
Automatic Generation of Plan Libraries for
Plan Recognition Performance Evaluation

Giovani Farias, Lucas Hilgert, Felipe Meneguzzi, Renata Vieira, and Rafael H. Bordini
Pontifical Catholic University of Rio Grande do Sul (PUCRS)

Postgraduate Programme in Computer Science – School of Informatics (FACIN)
Porto Alegre, Brazil

giovani.farias@acad.pucrs.br, lucaswhilgert@gmail.com
{felipe.meneguzzi, renata.vieira, rafael.bordini}@pucrs.br

Abstract—Some plan recognition approaches represent knowl-
edge about the agents under observation in the form of a
plan library. Although such approaches use conceptually similar
plan library representations, they seldom, if ever, use the exact
same domain in order to directly compare their performance.
For any non-trivial domain, such plan libraries have complex
structures representing possible agent behavior, so plan recogni-
tion approaches often fail to be tested at their limits and only
rarely are they compared with each other experimentally, leading
to the need for a principled approach to evaluating them. In
order to address this shortcoming, we develop a mechanism to
automatically generate arbitrarily complex plan libraries; such
plan library generation can be directed through a number of
parameters to allow for systematic experimentation.

I. INTRODUCTION

Plan recognition systems require a knowledge base that
encodes the behavioral repertoire of an observed agent. The
earliest plan libraries encoded recipes as collections of precon-
ditions, subgoals, constraints, and effects [1]. Many different
algorithms have been used to deal with plan recognition based,
for example, on graph covering [2], Bayesian networks [3],
and probabilistic state dependent grammars [4]. These methods
typically use an individual plan library to represent the set
of plans that are expected to be recognized. The sequence of
observations are matched against this plan library to gener-
ate recognition hypotheses ranked according to some rating
method. While an agent performs some task, the observation
sequence acquired is matched against the plan library, and the
obtained sequences are processed as plan recognition hypothe-
ses. Applications can have complex multi-feature observations,
which may present a high computational cost of matching these
observations against all possible plan steps in the plan library.

Information about the complexity of the plan recognition
algorithms is easily found [5]. However, there is no approach
to automatically generate complex domain structures with a
particular parameter set, supporting experiments to evaluate
the performance of various plan recognition algorithms. Plan
recognition libraries often have a complex structure, due to
the large number of possible observation sequences that need
to be encoded. Thus, it is important to have a mechanism for
automatically generating these structures in order to evaluate
the plan recognition algorithms under varying conditions. We
present an approach for automatic generation of plan libraries
as input for plan recognition algorithms. The generated plan
libraries can be used as test suits in experiments for practical

performance evaluation. The main contribution of this paper
is the developing of a plan library generator, that allows the
construction of such test suites, based on a set of parame-
ters that will determine the plan library complexity. Thus, it
is further possible to create and use the same information
domain to directly compare the performance among various
plan recognition approaches using different structures of plan
libraries.

This paper is organized as follows. In Section II, we briefly
survey about plan recognition. The definition of plan library
and how plan recognition systems structure their knowledge
base in Section III. In Section IV we describe the parameters
used by the algorithm to create random plan libraries. The
algorithm developed to generate plan libraries based on given
parameters are described in Section V. Finally, we conclude
the paper in Section VI.

II. PLAN RECOGNITION

Plan recognition can be defined as the task of recognizing
the intentions of the user based on the available evidence, that
is, user actions, explicit statements about intentions, and user
preferences. Plan recognition research was initially defined
in [6] using a rule-based approach, like other early work such
as [7]. Kautz and Allen [2] developed one of the first logical
formalization of plan recognition, providing the conceptual
framework for much of the work in plan recognition up to
the present. They defined the problem of plan recognition
as finding a minimal set of top level actions adequate to
justify the set of observed actions. Charniak and Goldman [8]
argued that plan recognition is largely a problem of inference
under conditions of uncertainty, and in addition to retrieving
explanatory plans, a plan recognition system must also be
able to select a hypothesis based on the likelihood of the
explanation given the evidence.

Since plan recognition is the process of inferring an agent’s
plan, based on observations of its interaction with its environ-
ment, a plan recognition system must have a mechanism that is
capable of inferring agent intentions by observing the agent’s
actions in the environment. Thus, this mechanism, from a given
set of observations, retrieves one or more hypotheses about
the agent’s current plan of action. The knowledge used by this
mechanism to infer plans is domain dependent, and therefore is
commonly specified beforehand for each specific domain. This
domain dependent information is usually encoded as two kinds



of inputs for the recognizer: a sequence of actions from the
observed agent, and a set of plans and goals. In other words,
the inputs to a plan recognizer are generally a set of goals the
recognizer expects the agent to carry out in the domain, a set
of plans describing the way in which the agent can reach each
goal, and a sequence of actions observed by the recognizer. The
plan recognition process itself consists in inferring the agent’s
goal, and determining how the observed actions contributes to
reach it. The set of plans form a plan library and can include
preconditions, effects, and subgoals. For a good overview of
plan recognition in general, see Carberry [1], and for the
most recent research in the field of plan, intent, and activity
recognition, see Sukthankar et al. [9].

III. PLAN LIBRARY

Most plan recognition systems require a knowledge base
that encodes, into recipes, the ways in which agent goals
can be achieved. A plan library is a knowledge base that
codifies in some way the agent’s beliefs concerning how the
agent can reach each particular goal in the domain. Plan
recognition systems have a plan library as an input, so several
representations of agent plans have been used to approach this
problem, and various methods applied to infer the agent’s in-
tention. These methods can be grouped in two main categories:
symbolic and probabilistic approaches. Symbolic approaches
aim at narrowing the set of candidate intentions by eliminating
those plans that cannot be explained by the actions that the
agent performs. The most used representation for symbolic
approaches are plan hierarchies and consistency graphs. Prob-
abilistic approaches explicitly represent the uncertainty associ-
ated with agent plans and allow a probabilistic ranking of the
agent intentions mainly making use of Bayesian Networks [10]
and Markov Models [11]. Most symbolic and probabilistic
approaches are domain independent and can lead to accurate
predictions provided the plan library is complete (for symbolic
approaches) or provided the probabilities are correct (for
probabilistic approaches). These approaches normally have the
disadvantage of considering all the possible plans in the plan
library given the observations. However, if observations so
far can not distinguish between a set of possible intentions,
probabilistic approaches can find the most probable one, while
symbolic approaches can not select between them and have to
wait for a single consistent explanation. Symbolic approaches
are very sensitive to noisy actions, as the plan recognizer
could wrongly exclude a plan (from the hypotheses explaining
the observed behavior) if an unexpected action occurs in the
middle of the execution of a plan.

Many plan recognition systems structure their plan libraries
as an Hierarchical Task Network (HTN) [12], [13] to define
the set of plans they are expected to recognize, in which
goals are the root nodes and the observed actions are directly
mapped to the leaf nodes. An attachment point in an HTN
tree is a point in which an observation can be assigned to
an action not observed yet, while shared leaders are action
prefixes in the plan library that are common to different plans
with different goals (root nodes). Typically, a plan library has
a single dummy root node where its children are top-level
plans and all other nodes are simply plan steps. In the library,
sequential edges specify the expected temporal order of a
plan execution sequence and vertical edges decompose plan
steps into sub-steps. The library has no hierarchical cycles.

However, plans may have a sequential self-cycle, allowing
a plan step to be executed during multiple subsequent time
stamps. Each agent action generates a set of conditions on
observable features that are associated with a plan. When these
conditions are met, the observations match a particular plan
step. A complete algorithm for plan recognition must consider
all coherent explanations for a given set of observations.
Goldman et al. [14] assume that a plan library is made up
of tasks structured in an hierarchical way, in which task
nodes could represent goals, methods, and primitive actions.
Similarly to Brown [15], the plan library could be viewed as
a partially ordered AND/OR tree, in which the AND nodes
are methods, connecting all action steps or sub-tasks needed
to achieve the parent task, and the OR nodes are other isolated
sub-tasks.

IV. PLAN LIBRARY GENERATOR – PARAMETERS

The algorithm developed in this work was created in order
to enable systematic analysis and performance comparison
between several plan recognition algorithms given the variety
of possible plan libraries. Thus, the Plan Library Generator
(see algorithms in Section V) generates plan libraries based on
various given parameters as follows:

Number of top-level plans (np): value that represents the
branching factor of the root node, in other words, the number
of children for the root node. This refers to the number of
different independent top level plans in the plan library.

Depth (dt): corresponds to a measure of the depth of the
plan trees. The depth of the plan library, from the root, which
determines the number of plan steps that an instance of a plan
(i.e., a complete path from a top level node to a bottom level
node) contains.

Number minimum of branches (mi): represents the
number minimum of branches that all nodes (other than root)
must have. This value must belong to the interval [1;ma].

Number maximum of branches (ma): represents the
number maximum of branches that all nodes (other than root)
can have. This value must be greater or equal to mi. The actual
number of branches from a node is randomly chosen from the
interval [mi, ma] whenever a new node is created.

Number of features (fs): defines the number of observ-
able features, in the domain, available to be attached with a
given plan step. Features are properties associated with the
action of a given plan step, which need to be observed by the
plan recognition algorithms for it to recognize the execution
of that particular plan step.

Number of features per node (fn): defines the number
of features associated with each top level plan and plan step.
As a restriction, the value of the number of features (fs) has to
be equal to or greater than the depth (dt) of the tree multiplied
by the number of features attributed to each individual node
(fn). In other words, there has to exist at least fn distinct
features for each plan step node of an instance of a plan.

Conditions (mv): defines the number of values that can
be associated with the features (recall that features, with par-
ticular value conditions, allow the identification of particular
actions being executed by the observed agent). This value must
be greater or equal to 0. Thus, assuming mv = 2 implies that
all features will be multivalued assuming the values 0, 1 or 2
(i.e., only integer values in the interval [0,mv] can be assigned
to the features).



Sequential edges (sq): value in the interval [0, 1], which
determines the probability in which a branch can be created as
sequential type. Thus, sq = 0 means that all branches will be
decomposition type, as well as, sq = 1 means that all branches
will be sequential type. Regarding feature distribution, it
is important to emphasize that the same feature cannot be
assigned with different values to a node and its respective
decomposition children (as they represent a specialization of
the parent). This way, when a decomposition node is created,
it automatically inherits the features (as well as the values
attributed to them) from its parent node.

Duplication (pd): represents the percentage of top level
plans that are duplicated in order to generate ambiguous paths.
The duplicated plan is not exactly equal to the top plan from
which it was generated. The last leaf plan step in a duplicated
plan is made different to establish some distinction between
them. For example, pd = 0.2 means that 20% of top level
plans are duplicates of others. So, approximately 40% of top
level plans are not unique, presenting some difference only on
the last leaf.

The size of the plan library is mainly determined by the
number of top-level plans (np), the interval composed by
the number minimum and maximum of branches [mi,ma],
and by the depth (dp). All plans in the plan library have
an unique identification. Plans that present the same set of
associated features and the same value of these features are
considered equal, that is, they will match given the same set
of observations. The ambiguity of the plan library influences
the amount of distinct plans are fitting given a sequence of
observations. The ambiguity is determined by the duplication
parameter (pd) (larger implies more duplicated plans, and thus
increased ambiguity), by the number of features (fs) (less
features tend to decrease the possibility of distinction between
plans), by the conditions value (more values associated to the
features enable greater differentiation between plans that use
the same set of features), and the number of features per node
(fn) (greater number will cause more variety in plans).

V. PLAN LIBRARY GENERATOR – ALGORITHM

The generation of the plan library is conducted as de-
scribed in Algorithm 1. The algorithm execution starts with

Algorithm 1 Generate Tree
Input: Number of top-level plans np, Depth dt, Number

minimum of branches mi, Number maximum of branches
ma, Sequential edges sq, Number of features fs, Number
of features per node fn, Conditions mv, Duplication pd

Output: Node n
1: rt← create root node
2: up← getUniquePlans(np,pd)
3: tp← createTopLevelPlans(up)
4: for all p in tp do
5: createBranches(id,fs,pf,cd) . obtained by p
6: addChildNode(rt,p)
7: end for
8: duplicatePlans(pd)
9: return Node rt

the creation of root node of the plan library (Line 1), which
is responsible for connecting all agent plans. This node is

created as a decomposition node and no features are assigned
to it. Next, the algorithm determines the number of distinct
plans that will be created (Line 2). This number is based
on number of top-level plans (np) and in the percentage of
plans which will be duplicated (pd). For example, if np is set
to 10 and pd to 10%, then 9 distinct plans will be created
and the last one will be obtained through the copy of one of
the previously created plans. This is important for evaluating
plan recognition algorithms that typically keep track of sets
of potential plans being executed until some disambiguation
is possible, which is harder when many similar plans exist in
the plan library. The next step consists in creation of the top-
level nodes (Line 3) which corresponds to the agent plans (e.g.,
plans “p1” and “p2” in Figure 1). These nodes are created as
simple decomposition nodes to which no features are assigned.
After creation of top-level plans, the next step (Lines 4-7)
consists in creation of their respective branches. This creation
is conducted as described in Algorithm 2. Finally, after the
creation of individual top-level plans, the algorithm selects
(Line 8) the ones that will be duplicated (if a duplication
percentage has been set). Note, however, that features values
of bottom-level nodes from an plan copy are changed in order
to distinguish it from the original plan, whenever plans are
duplicated.

Algorithm 2 Create Branches
Input: Id id, Number of features fs, Parent Features pf ,

Current Depth cd
Output: Node n

1: nb← getNumberOfBranches(mi,ma)
2: se← getNumberOfSeqEdges(nb,sq)
3: rf ← getRandFeatures(fs,fn)
4: nd← getNewNode(id,nb,se,cd,rf)
5: if pf not empty then
6: getParentFeatures(nd,pf)
7: end if
8: if cd = dt then
9: return Node nd

10: end if
11: ct← 1
12: for i = 0 to sq do
13: ti← getNodeId(ct)
14: sc← createBranches(ti,fs,∅,cd+ 1,fn)
15: addSequentialChildren(nd,sc)
16: ct← ct+ 1
17: end for
18: for i = 0 to (nb− sq) do
19: ti← getNodeId(ct)
20: sf ← getFeatureSubset(rf,fs)
21: sc← createBranches(ti,fs,sf,cd+ 1,fn)
22: addSequentialChildren(nd,sc)
23: ct← ct+ 1
24: end for
25: return Node nd

Algorithm 2 describes the creation of plan-step nodes
and their respective branches. It receives as input the textual
identification of a new node (id), the number of features (fs),
the subset of features assigned to its parent node (pf ) and,
finally, the current depth (cd), i.e., depth level in which the
node is going to be created. Some of the parameters such



as number of features per node (fn), number minimum of
branches mi, number maximum of branches ma and sequential
edges (sq) are assumed as global (see Algorithm 1). The
algorithm starts by determining the number of branches to be
created for the new node (Line 1) and how many of them
will be set as sequential branches (Line 2). Both information
have to be defined before the creation of the new node as
they help to determine its type. If the number of sequential
edges (sq) is equal to the total number of branches (nb),
the new node is going to be created as an action node (also
referred as “leaf node”). Otherwise, the node is going to be
created as a decomposition node. In next step (Line 3), the
algorithm generates the subset of features to be assigned to the
new node. This subset, of size as defined by fn, is extracted
from the feature set (fs) received from the parent node; those
features receive values randomly extracted from the previously
defined interval ([0,mv]). Using the subset of features, and the
information previously determined, the algorithm creates the
new node (Line 4). However, before the branches of the new
node are created, the algorithm checks if the current level has
reached the expected depth (Line 8). If the expected depth has
been reached, the new node is returned and the creation of the
plan path is completed. If the depth has not been reached yet,
the algorithm goes to the next step, which is the creation of
the next level of the tree.

The next stage of algorithm execution is creation of se-
quential branches of node (Lines 12-17). It starts by defining
the textual identifications of nodes to be created (controlled
by ct). After that, the method is recursively called until all
the sequential nodes are created. All nodes created in those
recursive calls are added to the list of sequential children of
the new node (Line 15). After the creation of the sequential
branches, the algorithm uses a similar approach to create
the decomposition branches of the new node (Lines 18-24).
The main difference between the creation of sequential and
decomposition branches is the distribution of features among
nodes. While in creation of sequential nodes the construction
of the feature subset (Line 3) is based on the whole feature set
(fs), in creation of decomposition nodes the creation is based
on a subset of fs, which eliminates features already used by
parent nodes. Such elimination is conducted in line 20 of the
algorithm. As previously explained, the same feature can not
be attributed to a node and its (decomposition) children with
different values, so the child node inherits the features (and its
respective values) from parent node (Line 5). In Figure 1, the
nodes of the tree represent plans (first level) and plan steps
(second level and below) of the plan library, and the edges
of the tree represent the relations between them. The “root”
node is not considered as a plan, being used only as a way of
connecting the various plans. Figure 1 shows sequential links
represented by dashed arrows and decomposition links repre-
sented by solid arrows. For instance, there is a decomposition
link between p2 and ps2 2, and a sequential link between
this ps2 2 and ps2 2 1. The top-level plans are p1 and p2.
For clarity, Figure 1 does not show the set of conditions on
observable features associated with plan steps.

VI. CONCLUSION

In this paper, we have developed an approach that al-
lows principled performance evaluation for plan recognition
algorithms. A plan library generator was created to generate

root

p1 p2

ps1_1 ps1_2

ps1_1_1 ps1_2_1 ps1_2_2

ps2_1 ps2_2

ps2_1_1 ps2_1_2 ps2_1_3 ps2_2_1

Fig. 1. Example of a plan library tree created by the Plan Library Generator
with np = 2, dt = 3, mi = 1, ma = 3, sq = 0.5, fs = 3, fn = 1, mv = 2,
and pd = 0.

complex structures based on a number of parameters that
will determine the complexity of the plan library. Thus, a
unique representation of an information domain can be used to
compare the efficiency of several plan recognition algorithms.
The performance of plan recognition algorithms is directly
related to the structure and size of the plan library, as well as
to the set of observations given to the plan recognition system.

REFERENCES

[1] S. Carberry, “Techniques for plan recognition,” User Modeling and
User-Adapted Interaction, vol. 11, no. 1-2, pp. 31–48, Mar. 2001.

[2] H. A. Kautz and J. F. Allen, “Generalized plan recognition,” in AAAI,
T. Kehler, Ed. Morgan Kaufmann, 1986, pp. 32–37.

[3] H. Bui, “A general model for online probabilistic plan recognition,” in
In Proc. of the International Joint Conference on Artificial Intelligence
(IJCAI, 2003, pp. 1309–1315.

[4] D. V. Pynadath and M. P. Wellman, “Probabilistic state-dependent
grammars for plan recognition,” in In Proceedings of the Conference
on Uncertainty in Artificial Intelligence, UAI2000. Morgan Kaufmann
Publishers, 2000, pp. 507–514.

[5] C. W. Geib, “Assessing the complexity of plan recognition,” in Pro-
ceedings of the 19th National Conference on Artifical Intelligence, ser.
AAAI’04. AAAI Press, 2004, pp. 507–512.

[6] C. F. Schmidt, N. S. Sridharan, and J. L. Goodson, “The plan recogni-
tion problem: An intersection of psychology and artificial intelligence.”
Artif. Intell., vol. 11, no. 1-2, pp. 45–83, 1978.

[7] R. C. Schank and R. P. Abelson, Scripts, plans, goals and understanding
: an inquiry into human knowledge structures, ser. The Artificial
intelligence series. Hillsdale, N.J: L. Erlbaum, 1977.

[8] E. Charniak and R. P. Goldman, “A bayesian model of plan recognition,”
Artif. Intell., vol. 64, no. 1, pp. 53–79, 1993.

[9] G. Sukthankar, R. P. Goldman, C. Geib, D. V. Pynadath, and H. H.
Bui, Eds., Plan, Activity, and Intent Recognition: Theory and Practice.
Elsevier, 2014.

[10] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, 1988.

[11] H. H. Bui and et al., “Hierarchical hidden markov models with general
state hierarchy,” in Proceedings of the 19th national conference on
artificial intelligence, 2004, pp. 324–329.

[12] K. Erol, J. A. Hendler, and D. S. Nau, “Umcp: A sound and complete
procedure for hierarchical task-network planning,” in AIPS, K. J.
Hammond, Ed. AAAI, 1994, pp. 249–254.

[13] K. Erol, J. Hendler, and D. S. Nau, “HTN planning: Complexity and
expressivity,” in Proceedings of the Twelfth National Conference on
Artificial Intelligence (Vol. 2), ser. AAAI’94. Menlo Park, CA, USA:
American Association for Artificial Intelligence, 1994, pp. 1123–1128.

[14] R. P. Goldman, C. W. Geib, and C. A. Miller, “A new model of
plan recognition,” in UAI, K. B. Laskey and H. Prade, Eds. Morgan
Kaufmann, 1999, pp. 245–254.

[15] S. M. Brown, “A decision theoretic approach for interface agent
development,” Tech. Rep., 1998.


