
PROBABILISTIC PLAN RECOGNITION FOR INTELLIGENT
INFORMATION AGENTS

Towards proactive software assistant agents

Jean Oh, Felipe Meneguzzi, and Katia Sycara
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA

{jeanoh,meneguzz,katia}@cs.cmu.edu

Keywords: proactive assistant agents, probabilistic plan recognition, information agents, agent architecture

Abstract: In this paper, we present a software assistant agent that can proactively manage information on behalf of
cognitively overloaded users. We develop an agent architecture, known here as ANTicipatory Information
and Planning Agent (ANTIPA), for recognizing user plan in an unobtrusive manner and reasoning about time
constraints to provide relevant information at a right time. ANTIPA integrates probabilistic plan recognition
with constraint-based information gathering. This paper focuses on our probabilistic plan prediction algorithm
inspired by a decision theory that human decision making is based on long-term outcomes. A proof of concept
user study shows a promising result.

1 INTRODUCTION
When humans engage in complex activities that chal-
lenge their cognitive skills and divide their attention
among multiple competing tasks, the quality of their
task performance generally degrades. Consider, for
example, an operator (or a user) at an emergency cen-
ter who needs to coordinate rescue teams for two si-
multaneous fires within her jurisdiction. The user
needs to collect the current local information regard-
ing each fire incident in order to make adequate deci-
sions concurrently. Due to the amount of needed in-
formation and the constraints that the decisions must
be made urgently the user can be cognitive over-
loaded, resulting in low quality decisions. In order
to assist cognitively overloaded users, research on in-
telligent software agents has been vigorous, as illus-
trated by numerous recent projects (Chalupsky et al.,
2002; Freed et al., 2008; Yorke-Smith et al., 2009).

In this paper, we present an agent architecture
known here as ANTicipatory Information and Plan-
ning Agent (ANTIPA) that can recognize the user’s
high-level goals (and the plans towards those goals)
and prefetch various information that is relevant to the
user’s planning context, allowing the user to focus on
problem solving. In contrast to a reactive approach to
assistance that uses certain cues to trigger assistive ac-

tions, we aim to predict the user’s future plan in order
to proactively seek information ahead of time in antic-
ipation of the users’s need, offsetting possible delays
and unreliability of distributed information.

In particular, we focus on an algorithm for predict-
ing potential information needs following a decision-
theoretic assumption that the user tries to reach more
valuable world states (goals). Our algorithm is based
on a decision-theoretic model known as Markov Deci-
sion Processes (MDP), and predicts a stochastic user
behavior such that the better the consequence of an
action is, the more likely the user takes the action. We
first present the algorithm for a fully observable envi-
ronment, and then generalize the algorithm to handle
a partially observable case where the assistant agent
may not be able to fully observe the user’s current
states and actions.

The main contributions of this paper are the fol-
lowings. We present the ANTIPA agent architecture:
anticipatory Information and planning agent. The AN-
TIPA architecture enables the agent to perform proac-
tive information management by seamlessly integrat-
ing information gathering with plan recognition. We
describe a probabilistic plan recognition algorithm for
predicting the user’s time-constrained needs for assis-
tance. The agent continuously updates its prediction
of the user plan, and adjusts its information-gathering



plan to satisfy the user’s changing needs. For a proof
of concept evaluation, we design and implement an
abstract game that is simple yet conveys the core char-
acteristics of information-dependent planning prob-
lem, and reports promising preliminary user study re-
sults.

2 RELATED WORK
Plan recognition refers to the task of identifying the
user’s high-level goals (or intentions) by observing
the user’s current activities (Armentano and Amandi,
2007). The majority of existing work in plan recog-
nition relies on a plan library that represents a set of
alternative ways to solve a domain-specific problem,
and aims to find a plan in the library that best explains
the observed behavior. In order to avoid the cumber-
some process of constructing elaborate plan libraries
of all possible plan alternatives, recent work proposed
the idea of formulating plan recognition as a plan-
ning problem using classical planners (Ramı́rez and
Geffner, 2009) or decision-theoretic planners (Baker
et al., 2009). In this paper, we develop a plan recog-
nition algorithm using a decision-theoretic planner.

A Markov Decision Process (MDP) is a rich
decision-theoretic model that can concisely represent
various real-life decision-making problems (Bellman,
1957). In cognitive science, MDP-based cognition
models have been proposed to represent computation-
ally how people predict the behavior of other (ratio-
nal) agents (Baker et al., 2009). Based on the as-
sumption that the observed actor tries to achieve some
goals, human observers predict that the actor would
act optimally towards the goals; the MDP-based mod-
els were shown to reflect such human observers’ pre-
dictions. In this paper, we use an MDP model to de-
sign how a software assistant agent should recognize
user behavior. In this regard, we can say that our al-
gorithm is similar to how human assistants would pre-
dict the user’s behavior.

A Partially Observable MDP (POMDP) approach
was used in (Boger et al., 2005) to assist dementia
patients, where the agent learns an optimal policy to
take a single best assistive action in the current con-
text. In contrast, the ANTIPA architecture separates
plan recognition from the agent’s action selection
(e.g., gathering or presenting information), which al-
lows the agent to plan and execute multiple alternative
information-gathering (or information-presenting) ac-
tions, while reasoning about time constraints.

3 THE ANTIPA ARCHITECTURE
In order to address the challenges of proactive infor-
mation assistance, we have designed the ANTIPA ar-
chitecture (Oh et al., 2010) around four major mod-

ules: observation, cognition, assistance, and interac-
tion as illustrated in Figure 1.

Plan 
recognition 

Workload 
estimation

Cognition

Information 
management

Info. presenter

Policy 
management

Assistance

Keyboard

… …

Feedback

… …
Warning alert

Observation

negotiate

retrieve

Interaction

Predicted 
user plan

Figure 1: The ANTIPA agent architecture.

Observation Module receives the inputs from the
user’s current activities in the environment, e.g., the
keyboard inputs from the user’s computing environ-
ment or the user feedback on the agent assistance. It
collects inputs that are relevant to the user’s cognitive
activities and translates them into observations suit-
able for the cognition module. Here, the types of ob-
servations include domain-specific planning activities
and more generic measures such as idle durations.
Cognition Module uses the observations (received
from the observation module) to model the user be-
havior. For instance, the plan recognition submod-
ule continuously interpret the observations to recog-
nize the user’s plans for current and future activities.
When offering new information to the user, however,
presenting too much information can hinder the user’s
task performance by overloading user cognitive abil-
ities. In order to prevent such overloading, the work-
load estimation submodule is responsible for assess-
ing the user’s current mental workload. Here, work-
load can be estimated using various observable met-
rics, e.g., a job processing time or a response time, to
determine the level of assistance that the user needs.
Assistance Module is responsible for deciding the ac-
tual actions that the agent can perform to assist the
user. From a predicted user plan, each assistance
module identifies the user’s specific needs, e.g., in-
formation needs. For instance, the policy manage-
ment module can verify a predicted plan according
to the policies that the user must abide by. Our
focus here is on information management. In or-
der to manage information efficiently, we construct
an information-gathering plan that must consider the
tradeoff between obtaining the high-priority informa-
tion (of which the user is likely to make the most use)
and satisfying temporal deadline constraints (indicat-



ing that information must be obtained before the ac-
tual time when the user needs it).
Interaction Module decides the time when to of-
fer certain information to the user based on its be-
lief about the relevance of information to the user’s
current state, and the format of information that is
aligned with the user’s cognitive workload. In or-
der to accomplish this task, the interaction module
is integrated with both the cognition module (which
performs mental workload assessment and determine
the timing for information presentation) and the assis-
tance module (which retrieves the information that is
to be presented to the user).

Note that the focus this paper is on the plan recog-
nition module to identify the user’s current plan and
predict its future steps. Thus, we shall not go into
further details about the other modules, except where
necessary for the understanding of plan recognition.

4 PLAN RECOGNITION
Based on the assumption that a human user intends
to act rationally, we use a decision-theoretic model
to represent a human user’s reasoning about conse-
quences to maximize her long-term rewards. We first
assume that the agent can fully observe the user’s cur-
rent state and action, and knows the user’s starting
state. These assumptions will later be relaxed as de-
scribed in Section 4.4.

4.1 MDP-based user model
We take a Markov Decision Process (MDP) to repre-
sent the user’s planning process. An MDP is a state-
based model of a sequential (discrete time) decision-
making process for a fully observable environment
with a stochastic transition model, i.e., there is no un-
certainty regarding the user’s current state, but transi-
tioning from one state to another is nondeterministic
(Bellman, 1957). The user’s objective, modeled in an
MDP, is to create a plan that maximizes her long-term
cumulative reward.

Formally, an MDP is represented as a tuple
〈S,A,r,T,γ〉, where S denotes a set of states; A, a set of
actions; r : S×A→R, a function specifying a reward
(from an environment) of taking an action in a state;
T : S×A×S→R, a state transition function; and γ, a
discount factor indicating that a reward received in the
future is worth less than an immediate reward. Solv-
ing an MDP generally refers to a search for a policy
that maps each state to an optimal action with respect
to a discounted long-term expected reward.

4.2 Goal recognition
The first part of our algorithm recognizes the user’s
ultimate goals from a set of candidate goals (or re-
warding states) from an observed trajectory of user

Algorithm 1 An algorithm for plan recognition

1: function PREDICT-FUTURE-STEPS(goals G, ob-
servations O)

2: t← Tree()
3: n← Node()
4: addNodeToTree(n, t)
5: current-state s← lastObservation(O)
6: for all goal g ∈ G do
7: wg← Equation (1)
8: BLD-PLAN-TREE(t, n, πg,s,wg,0)

actions. We define set G of possible goal states as
all states with positive rewards such that G ⊆ S and
r(g)> 0, ∀g ∈ G.
Initialization. The algorithm initializes the proba-
bility distribution over the set G of possible goals,
denoted by p(g) for each goal g in G, proportion-
ally to the reward r(g): such that ∑g∈G p(g) = 1 and
p(g) ∝ r(g). The algorithm then computes an optimal
policy πg for every goal g in G, considering the pos-
itive reward only from the specified goal state g and
zero rewards from any other states s ∈ S∧ s 6= g. We
use a variation of the value iteration algorithm (Bell-
man, 1957) for solving an MDP.
Goal estimation. Let Ot = s1,a1,s2,a2, ...,st ,at de-
note a sequence of observed states and actions from
time steps 1 through t where st ′ ∈ S,at ′ ∈ A, ∀t ′ ∈
{1, ..., t}. Here, the assistant agent needs to estimate
the user’s targeted goals.

After observing a sequence of user states and ac-
tions, the assistant agent updates the conditional prob-
ability p(g|Ot) of that the user is pursuing goal g
given the sequence of observations Ot . The condi-
tional probability p(g|Ot) can be rewritten using the
Bayes rule as:

p(g|Ot) =
p(s1,a1, ...,st ,at |g)p(g)

∑g′∈G p(s1,a1, ...,st ,at |g′)p(g′)
.(1)

By applying the chain rule, we can write the condi-
tional probability of observing the sequence of states
and actions given a goal as:

p(s1,a1, ...,st ,at |g) = p(s1|g)p(a1|s1,g)p(s2|s1,a1,g)
... p(st |st−1,at−1, ...,s1,g).

By the MDP problem definition, the state transi-
tion probability is independent of the goals. By the
Markov assumption, the state transition probability is
also independent of any past states except the current
state, and the user’s action selection depends only on
the current state and the specific goal. By using these
conditional independence relationships, we get:

p(s1,a1, ...,st ,at |g) = p(s1)p(a1|s1,g)p(s2|s1,a1)

... p(st |st−1,at−1), (2)



where the probability p(a|s,g) represents the user’s
stochastic policy πg(s,a) for selecting action a from
state s given goal g that has been computed at the ini-
tialization step.

By combining Equation 1 and 2, the conditional
probability of a goal given a series of observations can
be obtained. We use this conditional probability to
assign weights when constructing a tree of predicted
plan steps. That is, a set of likely plan steps towards a
goal is weighted by the conditional probability of the
user pursuing the goal.
Handling changing goals. The user may change
a goal during execution, or the user may interleave
plans for multiple goals at the same time. Our al-
gorithm for handling changing goals is to discount
the values of old observations as follows. The like-
lihood of a sequence of observations given a goal
is expressed in a product form such that p(Ot |g) =
p(ot |Ot−1,g) × ... × p(o2|O1,g) × p(o1|g). In or-
der to discount the mass from each observation
p(ot |Ot−1,g) separately, we first take the logarithm
to transform the equation to a sum of products, and
then discount each term as follows:

log[p(Ot |g)] = γ
0log[p(ot |Ot−1,g)]+

... +γ
t−1log[p(o1|g)],

where γ is a discount factor such that the most re-
cent observation is not discounted and the older ob-
servations are discounted exponentially. Since we are
only interested in relative likelihood of observing the
given sequence of states and actions given a goal,
such a monotonic transformation is valid (although
this value no longer represents a probability).

Our approach of using decayed observations is
similar to the M2 model in (Baker et al., 2009) in a
high level, but a detailed comparison is not available
because their algorithm description is abstract.

4.3 Plan prediction
The second half of the algorithm is designed to pre-
dict the most likely sequence of actions that the user
will take in the future. Here, we describe an algo-
rithm for predicting plan steps for one goal. Using
the goal weights that have been computed earlier us-
ing Equation 1, the algorithm combines the predicted
plan steps for all goals as shown in Algorithm 1.
Initialization. The algorithm computes an optimal
stochastic policy π for the MDP problem with one
specific goal state. This policy can be computed by
solving the MDP to maximize the long-term expected
rewards. Instead of a deterministic policy that spec-
ifies only the best action that results in the maxi-
mum reward, we compute a stochastic policy such
that probability p(a|s,g) of taking action a given state

Algorithm 2 Recursive building of a plan tree

function BLD-PLAN-TREE(plan-tree t, node n,
policy π, state s, weight w, deadline d)

for all action a ∈ A do
w′← π(s,a)w
if w′ > threshold θ then

n′←Node(action a,priority w′,deadline d)
addChildNode(parent n,child n′)
s′← sampleNextState(state s, action a)
BLD-PLAN-TREE(t,n′,π,s′,w′,d +1)

a when pursuing goal g is proportional to its long-
term expected value v(s,a,g):

p(a|s,g) ∝ β v(s,a,g),

where β is a normalizing constant. The intuition for
using a stochastic policy is to allow the agent to ex-
plore multiple likely plan paths in parallel, relaxing
the assumption that the user always acts to maximize
her expected reward.
Plan-tree construction. From the most recently ob-
served user state, the algorithm constructs the most
likely future plans from the state. Thus, the resulting
output is a tree-like plan segment, known here as a
plan-tree, in which a node contains a predicted user-
action associated with the following two features: pri-
ority and deadline. We compute the priority of a node
from the probability representing the agent’s belief
that the user will select the action in the future; that is,
the agent assigns higher priorities to assist those ac-
tions that are more likely to be taken by the user. On
the other hand, the deadline indicates the predicted
time step when the user will execute the action; that
is, the agent must prepare assistance before the dead-
line by which the user will need help.

The algorithm builds a plan-tree by traversing the
most likely actions (to be selected by the user) from
the current user state according to the policy gener-
ated from the MDP user model. First, the algorithm
creates a root node with probability 1 with no action
attached. Then, according to the MDP policy, likely
actions are sampled such that the algorithm assigns
higher priorities to those actions that lead to a bet-
ter state with respect to the user’s planning objective.
Note that the algorithm adds a new node for an action
only if the agent’s belief about the user’s selecting the
action is higher than some threshold θ; actions are
pruned otherwise. The recursive process of predicting
and constructing a plan tree from a state is described
in Algorithm 2. The resulting plan-tree represents a
horizon of sampled actions for which the agent can
prepare appropriate assistance. When the agent de-
termines a set of information-dependent actions to as-



11

3

6

0

4

7

5

8

21

E S S

N

W S EE

Time step

4-1

4-5 5-8 8-11

4-3 3-6 6-7 7-8

Root 
node

N: North
E: East
W: West
S: South

Information
needed for action N:
keycode to move from 
room 4 to 1

1                2                3                
Current position: 4
Destination: 11

N
W E

E

5-…

pruned

Figure 2: An example of predicted user plan.

sist from the predicted plan, the priorities are merged
for redundant nodes such that the priority values in
the later time steps are augmented to that of the same
node in the earliest time step.
Illustrative example. Figure 2 shows an example
where the user is navigating a grid to reach a des-
tination (left). All available actions in a room are
drawn as boxed arrows. A stochastic state transition
is omitted here but we assume each action fails with
some probability, e.g., the turning to the east action
may fail, resulting in the user’s current position un-
changed. In this problem, the agent generates a plan-
tree of possible future user actions and a set of rele-
vant information (right). A node is shaded to reflect
the predicted probability of the user taking the associ-
ated action (i.e., the darker, the more likely), and the
time step represents the time constraint of information
gathering.

4.4 Handling partial observability
Hitherto we have described algorithms based on the
agent’s full observability on user states. We extend
our approach to handle a partially observable model
for the case when the assistant agent cannot directly
observe the user states and actions. Instead of observ-
ing the user’s states and actions directly, the agent first
infers the user’s current state from indirect observa-
tions, e.g., keyboard and mouse inputs from the user’s
computing environment or sensory inputs from vari-
ous devices. The agent maintains a probability distri-
bution over the set of user states, known as a belief
state, that represents the agent’s belief regarding the
user’s current state. For instance, if no prior knowl-
edge is available the initial belief state can be a uni-
form distribution, indicating that the agent believes
that the user can be in any state. The fully observ-
able case can also be represented as a special case of
belief state where the whole probability mass is con-
centrated in one state. To update a belief state, we use
the forward algorithm (Rabiner, 1989) that estimates
the probability of being in a state given a sequence of

observations. We omit the details due to space limit.

5 EXPERIMENTS
As a proof of concept evaluation, we designed a
game, known here as Open-Sesame, that succinctly
represents an information-dependent planning prob-
lem. We note that Open-Sesame is not meant to fully
represent a real-world scenario, but rather to evaluate
the ability of ANTIPA to predict information needs in
a controlled environment.
The Open-Sesame Game. The game consists of a
grid-like maze where the four sides of a room in the
grid can either be a wall or a door to an adjacent room;
the user must enter a specific key code to open each
door. Example in Figure 2 (left) shows a simplified
version of the problem. The key codes are stored in
a set of information sources; a catalog of information
sources specifies which keys are stored in each source
as well as the statistical properties of the source. The
user can search for a needed keycode using a browser-
like interface. Here, depending on the user’s planned
path to the goal, the user needs a different set of key
codes. Thus, the key codes to unlock the doors rep-
resent the user’s information needs. In this context,
the agent aims to predict the user’s future path and
prefetch the keycodes that the user will need shortly.
Settings. We created three Open-Sesame games: one
6×6 and two 7×7 mazes with varying degrees of dif-
ficulty. The key codes were distributed over 7 infor-
mation sources with varying source properties. The
only type of observations for the agent was the room
color which had been randomly selected from 7 col-
ors (here, we purposely limited the agent’s observa-
tion capability to simulate a partially observable set-
ting). The agent was given the map of a maze, the
user’s starting position, and the catalog of information
sources. During the experiments, each human subject
was given 5 minutes of time to solve a game either
with or without the agent assistance. In the experi-
ments, total 13 games were played by 7 subjects.
Results. The results are summarized in Table 1 that



−agent +agent
Total time (sec) 300 262.2
Total query time (sec) 48.1 10.7
Query time ratio 0.16 0.04
# of moves 13.2 14.6
# of steps away from goal 6.3 3

Table 1: User study results for with (+) and without (−)
agent assistance

compares the user performance on two conditions:
with and without agent assistance. In the table, the
total time measured the duration of a game; the game
ended when the subject either has reached the goal or
has used up the given time. The results indicate that
the subjects without agent assistance (−agent in Ta-
ble 1) were not able to reach a goal within the given
time, whereas the subjects with the agent assistance
(+agent) achieved a goal within the time limit in 6
out of 13 games.

The total query time refers to the time that a hu-
man subject has spent for information gathering, av-
eraged over all the subjects under the same condition
(i.e., with or without agent assistance), and the query
time ratio represents how much time a subject spent
for information gathering relative to the total time.
The agent assistance reduced the user’s information-
gathering time to less than 1

4 .
In this experiment, the number of moves that the

user has made during the game (# of moves) can be
viewed as the user’s search space in an effort to find
a solution. On the other hand, the length of the short-
est path to the goal from the user’s ending state (# of
steps away from goal) can be considered as the qual-
ity of solution. The size of test subjects is too small
to draw a statistical conclusion. These initial results
are, however, promising since they indicate that intel-
ligent information management generally increased
the user’s search space and improved the user’s per-
formance with respect to the quality of solution.

6 CONCLUSION
The main contributions of this paper are the fol-
lowings. We presented an intelligent information
agent, ANTIPA, that anticipates the user’s informa-
tion needs using probabilistic plan recognition and
performs information gathering prioritized by the pre-
dicted user constraints. In contrast to reactive assis-
tive agent models, ANTIPA is designed to provide
proactive assistance by predicting the user’s time-
constrained information needs. The ANTIPA archi-
tecture allows the agent to reason about time con-
straints of its information-gathering actions; accom-
plishing equivalent behavior using a POMDP would
take an exponentially larger state space since the

state space must include the retrieval status of all in-
formation needs in the problem domain. We em-
pirically evaluated ANTIPA through a proof of con-
cept experiment in an information-intensive game set-
ting and showed promising preliminary results that
the proactive agent assistance significantly reduced
the information-gathering time and enhanced the user
performance during the games.

In this paper, we have not considered the case
where the agent has to explore and learn about an
unknown (or previously incorrectly estimated) state
space. We made a specific assumption that the agent
knows the complete state space from which the user
may explore only some subset. In real-life scenarios,
users generally work in a dynamic environment where
they must constantly collect new information regard-
ing the changes in the environment, sharing resources
and information with other users. In order to address
such special issues that arise in the dynamic settings,
in our future work we will investigate techniques for
detecting environmental changes, incorporating new
information, and alerting the user of changes in the
environment.

REFERENCES
Armentano, M. G. and Amandi, A. (2007). Plan recognition

for interface agents. Artif. Intell. Rev., 28(2):131–162.

Baker, C., Saxe, R., and Tenenbaum, J. (2009). Action un-
derstanding as inverse planning. Cognition, 31:329–
349.

Bellman, R. (1957). A markov decision process. Journal of
Mathematical Mechanics, 6:679–684.

Boger, J., Poupart, P., Hoey, J., Boutilier, C., Fernie, G., and
Mihailidis, A. (2005). A decision-theoretic approach
to task assistance for persons with dementia. In Proc.
IJCAI, pages 1293–1299.

Chalupsky, H., Gil, Y., Knoblock, C., Lerman, K., Oh, J.,
Pynadath, D., Russ, T., and Tambe, M. (2002). Elec-
tric Elves: Agent technology for supporting human or-
ganizations. AI Magazine, 23(2):11.

Freed, M., Carbonell, J., Gordon, G., Hayes, J., Myers, B.,
Siewiorek, D., Smith, S., Steinfeld, A., and Tomasic,
A. (2008). Radar: A personal assistant that learns to
reduce email overload. In Proc. AAAI.

Oh, J., Meneguzzi, F., and Sycara, K. P. (2010). ANTIPA:
an architecture for intelligent information assistance.
In Proc. ECAI, pages 1055–1056. IOS Press.

Rabiner, L. (1989). A tutorial on HMM and selected
applications in speech recognition. Proc. of IEEE,
77(2):257–286.

Ramı́rez, M. and Geffner, H. (2009). Plan recognition as
planning. In Proc. IJCAI, pages 1778–1783.

Yorke-Smith, N., Saadati, S., Myers, K. L., and Morley,
D. N. (2009). Like an intuitive and courteous butler:
a proactive personal agent for task management. In
Proc. AAMAS, pages 337–344.


