal selection [Tinnemeier et
al., 2008], meta-level reasoning [Cox and Raja, 2008] and
intention scheduling [Waters et al., 2014]. Research on high-
level agent architectures such as SOAR [Laird et al., 1987],
BDI-based [Rao, 1996] and GDN [Klenk et al., 2013] focuses
on such issues, and has generated a breadth of alternatives for
high-level robot control while completely abstracting away
the details in low-level control.

At the deliberation level, the robot should be able to per-
form three key functions, all centred around the concept of
a declarative goal [Winikoff et al., 2002]. First, the agent
should be able to select, from a number of possibly con-
flicting goals, which goals to execute first, and which sets
of goals to execute concurrently. For example, an agent
may have to decide whether it wants to achieve a goal
at(robot,chargingStation) or at(robot,homePosition). This
reasoning includes deciding whether each goal is possible
for the agent, which may include interacting with the layers
below it to compute whether a plan to achieve the selected
goal exists (possibly performing first principles planning to
compute a plan), and whether this plan conflicts with cur-
rently executing plans. This interaction with the layers be-
low leads us to the second key function: what strategy to use
to make such decisions. In many approaches a simple logic
query to an agent’s belief base is used in lieu of planning;
however, as we shall see in Section 4, some predicates may
be linked to much more complex computations. For exam-
ple, in order to achieve at(robot,chargingStation), an agent
may need to consult the symbolic planning layer, which,
through its procedural knowledge, eventually consults a pred-
icate canMove(robot,curr,chargingStation), which involves
geometric planning. Thus, at the deliberation level, an agent
must be able to prioritise which goals are to be computed,
and how much computation to spend on them. Finally, even
though a plan may be found by the symbolic planning layer,
this plan may fail to execute in the real world. This leads us to
the third key function, which is to determine how to commit
to achieving goals and when to drop a goal by concluding it is
not possible. Thus, abstractions at this level include declara-
tive goals [Winikoff et al., 2002], achievement, maintenance
and test goals associated with uninstantiated plans or inten-
tions [Cohen and Levesque, 1990], commitments [Meneguzzi
et al., 2013], symbolic events from both the environment and
the agent itself (such as failed goals) [Rao, 1996] and logic
beliefs.

Symbolic Planning and Execution
The symbolic planning and execution layer uses a highly ab-
stracted model of the robot and the environment to perform
means-ends reasoning [Meneguzzi and Luck, 2007]. Such
reasoning uses the currently perceived world state and some
kind of search algorithm to find a sequence of abstracted
states that takes the agent into a world in which the currently
pursued goals are believed to be true. The main assumption
of this level is that the world can be modelled as discrete sets
of logic fluents (predicates) and its dynamics in terms of dis-
crete, instantaneous, state transformation operators. These



operators are used either in classical STRIPS-style or hier-
archical HTN-style planning, which share symbols with the
deliberation level so that goals selected at that level can be
used directly as inputs into symbolic planners, and the re-
sulting plans directly manipulated by the deliberation level.
When the symbols used by this level of planning refer to
the physical (geometric and continuous) world, they are in-
directly linked (or anchored) to the features manipulated by
the geometric planning layer, and ultimately to the physical
world outside the robot. Examples of abstractions at this level
include: plans and actions [Fikes and Nilsson, 1971] as de-
fined in Section 2.1, hierarchical plans [Nau et al., 1999],
non-stationary objects and specific notable poses whose re-
lations with objects are either predetermined by a designer or
inferable from the environment [Srivastava et al., 2014].

Anchor Filtering
Even if one accepts the loss of detail incurred by discretising
an inherently continuous coordinate system, it is not feasible
to replicate the entire environment model from the geomet-
ric level into the symbolic level [Srivastava et al., 2014], and
the resulting explosion in the number of symbolic anchors
to coordinates renders symbolic planners useless. Thus, any
symbolic-geometric planning system needs to carefully eval-
uate the need to create and maintain every individual anchor
to entities within the physical coordinate system. A poten-
tial approach for this layer include using a reasoner that deals
with a high-level initial state and goal, and creating anchors
as the agent encounters obstacles in the plans to achieve the
goal [Srivastava et al., 2009], and identifying key anchors us-
ing some kind of sensor-based filter.

Geometric Planning and Execution
While symbolic planning allows one to intuitively reason
about high-level tasks in terms of more specific tasks, and
eventually in terms of basic actions, these still “abstract out”
the lowest possible level of detail by making certain assump-
tions about the world. For example, a symbolic operator
move(Robot,From,To) might assume that as long as location
To is adjacent to location From, that the robot at From will be
able to navigate to location To. In reality, however, this will
not work when certain geometrical characteristics of the robot
and the connecting path make the move physically impossi-
ble. Combining symbolic planning with geometric planning
algorithms used in robotics is therefore crucial to be able to
obtain primitive solutions that are viable in the real world.

A necessary component for geometric planning is a repre-
sentation of the robot’s perception of the real world in terms
of a 3D world state, which forms part of the input that is
needed for planning. Geometric planning then involves stan-
dard motion planning within the 3D world, in order to find a
trajectory that achieves a given goal pose. In [Pandey et al.,
2012], their geometric planner (called a geometric task plan-
ner) includes functionality that typically resides in the An-
chor Filtering layer: their planner takes as input a high-level
task instead of a goal pose, maps the task into a set of goal
poses at runtime by adapting a predefined set of goal poses,
and searches for a viable trajectory for any one of them. Ad-
ditionally, the mapping process can take into account user-
supplied constraints, which may, for instance, preclude goal

poses in which an object’s “front” does not face the human
that is involved in the task. Examples of abstractions at this
level include poses, as defined in Section 2.2, numerical con-
straints and belief distributions about map coordinates (e.g.
from SLAM).

Monitoring
In many robotic applications, critical processes in robot con-
trol must be monitored continuously in order to ensure suit-
able reaction times. For instance, a ground robot moving at
a certain speed while trying to avoid collisions must stop its
movement actuators as soon as it detects an obstacle via short-
range sensors such as pressure sensors or sonar. Finally, com-
plex durative actions, such as moving to a specific map coor-
dinate, must use a continuous process integrating monitoring
hardware such as an encoder providing odometry readings to
the actuators responsible for such motion. Thus, this compo-
nent connects the Geometric Planning/Execution layer to its
counterparts in the Action and Perception layer.

Action and Perception
At its lowest level, actions in robotics comprise sequences
of actuator and sensor commands with precise timings and
monitoring against the tolerances of the robot. Some re-
search has generated design-patterns to program actions at
a higher-level, but how these higher-level actions are created
and organised seems to be an open problem [Lütkebohle et
al., 2011]. Perception in robotics comprises either raw sensor
data (e.g. a video/image feed and laser scan “point cloud”)
or some kind of processing over such data (e.g. mapping,
positioning, SLAM, and object detection) that allows a robot
to build and maintain a model of the environment around it.
There are various technologies used to keep the 3D world
state up-to-date including tag-based stereo vision systems for
object identification and localisation, and Kinect (Microsoft)
sensors for localising and tracking humans. These and other
action and perception capabilities such as motion control and
obstacle avoidance are all included as part of the action and
perception layer. These capabilities are typically encapsu-
lated into separate but interconnected modules, which have
well-defined interfaces that offer services to the higher layer
via communication mechanisms such as “request-response”
and “publish-subscribe”. In the LAAS [Fleury et al., 1997]
architecture for instance, complex functionality such as navi-
gation is derived by suitably linking the inputs and outputs of
various independent modules including localisation and path
planning. For both action and perception, granularity is a
key issue: how big must elements be to become eligible to
be “named” (e.g. actions for movement or rotation), and how
frequently must perceptions from each sensor be obtained.

Robotic Devices
The bottommost layer consists of the control layer for actual
hardware control, such as sensor arrays, actuators, and bat-
teries. Control and abstraction at his level is usually per-
formed by specialised software suites with the appropriate
“drivers” that convert software commands into specific in-
structions such as motor pulse sequences, memory address
reading to extract images from a CCD sensor, and distance
estimation from the ultrasonic sensor pulses. At this level,



control is completely unaware of the larger robot behaviour,
and works by simply generating raw readings to be processed
and aggregated by the action and perception layers. Exam-
ples of software at this level include Programmable Logic
Controllers (PLCs) [Antzoulatos et al., 2015] and the most
basic topics in ROS [Quigley et al., 2009] such as the various
implementations of cmd_vel and sonar.

4 An Instantiation of our Architecture
We shall now describe an instantiation of our abstract archi-
tecture that incorporates motion planning into the AgentS-
peak agent programming language, which belongs to the top
two layers of our abstract architecture. A fundamental con-
struct that links these two layers with the Geometric Plan-
ning/Execution layer is an evaluable predicate, i.e. a predicate
that is not evaluated by simply looking up the agent’s belief
base, but by calling an external procedure, which in our work
serves the purpose of searching for a viable trajectory within a
geometric 3D world state. Thus, we call such predicates geo-
metric predicates. Taking our example from before, we could
have the geometric predicate canMove(R,curr,O), which in-
vokes a motion planner to determine whether it is possible for
robot R to move from its current pose curr to object O (which
could, for instance, bind to table3), specifically, to a position
that is within reachable distance (without further navigation)
from O. In this work we use curr as a special constant symbol
that represents the robot’s current pose.

Since geometric predicates are evaluated within a geomet-
ric world state, they are implicitly associated with a col-
lection of goal poses, and the predicate holds if and only
if there is a viable trajectory that achieves at least one of
them. We make this relationship between geometric predi-
cates and goal poses explicit. We do not, however, attempt
to automatically infer the goal poses corresponding to a ge-
ometric predicate because it is not obvious how this can be
done. For instance, it is not obvious how one could auto-
matically determine what goal poses correspond to the suit-
able “grasps” for differently shaped objects (with different
weights) in a domain. Consequently, we assume that a map-
ping from ground geometric predicates to their correspond-
ing goal poses is supplied by the user. For example, pred-
icate canMove(robot3,curr,cupboard1), might map to the
set {c1, . . . ,cn} of poses, where each ci corresponds to the
robot being at a location from where cupboard1 is reachable.
Likewise, canMoveInto(robot1,room2) might map to a set
of goal poses in which robot1 is completely inside room2,
including the obvious poses where the robot is standing just
past the entrance to the room, in its default “rest pose”.

Formally, we define the function map as follows. Suppose
that P is the set of ground predicates obtained from the set
of all geometric predicates occurring in the agent, Ps is the
set of all predicate symbols occurring in P, O is the set of all
constant symbols occurring in P, and that n = max({m | m is
the arity of p, p ∈ P}). Then, map is the partial function

map : C×Ps×O1× . . .×On→ 2C,

where C is the configuration space, each Oi =O∪{null}, and
null is a (special) constant symbol. Thus, function map is a

user-defined “sampling” that includes only the goal poses that
“matter” with respect to the current pose c ∈C and the given
ground geometric predicate. The sampling may, for example,
exclude object positions on a table that only differ from other
positions by a centimetre. Observe that this mapping belongs
to the Anchor Filtering layer of our abstract architecture.

In principle, geometric predicates are evaluated within an
“intermediate layer” which is also encapsulated within the
Anchor Filtering layer. Our intermediate layer is similar to
the one presented in [de Silva et al., 2013a; Srivastava et al.,
2014], and actualised via a special evaluable predicate int,
which is defined as

int : Ps×O1× . . .×On→{true, f alse},
where Ps,n and each Oi are the same as before. For ex-
ample, if in the given domain the maximum arity n = 5,
the agent developer might then invoke the intermediate layer
with int(canMove,robot1,room2,null,null,null). We de-
fine function int(p,o1, . . . ,on) procedurally as follows. Sup-
pose that cI is the current pose of the robot, and that S
and F are global variables initialised to the empty sequence
and empty set, respectively. Then, if there is a pose cG ∈
map(cI , p,o1, . . . ,on), and a collision-free motion plan from
cI to cG, the function first assigns the motion plan to S, and
then returns true; otherwise, the function assigns the set of
facts describing why there was no trajectory—specifically the
obstruction(s) that were involved—to F and returns f alse.
This approach keeps motion plans and the need to enumerate
over poses transparent from the agent developer.

4.1 Connecting Motion Planning with AgentSpeak
AgentSpeak and related BDI agent programming languages
offer some useful, built-in mechanisms that are suitable for
incorporating motion planning. In particular, we can “en-
capsulate” each geometric predicate p(~v) within a unique
achievement goal !ep(~v) as follows. First, we associate the
achievement goal with the following two plan-rules:3

+!ep(~v) : true← actPassp(~v),
−!ep(~v) : true← actFailp(~v).

Since the latter is a plan-rule handling a goal-deletion event,
it is only triggered if the former plan-rule fails, i.e. if the pre-
condition of the ground action actPassp(~v)θ ,4 which involves
geometric planning, is not applicable. Moreover, as per the
semantics of goal-deletion events, once the latter rule finishes
executing, the associated achievement goal !ep(~v)θ still fails.
This semantics is desirable in order to, before failing, com-
pute and include the beliefs/facts relating to why the failure
occurred. The second step in our encapsulation is to define
actions actPassp and actFailp via the following operators:

actPassp(~v) : int(p,~v)← body> ; post>
actFailp(~v) : ¬int(p,~v)← body⊥ ; post⊥,5

3We use~v to denote a vector of distinct variables, and~t to denote
a vector of (not necessarily distinct) variables and/or constants.

4where θ is the relevant substitution that was computed for the
variables in~v as per the operational semantics of AgentSpeak

5Actually, the last parameters of int(p,~v) must be zero or more
null constant symbols, based on the arity of predicate int. We have
adapted the definition of an operator from [Sardiña et al., 2006].



where construct body> is associated with code that executes
the motion plan S computed by int(p,~v)θ ; body⊥ is associ-
ated with an empty procedure, as nothing needs to be exe-
cuted if there was no trajectory found while evaluating the
precondition; and constructs post> and post⊥ obtain and ap-
ply the set of symbolic facts concerned with, respectively,
the pose that resulted from executing body>, and the “rea-
sons” why there was no trajectory while evaluating the pre-
condition, i.e. the set F computed by int(p,~v)θ . Observe
that the second operator above confirms that ¬int(p,~v)θ still
holds; this is done just in case there was a relevant change
in the environment after int(p,~v)θ was last checked, causing
int(p,~v)θ to now hold, in which case there are no failure-
related facts to include.

We assume that the procedure associated with body> al-
ways succeeds, and check whether the action was successful
by explicitly testing its desired goal condition. This is exem-
plified by the !move(R,F,T ) achievement goal in Section 2.3,
where ?pos(R,T ) checks whether the navigate(R,F,T ) ac-
tion was successful. One property of our encapsulation is
that looking for motion plans and then executing them and/or
applying the associated symbolic facts are one atomic opera-
tion, so no other step can be interleaved between those steps.
Thus, our approach ensures that a motion plan found while
evaluating an action’s precondition cannot be invalidated by
an interleaved step while the action is being executed.

Once all geometric predicates occurring in the agent have
been encapsulated as described, we may then use their corre-
sponding achievement goals from within AgentSpeak plans.
However, since preconditions of actions and plan-rules can-
not mention achievement goals, those encapsulating geo-
metric predicates are instead (WLOG) placed as the first
steps of plan bodies. A desirable feature of this approach
is that it enables such achievement goals to be ordered so
that the ones associated with the most computationally ex-
pensive geometric predicates are checked only if the less ex-
pensive ones were already checked and they were met. This
is similar to the approach taken by [de Silva et al., 2013a;
Kaelbling and Lozano-Pérez, 2013], who allow ordering
predicates occurring in preconditions.

4.2 Computing Symbolic Facts
The facts applied to the (symbolic) world state by functions
post> and post⊥ can include both domain-dependent as well
as domain-independent facts, computed by the Anchor Filter-
ing layer by using the layers beneath. Function post> derives
symbolic facts corresponding to the current (geometric) pose
of the robot using function f ct : C→ 2P, where the infinite
set of ground predicates P = {p(~v)θ |p(~v)θ is a ground in-
stance of p(~v),θ is a substitution, p(~t) ∈ Pall}, where Pall

is the set of all predicates occurring in the agent. In words,
f ct is a mapping from poses to a set of sets of facts, where
the latter only mentions predicate symbols that occur in the
agent, but might also mention constant symbols (objects) that
do not occur in the agent. This leaves room for discovering
new objects “on the fly”, which were not previously known to
the agent. For example, after executing a trajectory, the agent
might find itself in a position from where a previously uniden-
tified bottle can be seen. Once it is identified as a bottle by the

Action and Perception layer, it might be assigned a new sym-
bol such as redBot1, and associated with the new (symbolic)
facts bottle(redBot1) and near(redBot1,bottle1).

Other examples of the kinds of domain-dependent facts
that might be computed by post> are ground instances of
the predicates inside(Rm,R),upright(O),visible(O,R), and
reachable(O,R), where O is an object, R is a robot, and Rm
is a room. Predicate visible(O,R) holds if and only if O is
visible from R, and reachable(O,R) holds if and only if it
may be possible for robot R to reach O without navigating
from the current position [de Silva et al., 2013a]. The facts
corresponding to all of these predicates are easy to compute:
e.g. visible(O,R) simply involves checking whether there is
a line-of-sight from robot R to object O, and reachable(O,R)
involves checking whether the volume covered by extending
the robot’s arms and torso, with respect to all their degrees of
freedom, overlaps with object O in 3D space.

Unlike function post>, the facts computed by post⊥
“describe” why a trajectory did not exist for the associ-
ated geometric predicate. One example of such a fact
is ¬reachable(bottle1,robot1), indicating bottle1 is (def-
initely) not reachable from robot1 without navigating—
because a trajectory did not exist from robot1 to bottle1
(which does not necessarily mean that there is an obstructing
object). Other examples of such facts, inspired by [Srivastava
et al., 2014], are obstructsSome(cup3,bottle2,robot1), indi-
cating that cup3 obstructs at least one trajectory from robot1
to bottle2, and obstructsAll(cup3,bottle2,robot1), indicat-
ing that cup3 obstructs all the trajectories from robot1 to
bottle2.6 These facts could be exploited by the agent system,
e.g. to plan to move obstructing objects out of the way.

5 Related Work
Our approach to incorporating geometric planning into a
BDI-style agent system is inspired by existing work in the
literature, particularly [de Silva et al., 2013a; de Silva et
al., 2013b; de Silva et al., 2014; Srivastava et al., 2014;
Kaelbling and Lozano-Pérez, 2013]. In [Kaelbling and
Lozano-Pérez, 2013] the authors present an approach to in-
terleaving acting with planning in the belief space of agents.
They define specific fluents to represent abstractions of more
complex geometrical properties, and associate those fluents
with procedures which are evaluated at runtime, based on the
most recent geometric world state. This is similar to how we
use evaluable predicates to test whether certain geometrical
properties hold at runtime. On the other hand, while we use
a traditional operator representation, and indeed a traditional
BDI agent programming language, they use a special purpose
representation that is nonetheless well suited for their specific
planning and execution framework (e.g. additional “let” and
“exists” constructs that can be included in preconditions).

De Silva et al. [2013a; 2014] rely on an intermediate layer
between symbolic planning and geometric reasoning that is
similar to the one that we have presented: both involve per-
forming motion planning within traditional preconditions,
computing the resulting symbolic facts, and then applying

6For simplicity, these predicates do not represent which actions’
trajectories (e.g. “pick” versus a “place”) were obstructed.



them to the symbolic world state. However, while their work
focuses on interleaving geometric reasoning with symbolic
planning, this paper focuses on interleaving geometric rea-
soning with acting in the real world. This makes the details
of the two approaches different: e.g. while our approach ac-
counts for discovering and managing references to new ob-
jects in the environment when acting in the real world, this is
not an issue in their work. Our work also shares some simi-
larities with the interface to symbolic and geometric planning
presented in Srivastava et al. [2014], as discussed in Section
4.2. Their approach involves obtaining a classical planning
solution for the given planning problem, and then checking
if there is a viable trajectory for each adjacent pair of actions
in the solution; however, they do not focus on interleaving
geometric reasoning with execution, as we do here.

While the systems discussed below also do not address
the issue of combining geometric planning with execution,
they nonetheless do fit within the abstract architecture pre-
sented in Section 3. Like de Silva et al. [2013a], the work
of Lagriffoul et al. [2012] presents an integration that com-
bines a variant of the SHOP [Nau et al., 1999] HTN planner
and a specialised path planner, in which the geometric plan-
ner backtracks when an action being planned at the symbolic
level is not applicable. This allows their system to reconsider
the geometric choices that were made, in order to “fix” the
symbolic plan being synthesised. The symbolic planner of
Erdem et al. [2011] guides a motion planner—invoked via
evaluable predicates—toward a continuous collision-free tra-
jectory, failing which the symbolic planning problem is ad-
justed to take the cause of failure into account when replan-
ning. The integrations presented in [Dornhege et al., 2009;
Gaschler et al., 2015] also rely on evaluable predicates in or-
der to perform geometric reasoning. In these works, evalu-
able predicates are used for, e.g. trajectory planning, reacha-
bility analysis, collision checking, and inverse kinematics.

Unlike the works described, Asymov [Cambon et al.,
2004] is a combined task and motion planning framework
in which it is the geometric planner that makes use of the
symbolic planner (and its domain), rather than the other way
around. This involves obtaining heuristics from the symbolic
planner when choosing roadmaps during geometric search.
The work of [Plaku and Hager, 2010] is similar to the Asy-
mov approach, where a symbolic planner guides a sampling-
based motion planner’s exploration of the continuous space,
and the latter returns utility estimates that are used to improve
the symbolic planner’s guidance in the next iteration.

6 Conclusion
This paper has summarised a diverse range of functionalities
present in existing robotic systems at various levels of ab-
straction, and separated them into the distinct layers of an ab-
stract architecture, partly inspired by the levels of integration
in [Ingrand and Ghallab, 2014]. We then presented an in-
stantiation of certain interesting elements of our architecture,
by combining the AgentSpeak agent programming language
with motion planning. In particular, we described a suitable
interface between the two types of system, showed how some
existing AgentSpeak constructs could be exploited to incor-

porate motion planning, and briefly classified the kinds of
symbolic facts that could be computed in the geometric layer
and passed back to the symbolic. In the future we intend
to formalise the integration of AgentSpeak and motion plan-
ning, as well as develop a corresponding implementation.
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