
Towards Practical Argumentation-Based
Dialogues in Multi-Agent Systems

Alison R. Panisson, Felipe Meneguzzi, Renata Vieira, and Rafael H. Bordini
Pontifical Catholic University of Rio Grande do Sul (PUCRS)

Postgraduate Programme in Computer Science – School of Informatics (FACIN)
Porto Alegre, RS – Brazil

Email: alison.panisson@acad.pucrs.br, {felipe.meneguzzi, renata.vieira, rafael.bordini}@pucrs.br

Abstract—Although argumentation has been a prominent
topic of research in artificial intelligence and in particular agent
communication, there has been little work on practical (but
provably sound) argumentation approaches integrated with agent
programming languages. In this paper, we develop a formally-
grounded mechanism for practical argumentation-based dia-
logues in an agent platform based on a multi-agent programming
language. We formalise a protocol to govern such dialogues, where
agents use an argumentation-based reasoning mechanism that
has been implemented. We prove that dialogues following our
protocol always terminate and that ideal solutions are reached
under certain conditions. The protocol is simple but was shown
to be useful in a multi-agent system application that supports
teams of cooperating humans.

I. INTRODUCTION

Argumentation is a rich interdisciplinary area of research
that borrows from philosophy, communication studies, linguis-
tics and psychology [1]. Argumentation methods have been
improved through collaborative efforts between argumentation
theorists and computer scientists. Recent developments encom-
pass the adoption of argumentation models and techniques
to topics in artificial intelligence such as MAS (Multi-agent
Systems) and artificial intelligence for legal reasoning [2].

This paper focuses on argumentation for MAS, which has
two main lines of research [3]: (i) argumentation focused
on (nonmonotonic) reasoning over incomplete, conflicting, or
uncertain information, where arguments for and against certain
conclusions (beliefs, goals, etc.) are constructed and compared;
and (ii) argumentation focused on communication/interaction
between agents which allows the exchange of arguments to
justify a stance and to provide reasons that defend claims.
This exchange of additional information allows agents to reach
consistent inferences in the presence of multiple diverging
points of view, in situations in which other approaches would
not. This has been shown to be the case for example in
negotiation [4], where argumentation is compared to game-
theoretic and heuristic-based approaches.

Although argumentation has received significant interest
in the MAS community in recent years, practical works are
scarce, the exceptions being [5], [6]. Our work moves in
the direction of both formalising and implementing provably
finite and ideal argumentation-based dialogues taking into
consideration argumentation-based reasoning mechanisms that
appeared in the literature and the semantics given for typical
argumentation performatives in the context of multi-agent
programming languages.

The contributions of this work are twofold. First, we
formalise a protocol to govern argumentation-based dialogues
between agents. In the formalisation, we define a transition
system for the allowed dialogue moves; this has enabled a
principled implementation of the protocol as we have exempli-
fied using the Jason platform. Second, we prove two properties
of dialogues governed by our protocol: namely that dialogues
terminate and that, under certain conditions, dialogues reach
the ideal solution.

II. ARGUMENTATION-BASED REASONING

We assume that our agents have an internal rule-based
argumentation mechanism capable of generating and evolv-
ing arguments. Rule-based argumentation frameworks can be
found in the literature, for example in [7] which extends the
well-known work of Dung [8] with structures to arguments
based on strict and defeasible rules, and the work of Berariu [5]
and our previous work [6] which extends Jason agents [9] with
such argumentative reasoning capabilities.

We assume that agents use a semantics that allows a
unique set of acceptable arguments such as grounded semantics
defined in [8] and used in [5], [7], or the defeasible semantics
defined in [10] and used by us in [6]. Further, agents only ac-
cept propositions/claims which they do not have an acceptable
argument against (i.e., the cautious attitude [11], [12]), and
the agents assert propositions/claims for which they have an
acceptable argument (i.e., the thoughtful attitude [11], [12]).

An important point to be mentioned is that to define
our protocol we will need to define the acceptability of an
argument from the agent’s perspective (if an agent does or
does not have an argument for a given subject/predicate).
However, as we are interested in the practical implementation
of our work, we assume that our agents have an implemented
argumentation-based reasoning as in our previous work [6].

III. SPEECH-ACTS FOR ARGUMENTATION-BASED
COMMUNICATION

In our mechanism, agents argue using a subset of the
speech-acts found in the literature of argumentation-based di-
alogue [13], [11], [12]. The speech-acts used and the informal
meaning are as follows:
• assert: an agent that performs an assert utterance

declares, to all participants of the dialogue, that it is
committed to defending this claim – the receivers of
the message become aware of this commitment;

• accept: an agent that performs an accept utterance de-
clares, to all participants of the dialogue, that it accepts
the previous claim of another agent – the receivers of
the message become aware of this acceptance;

• question: an agent that performs a question utterance
desires to know the reasons for a previous claim
of another agent – the receiver of the message is
committed to defend its claim, and provide the support
set for its claim; and

• justify: the justify message is similar to the assert
message, and it is the response to the question message
previously uttered, in which the agent provide the
support to its previous claim.

We adopt the formal definition of the semantics of these
speech acts from Panisson et al. [14], [15] which specify the
exact effect in the agent’s circumstance, as well as in the MAS
as a whole1. The formal semantics definition allows direct
implementation of the effects of receiving and sending the
speech-act in any agent-oriented programming language based
in the ‘mental attitudes’ described by this specification [15],
which makes it possible to fully implement our approach
in this aspect. From that work, we make use of the stated
effects of each speech act in an agent’s commitment store for
the specification of our protocol. Those effects are described
below.

IV. RULES TO UPDATE THE COMMITMENT STORE

The commitment store (CS) consists of one or more
structures, accessible to both agents in a dialogue, containing
commitments made by the agents during the dialogue2. The
CS is simply a subset of the knowledge base, and the union
of the CSs can be viewed as the global state of the dialogue
at a given time [12].

In the course of the dialogue the agents use rules that define
how the CS is updated, these rules are implicit in the semantics
definition used in this work, and are specified as follows:
• assert: the agent’s CS is updated with the asserted

content p: CS = CS ∪ p;
• accept: the agent’s CS is updated with the accepted

content p: CS = CS ∪ p;
• question: no effect over the CS; and
• justify: the agent’s CS is updated with the justified

content contained in the set of rules and facts S: CS =
CS ∪ S;

V. AGENT CONFIGURATION

We assume that two agents a and b (as in [13], [18]) partici-
pate in each instance of an argumentation-based dialogue. Each
agent has a knowledge base that contains facts and rules. The
agents are capable of generating acceptable arguments from
this knowledge base, as well as evaluating the acceptability of
the arguments [8], when new information is available.

Agents rationally decide their next argumentative move
(e.g., accept, question, etc.) based on their argumentation

1Due to space limitations, we do not detail these definitions further and
refer the reader to [14], [15].

2Other names can be founded to CS as dialogue obligation store in [16]
and dialogue store in [17].

systems (i.e., depending on whether or not the agents have
an argument for or against a certain claim). These decisions
taken by the agents correspond to their strategies. Each agent
has a commitment store (CS) which is accessible to all agents
participating in the dialogue, but only the owner agent can
update the information in its commitment store (the other
agents can only read its contents).

The commitment store of each agent is updated following
the rules presented in Section IV, depending on the per-
formative used in that interaction. We use CSa to represent
the commitment store of agent a at the current moment.
Agents can build an acceptable argument S that supports a
claim/predicate p (denoted as S |= p) from its knowledge
base and the commitment store of the other participant. For
example, agent a can build an acceptable argument S, which
supports a predicate p, from its knowledge base (KBa) and the
commitment store of b (CSb) (denoted (KBa ∪ CSb) |= S)3.

In this work, we are interested in cooperative multi-agent
systems as we only aim to supporting teams of cooperating
humans (i.e., we are not interested in systems of self-interested
agents). Therefore, the agents always take into consideration
the information provided by others agents during their rea-
soning, and agents do not lie. Given our assumption that
agents are cooperative, the agents will argue about the specific
subject introduced by the proponent of the dialogue, presenting
arguments for and against the subject, but they will not argue
about the support of each other’s arguments.

We use the notation p to describe the complement and
contrary of a predicate, e.g., we can describe the complement
of p as p where p = ¬p. We can have p as “good”, and “good”
is the contrary of “bad”; in this case “bad” can be also denoted
by p.

VI. ARGUMENTATION-BASED DIALOGUE

As described in [19], [20], the topic of discussion in a dia-
logue needs to be represented in some logical language; in our
approach the representation follows our previous work [6]. The
elements that correspond to the dialogue game specification in
our domain are:

Commencement Rule: an agent can start a dialogue when
it needs to argue about the subject. To start a dialogue, the
agent needs to have an argument that allows it to conclude the
assertion (the subject of the dialogue).

Locutions: agents can use the set of locutions from Section III,
following the protocol described in Section VI-A, below.

Combination Rules: the combination rules depend on the
strategy of the agent (corresponding the agent attitudes to
assert and accept claims in the dialogue [12], [11]).

Commitments: the update of commitments of the participants
follows the rules of the speech acts used, where each speech-
act/performative introduces commitments of participants.

Termination Rules: the dialogue ends when the proponent
executes the closedialogue move, either because the oppo-
nent accepts the subject of the dialogue (executing an accept
move); or because it cannot make the opponent accept the
subject of the dialogue.

3The commitment store of the agent a (CSa) is a subset of the knowledge
base of a (KBa), formally CSa ⊆ KBa.

A. Dialogue Game Protocol

The dialogue game protocol restricts the moves allowed
by agents. A dialogue game starts with an agent executing an
assert move, introducing the subject of the dialogue. When
an agent receives an assert message, it can either accept,
executing an accept move, or question, executing a question
move. When an agent receives a question message, it can
only execute a justify move (the agent is committed to
provide an argument which supports the previously asserted
predicate). When an agent receives a justify message, it can
either accept the subject of the dialogue (executing an accept
move) or provide an argument not to accept the subject of the
dialogue (executing a justify move). Finally, after receiving
a justify message, the agent may close the dialogue as well.
When an agent receives an accept message it may close
the dialogue. This dynamic is illustrated in the diagram of
Figure 1, which visually represents the transition system we
now formally define. Here, the white circle represents the start
move, grey circles intermediate moves and the black circle the
finish move.

Fig. 1. Allowed Moves.

The protocol also restricts who can execute the moves and
who can close the dialogue. The dialogue starts with an agent
executing an assert move. We call the agent that starts the
dialogue the proponent. An agent can never repeat a move
with the same content; this is guaranteed by dialogue rules
and the structure which maintains the information introduced
in the dialogue as commitments (the commitment store). The
dialogue can be closed only by the proponent, so there is
only a single agent that can execute the closedialogue move
in a particular dialogue, namely the proponent. The dialogue
ends when the proponent executes a closedialogue move.
We prove that a dialogue following our protocol will always
terminate in the next sections.

B. Dialogue Rules

Now, we describe the dialogue rules that govern the
interactions between the agents, where each agent moves
by performing the allowed utterances. These rules (which
correspond to a dialogue game [20]) are expressed as if-then
rules, which are then easy to implement. The dialogue rules
specify the moves each player can make, and so specify the
protocol under which the dialogue takes place [13].

Definition 1 (Dialogue Game Protocol). A dialogue game
protocol is formally represented as a tuple 〈MO, DI〉, where
MO is a finite set of allowed moves, and DI a set of dialogue
rules.

Definition 2 (Dialogue Move). We denote a move in MO as
Mi(α, β, cont, t), where i is the type of move made by agent
α and addressed to agent β at time t regarding content cont.

We consider the following set of types of moves, denoted by
P (q.v. Section 3): assert, accept, question, justify,
and closedialogue. The content of a move (cont) can be
an argument (a set of predicates and rules) or a predicate
(e.g., in an assert move the content is a predicate and in a
justify move the content will be an argument that supports
a claim/predicate uttered in a previous assert move).

The dialogue rules in DI indicate the possible moves that
an agent can make following a previous move of the other
agent. The formalisation we give here follows the work of
Bentahar et al. [21]. To define the dialogue rules, we use a set
of condition (denoted by C) which reflect the agents’ strategies.
Formally, we have:

Definition 3 (Dialogue Rules). Dialogue rules can assume one
of two forms:

1) First, we have dialogue rules that specify which moves are
allowed given the previous move and conditions (correspond-
ing to the combination rules of the dialogue game).∧

0<k≤ni,
i,j∈P

(Mi(α, β, cont, t) ∧ Ck ⇒ M
j
k(β, α, contk, t

′)

where P is the set of move types, Mi and Mj are in MO, t < t′

and ni is the number of allowed communicative acts that β
could perform after receiving a move of type i from α.

2) Second, we have the initial conditions (corresponding to
the commencement rules of the dialogue game), which do not
require that any move was previously executed.∧

0<k≤n,
j∈P

(Ck ⇒ M
j
k(α, β, contk, t0)

where t0 is the initial time and n is the number of allowed
moves that α could make initially.

1) Initial Rule: The first move (commencement rule) intro-
duces the subject of the dialogue (where subject(p) means
that the predicate p is the subject of the dialogue). In our
approach, each dialogue has only one subject. The agent that
introduces the subject of the dialogue is called proponent, and
the other agent participating in the dialogue is called opponent
(we use Pr and Op, respectively, to refer to them).

Cin1 ⇒ assert(α, β, p)
Where:
Cin1 = ∃S, S |= p : (KBα ∪ CSβ) |= S ∧ subject(p)

The dialogue starts when an agent needs to argue about a
given subject. The initial rule restricts that an agent needs to
have an argument that defends its claim in order to start an
argumentation-based dialogue (as the agent will be committed
to defending the initial assertion).

2) Assert Rules: We have two dialogue rules that restrict
the possible next move for agents to respond to an assert
move:

assert(α, β, p) ∧ Cas1 ⇒ accept(β, α, p)
assert(α, β, p) ∧ Cas2 ⇒ question(β, α, p)
Where:
Cas1 = @S, S |= p : (KBβ ∪ CSα) |= S
Cas2 = ∃S, S |= p : (KBβ ∪ CSα) |= S

The options of the agent are: (i) to accept the previous
claim (the subject asserted in the dialogue), where condition
Cas1 means that the agent will accept a claim if it has no
argument against it; and (ii) when the agent has an argument
against the previous assertion, Cas2, the agent will question the
other agent to provide the support of its previous claim.

3) Question Rule: The dialogue rule that restricts the
moves after an agent receives a question message is:

question(α, β, p) ∧ Cqs1 ⇒ justify(β, α, S)

Where:
Cqs1 = ∃S, S |= p : (KBβ ∪ CSα) |= S

As the agent has asserted a predicate p previously (which
allowed the question move), the agent is committed to defend
its claim in the dialogue, so it will provide the support to this
claim.

4) Justify Rules: We have four dialogue rules to restrict
the moves to respond to a justify move:

justify(α, β, S) ∧ Cjs1 ⇒ accept(β, α, p)

justify(α, β, S) ∧ Cjs2 ⇒ justify(β, α, S′)

justify(α, β, S) ∧ Cjs3 ⇒ closedialogue(β, α)

justify(α, β, S) ∧ Cjs4 ⇒ justify(β, α, S′)

Where:
Cjs1 = @S′, S′ |= p : (KBβ ∪CSα) |= S′ ∧S′ 6∈ CSβ ∧ Op(β) ∧
subject(p)

Cjs2 = ∃S′, S′ |= p : (KBβ ∪CSα) |= S′ ∧S′ 6∈ CSβ ∧ Op(β) ∧
subject(p)

Cjs3 = @S′, S′ |= p : (KBβ ∪CSα) |= S′ ∧S′ 6∈ CSβ ∧ Pr(β) ∧
subject(p)

Cjs4 = ∃S′, S′ |= p : (KBβ ∪CSα) |= S′ ∧S′ 6∈ CSβ ∧ Pr(β) ∧
subject(p)

The agent will accept the subject of the dialogue, Cjs1,
if the justification received from the proponent has changed
the agent’s conclusion, otherwise the agent will justify why it
cannot accept the subject, Cjs2. The agent cannot accept the
subject because it still has an argument against it, even after
receiving this new information. In the case in which the agent
that receives the justify from the opponent but cannot itself
reach the same conclusion given the new information received
(i.e., the agent does not have an acceptable argument for the
subject), the agent closes the dialogue, Cjs3. In the final case,
the agent sends the new argument4 to support the subject of
the dialogue, Cjs4.

5) Accept Rule: The dialogue rule that restricts the moves
when an agent receives an accept message is:

accept(α, β, p) ∧ Cac1 ⇒ closedialogue(β, α)

Where:
Cac1 = subject(p) ∧ Pr(β)

When the agent receives an accept move it will close the
dialogue. Only the proponent will receive an accept move when
the opponent accepts the subject of the dialogue.

4The argument is new because, as defined in the protocol, the agent cannot
repeat a move with the same content.

C. Properties of the Protocol

After we have defined the protocol, it is interesting to
demonstrate its effectiveness through the properties commonly
found in the literature. One of the more important properties
to be proved over a protocol is that a dialogue, following such
protocol, will always terminate.

Theorem 1 (Termination). Any argumentation-based dialogue,
following the protocol defined above, eventually terminates.

Proof: Considering that at least one agent (the agent α)
needs to have p as acceptable (where we use p as the subject
of the dialogue), the initial configurations are restricted to two:

In the first case, where KBα |= p and KBβ 6|= p, agent α will
introduce p in the dialogue using the assert move; as agent β
has no argument against (i.e., no argument for p), following the
dialogue rule condition Cas1 the agent will accept p executing
the accept move. Agent α receives the accept message and,
following the dialogue rule condition Cac1, closes the dialogue.

In the second case, where KBα |= p and KBβ |= p,
agent α, as before, will introduce p in the dialogue using the
assert move. As agent β has an argument against (i.e., an
argument to p), agent β, following the dialogue rule condition
Cas2, will execute the question move. Agent α receives the
question message and, following the dialogue rule condition
Cqs1, executes the justify move with the argument which
support p (the existence of this argument is guaranteed by
initial dialogue rule condition Cin1 which allowed the agent to
start the dialogue). The agent β receives this new information
and has two options: (i) When the new information changes
the acceptability of p to agent β (the agent has no acceptable
argument for p which has not yet been introduced in the
dialogue), then the agent, following the dialogue rule condition
Cjs1, accepts p (executing the accept move). The process
continues as in the first case, where agent α receives the
accept message and closes the dialogue; (ii) Otherwise, even
considering the new information received, agent β still has
an argument for p which has not yet been introduced in the
dialogue, then the agent, following the dialogue rule condition
Cjs2, will execute a justify move. The agent α receives the
justify message and has two options: (i) Agent α closes the
dialogue, following the dialogue rule condition Cjs3, because
it has no acceptable argument to support p that has not yet
been introduced in the dialogue; (ii) The agent α introduces
a new acceptable argument, considering the new information,
following the dialogue rule condition Cjs4, support p. As the
knowledge bases of the agents are finite and the justify move
cannot be repeated with the same content, as formally defined
in the dialogue rule conditions Cjs2 and Cjs4, eventually
agent α will close the dialogue, because it has no acceptable
argument that has not yet been introduced in the dialogue or
agent β will accept p because it has no acceptable argument for
p that has not been introduced in the dialogue, and α will close
the dialogue as in the first case. Therefore, any argumentation-
based dialogue following that protocol eventually terminates.

Termination of a dialogue is an important and well-known
property of protocols. However, as described by Amgoud and
Vesic [22], except the termination of each dialogue generated
under those protocols, nothing is said on their quality. There-
fore, we will also prove such properties demonstrating that the

dialogues following our protocol will always end with the best
solution (ideal solution [22]) when it exists.

As described by Amgoud and Vesic [22], the ideal solution
is the best solution in the general and is time-independent.
Considering the reasoning mechanism used, the ideal solution
is the result achieved when the agents have all information
related to the subject (all arguments for and against the
subject). This definition is characterised as integrative, where
both sides are looking for solutions that are “good” for every-
one [23]. A situation is also called “ideal” where the agents
have complete information about the others agents, suggesting
the integration of the theories of all agents into a single
theory (the so-called aggregate argumentation system) [23].
According to [23] this integration of all arguments (agent
theories) allows a centralised reasoning mechanism to identify
the outcomes that are “good” for all agents participating in
the dialogue. However our work differs from [23] because we
do not have a centralised reasoning mechanism, but with the
exchange of all arguments related to the subject the agents
can, rationality, reach the same conclusion of a centralised
reasoning mechanism.

Definition 4 (Ideal Solution). The ideal solution is the conclu-
sion resulting from the all information related to subject (ar-
guments and preferences regarding subject). The conclusion
is whether the subject is acceptable, it is not acceptable, or
it is not possible to determine the acceptability of the subject
(i.e., the ideal solution does not exist).

As in the real life, arguing does not necessarily lead
to an agreement, it may be the case that two agents will
exchange arguments and at the end the dialogue fail to agree
about the subject [22]. This disagreement is caused by
different preferences between the agents, but even with the
disagreement, in the worst case, argumentation-based dialogue
improves the choices made by each agent (using the additional
information exchanged). Therefore, as described by Amgoud
and Vesic [22], argumentation may improve the quality of the
outcome but never decrease it.

To prove that the agents, using our protocol, strategies,
and reasoning mechanism defined will reach the ideal solution
(when it exists), we will consider the union of the knowledge
bases (as the work of Dimopoulos et al. [23]).

Theorem 2 (Ideal Solution). The ideal solution for a dialogue
with subject p is for both agents to agree about p when (KBα∪
KBβ) |= p and for both agents to conclude p if (KBα∪KBβ) |=
p; otherwise, the ideal solution will not exist (neither (KBα ∪
KBβ) |= p nor (KBα ∪ KBβ) |= p hold).

Proof: First, we will prove that the ideal solution p is
agreed upon by both agents when (KBα ∪ KBβ) |= p. As p is
always acceptable to the proponent (we refer to the proponent
in this proof as α), the case where KBα |= p and KBβ |= p, and
the case where KBα |= p and KBβ |= p do not exist. Therefore,
the possible cases are limited to two:

1) KBα |= p and KBβ 6|= p. In this case the proponent agent
will start the dialogue asserting p (using the assert move)
and the other agent will execute the accept move (the other
agent does not have an acceptable argument against), hence
terminating the dialogue with both agents agreeing on p, i.e.,
the ideal solution in this case. Note that, as we are assuming

in this part of the proof that (KBα ∪ KBβ) |= p, agreement on
p is indeed the ideal solution.

2) KBα |= p and KBβ |= p. In this case the agent identified
by α starts the dialogue using the move assert, the agent
identified by β will execute the move question because, as
yet, p is acceptable to it. The agent α does a justify move;
if this argument changes the conclusion of agent β, the agent
accepts the subject (executing the move accept). Otherwise,
agent β will send its arguments for not accepting the subject
(doing another justify move). The agents will exchange
arguments until a new argument from α changes the conclusion
of β and agent β accepts the subject of the dialogue
(executing the accept move), given that (KBα ∪ KBβ) |= p.
It follows that the ideal solution p is reached.

The part of the proof for when (KBα∪KBβ) |= p is similar to
the one above. The difference is that, in case two (i.e., when
agents initially disagree), at a certain moment agent β will
introduce an argument (using the justify move) where the
new information will change the acceptability of the subject
to agent α, and it will then close the dialogue. Given that
(KBα∪KBβ) |= p, it follows that p, the ideal solution, is reached
through the dialogue following our protocol.

In the last case, where the ideal solution does not exist,
the agents exchange arguments with the justify move and
the dialogue terminates in disagreement. As before, the agents
initially disagree about the subject, at a certain moment agent
α will introduce an argument (using the justify move) where
the new information will not make the subject acceptable
for agent β. Agent β will justify its position executing a
justify move hence not accepting the subject, when the
new information does not change the acceptability of subject
for agent α. At this moment, if agent α does not satisfy the
dialogue rule condition Cjs3, i.e., it has no new argument which
supports the subject, the agent will close the dialogue and the
dialogue will ends in disagreement. Otherwise, a new round of
justify moves will occur. Given that neither (KBα∪KBβ) |= p
nor (KBα ∪ KBβ) |= p hold, the dialogue ends with the agents
disagreeing about the subject.

An important point in our proof is that the non-existence of
the ideal solution is a consequence of agent preferences. When
individual preferences are considered, an agent’s own argument
will be acceptable even with the argument against presented by
the other agent. For example, agent α executes the justify
move, introducing an argument to p in the dialogue, agent β
receives this information and uses the justify move because
it has an argument to p, agent α receives this information
but its own argument is still acceptable. At this moment, the
agent detects that there exist different preferences between the
agents and, following the dialogue rule condition Cjs3, the
agent closes the dialogue.

VII. EXAMPLE

As an example, we will describe a scenario of an appli-
cation developed in the context of assisted living [24]. The
application provides functionalities such as activity recognition
and task reallocation among agents representing human users
through the use of planning, agent, and semantic technologies.

A user of the application, named Paul, has a new appoint-
ment and he will not be able to take his father, named John,

to physiotherapy. Then Paul’s agent will try to reallocate the
task. First Paul’s agent checks if the task can be postponed;
in this case the task can, normally, be postponed. With this
information Paul’s agent initiates a dialogue with John’s agent,
asserting that Paul cannot execute the task. John’s agent
receives the message and executes a question move, because
the agent has an argument against, with information that John
is in severe pain that day, and this implies that someone needs
to take John to the physiotherapy. Paul’s agent receives the
question message and provides the justification using the
justify move with the argument that allowed the initial assert
message, more specifically: that a physiotherapy appointment
can be postponed. John’s agent receives this message, but
this information does not change its conclusion, then John’s
agent executes the justify move with the strict rule that
John is in severe pain, and this implies that someone needs to
take John to the physiotherapy. Paul’s agent receives this new
information and concludes that someone needs to take John to
physiotherapy. Paul’s agent closes that dialogue and checks, in
the application’s ontology, who can execute the task. In this
case “Paul” and “Jane” can execute this task (because they
are adults and can drive). Paul’s agent starts a new dialogue
with Jane’s agent using the assert move, suggesting that Jane
executes the task. Jane’s agent receives the assert message
and executes a question move, because it knows that the
task can be postponed. Paul’s agent sends the justification
(argument) that someone needs to execute the task because
John is in pain. Jane’s agent receives this new information and
accepts to execute the task5.

VIII. IMPLEMENTATION

In this section we describe how the protocol can be
implemented using the Jason platform6 [9]. As described
above, we assume that agents have an internal rule-based
argumentation system. In the protocol implementation we need
that the agent can itself query the acceptability of a given
content. Considering our previous work in argumentation-
based reasoning [6], the agents can query the acceptability of
an argument in its internal reasoning process using a special
predicate argument(content, Arg) where Arg is unified with the
rules and facts used to derive the content. If such an argument
does not exist, i.e., the content is not acceptable to the agent,
the query will fail as in logic-based programming. Suppose
the plan below:

+!argue_about(Content,Op): argument(Content,Arg)
<- !start_dialogue(Content,Op).

In this example, an agent has a plan to achieve the goal
of to argue about a given content. The agent itself needs to
have an argument for this content in order to use this plan
(the plan context or condition is argument(content,Arg)), then
it can start a dialogue using the argument. In the case where
the context is not applicable – i.e., the argument query fails –
the plan cannot be used to achieve the agent’s goal.

Following our protocol definition, an agent always starts
a dialogue using an assert move. In Jason, a move corre-
sponds to an action for sending a message using the internal

5Jane’s agent, as usual, queries Jane to ask for confirmation on the proposed
course of action.

6Jason extends the AgentSpeak(L) language [25], and we refer the reader
to [9] for details about Jason.

action7 .send(receiver, performative, content). Therefore, the
move assert(α, β, p) corresponds to an agent α sending a
message of type assert with content p to agent β – i.e.,
.send(β, assert, p) executed by Jason agent α.

+!start_dialogue(Subj,Op): argument(Subj,Arg)
<- .send(Op,assert,Subj).

The plan above implements the initial rule from our
protocol, which allows an agent to start a dialogue if it has an
argument for the given subject (Subj) which will be discussed
in the dialogue.

The other dialogue rules are of the format “move ∧
condition⇒ move”, where an agent receives a message and
given a certain condition sends another message as a response.
Receiving message in Jason is treated using plans, similar to
the ones that treat receiving KQML performatives [26] already
implemented in Jason.

@kqmlReceivedAssert
+!kqml_received(Sender, assert, Subj, MsgId)

<- !respond(Sender,assert,Subj).

+!respond(Sender,assert,Subj): comp(Subj,Comp) &
not(argument(Comp,Arg))

<- .send(Sender,accept,Subj).

+!respond(Sender,assert,Subj): comp(Subj,Comp) &
argument(Comp,Arg)

<- .send(Sender,question,Subj).

The plans above implement the assert rules from our
protocol. Following the example, when an agent receives a
message with the performative assert (an assert move) it
will then have a goal to respond to this message. The response,
as described in the assert rules, depends on whether the agent
does or does not have an argument against the subject of the
dialogue. In the first case, where the agent does not have an
argument against, it accepts the subject executing an accept
move. Otherwise, when the agent does have an argument
against (queried using the predicate comp), it questions the
other agent executing a question move.

The remainder of the dialogue rules are implemented simi-
larly to the examples above. The examples above were given to
demonstrate that our formalisation can be intuitively/directly
implemented in Jason. In a real application, such as the
scenario described in Section VII, the agents will have other
actions and subgoals in the course of the their plans because
they need to interact with the users or to adopt the result of
a dialogue as goal to be achieved. However, we argue that
the plans presented here are enough to demonstrate how the
protocol we devised can be completely implemented, as we
have done in practice.

IX. RELATED WORK

Some protocols can be found in the literature of
argumentation-based dialogues in MAS, most focused in ne-
gotiation. An example is the work of Kakas and Moraitis [27],
which proposed a protocol that is sensitive to the context
and roles of the agents in which the agents can adapt their
negotiation strategies and offers, as their environment changes,

7The internal actions available in the Jason platform can be found in [9].

and when they exchange information within the negotiation.
The agents can build arguments through a theory (formed
by their knowledge base and goals). The work is based on
argumentation systems with dynamic preference proposed by
the same authors in [28], [29]. Differently of [27], we develop
a protocol where both sides are looking for solutions that are
“good” for everyone and this protocol is fully implementable
as described in the Serction VIII.

More recently, Amgoud and Vesic [22] analyse the role of
argumentation in negotiation dialogues, proposing an abstract
framework for argumentation-based negotiation. The authors
argue that argumentation can improve the quality of an out-
come but never decrease it. The authors in [22], as in [27],
argue that, by exchanging arguments, the theories of the agents
(i.e., their mental states) may evolve and thus the status of
offers may change, allowing optimal solutions for both agents.
The protocol to argumentation-based negotiation is described
as moves where the agents exchange offers. The paper describe
that optimal solution do not dependent on dialogue step, they
are offers that an agent would choose if it had access to all
arguments owned by the other agent. New arguments allow
agents to revise their mental states, thus the best decision for
an agent is the one it makes under complete information. This
situation, also, is described in [30], where the work shows how
the beliefs of two agents that engage in an argumentation-based
dialogue will converge over time (the new information changes
the agents’ conclusions). We have taken into consideration
the important properties presented by [22], where we prove
that dialogues following our protocol will achieve the optimal
solution. This is an important aspect to be considered, mainly
in the development of real applications as we have done.

Rueda and Martı́nez in [31] propose an interaction lan-
guage that allows argumentation-based dialogue among collab-
orative BDI agents. All members of the system are autonomous
and rational entities, but have a collaborative attitude (as in
our work). Each agent elaborates arguments as part of its own
planning process and justifies its proposals, counter-proposals,
and rejections during the negotiation process [31]. The in-
teraction language proposed in this work is presented in the
form of preconditions, meaning (informal meaning), response
(the possible responses for this locution) and updates (the
effects over the belief base of the agents). The representation
used by [31], although different from ours, has the same
components. We can quote the precondition as receiving a
move, which given a condition (acceptability of the content
received) allows a response. However, in [31] only an informal
interaction language is presented.

Hussain and Toni in [32], demonstrate the benefits of the
use argumentation-based dialogues in a scenario of resource
reallocation. It is assumed that the resources are unique and
indivisible. In this work, the agents always justify their requests
and responses. The requests are justified with the information
that the agent needs the resource and does not have it. The
responses given by agents depend on the information that they
have, e.g., if an agent knows who has the resource requested,
the agent can refuse to give the resource because it does
not have it but inform that another agent has the resource,
allowing the requesting agent to directly contact that agent.
Although simple, the work presented in [32] demonstrates
benefits in “real” scenarios which make use of argumentation-

based dialogues. In our work, we follow [32] developing and
implementing applications which make use of argumentation-
based dialogues.

Oliva et al. in [33] propose a conceptual framework for
argumentation-based negotiation called SANA (Supporting
Artifacts for Negotiation with Argumentation) including the
SANAP protocol. In that work, artifacts play an important
role in the framework, monitoring/assisting the participating
agents, inferring mutually-accepted proposals, etc. Differently
from [33], we use artifacts only to store the agents’ commit-
ments in dialogues, i.e., argument evaluation and generation is
done by the agents themselves through reasoning. Therefore,
the agent decision-making is based on its internal reasoning
over the arguments and the possible dialogue moves avail-
able to them at that moment. Further, our work focuses on
argumentation-based dialogues in an agent-oriented program-
ming language, also differently from [33], which focuses on
an infrastructure (provided by artifacts) for agents to use in
argumentation-based negotiation.

Other protocols and dialogue mechanisms can be found
in the literature, as the work of Rahwan and Larson [34],
which introduce the called argumentation mechanism design
(ArgMD) which enables the design and analysis of argumen-
tation mechanism for self-interested agents. The ArgMD also
is used in [35], where a number of preference relations over
argumentation outcomes are analysed. The main difference of
our work is that we do not use a centralised mechanism to
decide the acceptability of arguments and to access the result
of the dialogues. The agents’ argumentation-based reasoning
mechanism allows the agents rationally reach the same result
of a centralised reasoning mechanism with the exchange of
information related to the subject of the dialogue. The same
authors, in [36], study argumentation-based dialogues over a
semantics which produces only a set of acceptable arguments
(as in our work). The authors assume that the agents have focal
arguments and the goal of the agents is to have their focal
argument accepted. Our approach differs from that, because
we have no focal arguments, but the agents in our systems
have the goal of agreeing or not about a subject (we can call
of topic of discussion).

X. CONCLUSION

In this paper, we have formalised a practical protocol for
argumentation-based dialogues using an easily implementable
transition system. The resulting formalisation allowed us not
only to implement a protocol for argumentation-based dia-
logues but also to prove fundamental properties about the
dialogues generated by the protocol, providing a solid basis
for building MAS with provable properties. The contributions
of the work are twofold. First, we formalise a protocol to
govern argumentation-based dialogues between agents. The
formalisation takes into consideration practical (implemented)
argumentation-based agent reasoning mechanisms as well as
agents’ individual strategies. Second, we prove two properties
of dialogues governed by our protocol, namely, that dialogues
always terminate, a that they reach the ideal solution under
certain conditions. Termination is a well-known and fundamen-
tal property to be proved, which ensures that argumentation-
based dialogues will not waste agent resources indefinitely.
Moreover, reaching the ideal solution, although clearly an

important property, has as yet been poorly explored in the
literature, perhaps because it has been first defined fairly
recently [22]. Both properties are, generally, studied using a
centralised reasoning mechanism [23]. In our approach, we use
the agent’s internal reasoning mechanism (i.e., rational agents)
to achieve such properties, which is a more realistic approach
for distributed systems, such as MAS.

To the best of our knowledge, the only other practical ap-
proaches that integrate argumentation with agent programming
languages are [5], [6], both of which focus on the reasoning
mechanism, rather than dialogues, and lack formal proofs of
their properties. Therefore, this work provides an important
advance to the practical implementation of argumentation as
a mechanism for agent dialogues. In fact, we have imple-
mented and tested a version of our approach in the Jason [9]
programming language. Thus, our mechanism can be used to
implement argumentation-based negotiation and other dialogue
types described in the literature which still lack concrete
and general implementations. As future work, we intend to
extend the work presented here to other application domains,
including domains with self-interested agents.

ACKNOWLEDGMENT

Part of the results presented in this paper were obtained
through research on a project titled “Semantic and Multi-Agent
Technologies for Group Interaction”, sponsored by Samsung
Eletrônica da Amazônia Ltda. under the terms of Brazilian
federal law No. 8.248/91.

REFERENCES

[1] F. H. Van Eemeren, R. Grootendorst, R. H. Johnson, C. Plantin, and
C. A. Willard, Fundamentals of argumentation theory: A handbook of
historical backgrounds and contemporary developments. Routledge,
2013.

[2] I. Rahwan and G. R. Simari, Argumentation in Artificial Intelligence,
1st ed. Springer Publishing Company, Incorporated, 2009.

[3] N. Maudet, S. Parsons, and I. Rahwan, “Argumentation in multi-agent
systems: Context and recent developments,” in Argumentation in Multi-
Agent Systems. Springer, 2007, pp. 1–16.

[4] I. Rahwan, S. D. Ramchurn, N. R. Jennings, P. McBurney, S. Parsons,
and L. Sonenberg, “Argumentation-based negotiation,” 2004.

[5] T. Berariu, “An argumentation framework for bdi agents,” in Intelligent
Distributed Computing VII. Springer, 2014, pp. 343–354.

[6] A. R. Panisson, F. Meneguzzi, R. Vieira, and R. H. Bordini, “An Ap-
proach for Argumentation-based Reasoning Using Defeasible Logic in
Multi-Agent Programming Languages,” in 11th International Workshop
on Argumentation in Multiagent Systems (ArgMAS), 2014.

[7] H. Prakken, “An abstract framework for argumentation with structured
arguments,” Argument and Computation, vol. 1, no. 2, pp. 93–124, 2011.

[8] P. M. Dung, “On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games,”
Artificial Intelligence, vol. 77, pp. 321–357, 1995.

[9] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming Multi-
Agent Systems in AgentSpeak using Jason (Wiley Series in Agent
Technology). John Wiley & Sons, 2007.

[10] G. Governatori, M. J. Maher, G. Antoniou, and D. Billington, “Argu-
mentation semantics for defeasible logic.” J. Log. Comput., vol. 14,
no. 5, pp. 675–702, 2004.

[11] S. Parsons and P. McBurney, “Argumentation-based dialogues for agent
co-ordination,” Group Decision and Negotiation, vol. 12, no. 5, pp. 415–
439, 2003.

[12] S. Parsons, M. Wooldridge, and L. Amgoud, “An analysis of formal
inter-agent dialogues,” in Proc. first international joint conference on
Autonomous agents and multiagent systems: part 1, ser. AAMAS ’02.
New York, NY, USA: ACM, 2002, pp. 394–401.

[13] L. Amgoud, N. Maudet, and S. Parsons, “Modeling dialogues using
argumentation.” in ICMAS. IEEE Computer Society, 2000, pp. 31–38.

[14] A. R. Panisson, F. Meneguzzi, M. Fagundes, R. Vieira, and R. H.
Bordini, “Formal semantics of speech acts for argumentative dialogues,”
in Proc. Thirteenth International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 2014, pp. 1437–1438.

[15] A. R. Panisson, F. Meneguzzi, R. Vieira, and R. H. Bordini, “Towards
practical argumentation in multi-agent systems,” in 2015 Brazilian
Conference on Intelligent Systems, BRACIS 2015, 2015.

[16] P. McBurney and S. Parsons, “Locutions for argumentation in agent
interaction protocols,” in Agent Communication. Springer, 2005, pp.
209–225.

[17] F. Sadri, F. Toni, and P. Torroni, “Logic agents, dialogues and negoti-
ation: An abductive approach,” in Proc. AISB’01. AISB, 2001.

[18] P. McBurney, R. V. Eijk, S. Parsons, and L. Amgoud, “A dialogue-game
protocol for agent purchase negotiations,” 2001.

[19] P. McBurney and S. Parsons, “Games that agents play: A formal
framework for dialogues between autonomous agents,” Journal of
Logic, Language and Information, vol. 11, p. 2002, 2001.

[20] ——, “Dialogue games in multi-agent systems,” Informal Logic, vol. 22,
p. 2002, 2002.

[21] J. Bentahar, R. Alam, and Z. Maamar, “An argumentation-based proto-
col for conflict resolution,” in Workshop on Knowledge Representation
for Agents and MultiAgent Systems (KRAMAS), 2008.

[22] L. Amgoud and S. Vesic, “A formal analysis of the role of argumentation
in negotiation dialogues,” J. Log. and Comput., vol. 22, no. 5, pp. 957–
978, oct 2012.

[23] Y. Dimopoulos, P. Moraitis, and L. Amgoud, “Characterizing the
outcomes of argumentation-based integrative negotiation,” Web Intelli-
gence and Intelligent Agent Technology, IEEE/WIC/ACM International
Conference on, vol. 2, pp. 456–460, 2008.

[24] A. R. Panisson, A. Freitas, D. Schmidt, L. Hilgert, F. Meneguzzi,
R. Vieira, and R. H. Bordini, “Arguing About Task Reallocation Using
Ontological Information in Multi-Agent Systems,” in 12th International
Workshop on Argumentation in Multiagent Systems, 2015.

[25] A. S. Rao, “Agentspeak (l): Bdi agents speak out in a logical computable
language,” in Agents Breaking Away. Springer, 1996, pp. 42–55.

[26] J. Mayfield, Y. Labrou, and T. Finin, “Evaluation of kqml as an
agent communication language,” in Intelligent Agents II Agent Theories,
Architectures, and Languages. Springer, 1996, pp. 347–360.

[27] A. Kakas and P. Moraitis, “Adaptive agent negotiation via argu-
mentation,” in 5th Int. Joint Conference on Autonomous Agents and
Multiagent Systems, ser. AAMAS ’06, 2006, pp. 384–391.

[28] A. C. Kakas and P. Moraitis, “Argumentative agent deliberation, roles
and context.” Electr. Notes Theor. Comput. Sci., vol. 70, no. 5, pp. 39–
53, 2002.

[29] A. Kakas and P. Moraitis, “Argumentation based decision making for
autonomous agents,” in 2th Int. Joint Conference on Autonomous Agents
and Multiagent Systems, ser. AAMAS ’03, 2003, pp. 883–890.

[30] S. Parsons and E. Sklar, “How agents alter their beliefs after an
argumentation-based dialogue,” in Argumentation in Multi-Agent Sys-
tems. Springer, 2006, pp. 297–312.

[31] S. V. Rueda and M. V. Martı́nez, “Interaction among bdi argumentative
agents: a dialogue games approach,” in XI Congreso Argentino de
Ciencias de la Computación, 2005.

[32] A. Hussain and F. Toni, “On the benefits of argumentation for
negotiation-preliminary version,” in Proc. 6th European workshop on
multi-agent systems (EUMAS-2008), 2008.

[33] E. Oliva, P. McBurney, A. Omicini, and M. Viroli, “Argumentation
and artifacts for negotiation support,” International Journal of Artificial
Intelligence, vol. 4, no. S10, pp. 90–117, 2010.

[34] I. Rahwan and K. Larson, “Mechanism design for abstract argumen-
tation,” in Proc. 7th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 2008, pp. 1031–1038.

[35] ——, “Pareto optimality in abstract argumentation.” in AAAI, D. Fox
and C. P. Gomes, Eds. AAAI Press, 2008, pp. 150–155.

[36] S. Pan, K. Larson, and I. Rahwan, “Argumentation mechanism design
for preferred semantics.” in COMMA. Citeseer, 2010, pp. 403–414.

