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Abstract

Recent approaches to goal recognition have progressively re-
laxed the assumptions about the amount and correctness of
domain knowledge and available observations, yielding ac-
curate and efficient algorithms. These approaches, however,
assume completeness and correctness of the domain theory
against which their algorithms match observations: this is too
strong for most real-world domains. In this paper, we develop
goal recognition techniques that are capable of recognizing
goals using incomplete domain theories by considering dif-
ferent notions of planning landmarks in such domains. We
evaluate the resulting techniques empirically in a large dataset
of incomplete domains, and perform an ablation study to un-
derstand their effect on recognition performance.

1 Introduction
Goal recognition is the task of identifying the correct in-
tended goal of an observed agent, given a sequence of obser-
vations as evidence of its behavior in an environment and a
domain model describing how the agent generates such be-
havior. Approaches to goal recogntion vary on the amount
of domain knowledge contained in the model assumed to
be used by the observed agent (Sukthankar et al. 2014), as
well as the level of observability and noise in the observa-
tions used as evidence (Sohrabi, Riabov, and Udrea 2016).
Recent research has progressively relaxed the assumptions
about the accuracy and amount of information available
in observations required to recognize goals (E.-Martı́n, R.-
Moreno, and Smith 2015; Sohrabi, Riabov, and Udrea 2016;
Pereira, Oren, and Meneguzzi 2017), they all assume a com-
plete and accurate model of the agent under observation.
Such a strong assumption restricts goal recognition to appli-
cations where the requirements of completeness and correct-
ness can be met by high-quality domain engineers. Ideally,
we would like to be able to use imperfect domain models, ei-
ther because the domain engineer made mistakes or because
a learning algorithm generated the domain from noisy data.

Real-world domains often have two potential sources of
uncertainty: (1) ambiguity in domain engineering either be-
cause of a noisy domain acquisition process or the nature of
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the actions being modeled; and (2) ambiguity from how im-
perfect sensor data reports features of the environment. The
former stems from a possibly incomplete understanding of
the actions being modeled, but more importantly, the inher-
ently noisy and imperfect way in which automated domain
acquisition through machine learning algorithms (Asai and
Fukunaga 2018; Amado et al. 2018) we envision being the
main source of real-world domains models. The latter stems
from the potential unreliability in the interpretation of ac-
tions using real-world noisy data with learned sensor mod-
els being used to classify objects to be used as features (e.g.,
logical facts) of the observations (Granada et al. 2017), so it
is useful to model a domain with such feature as optional.

We develop heuristic goal recognition approaches that use
an enhanced notion of landmarks to cope with incomplete
domain models (Weber and Bryce 2011; Nguyen, Sreedha-
ran, and Kambhampati 2017) and provide five key contri-
butions. First, we formalize goal recognition in incomplete
domains (Section 2) combining the standard formalization
of Ramı́rez and Geffner (2009; 2010) for plan recognition
and that of Nguyen, Sreedharan, and Kambhampati (2017)
for planning in incomplete domains. Second, we adapt the
algorithm from Hoffmann et al. (2004) to extract definite
and possible landmarks in incomplete domains (Section 3).
Third, we develop a notion of overlooked landmarks that
we extract online as we process (on the fly) observations
that we use to match candidate goals to the models induced
by incomplete domains. Fourth, we develop two heuristics
that account for the various types of landmarks as evidence
in the observations to efficiently recognize goals avoiding
running expensive planners for incomplete domains (Sec-
tion 4). Finally, we build a new dataset for goal recognition
in incomplete domains based on an existing one (Pereira and
Meneguzzi 2017) by removing amounts of information from
complete domains and annotating them with possible pre-
conditions and effects that account for uncertain and pos-
sibly wrong information (Section 5). We use this dataset
to compare our approaches with a baseline (Pereira, Oren,
and Meneguzzi 2017) and evaluate them through an ablation
study over the various types of landmarks showing that over-
looked landmarks become increasingly important to the ac-
curacy of the heuristics as domain incompleteness increases.



2 Problem Formulation
Incomplete STRIPS Domain Models
To formalize incomplete domain models, we adapt
the formalism of incomplete domain models from
Nguyen, Sreedharan, and Kambhampati (2017), de-
fined as D̃ = 〈R, Õ〉. Here, R is a set of predicates with
typed variables, and Õ is the set of definitions of incom-
plete operators, each of which comprised of a six-tuple õp =

〈pre(õp), p̃re(õp), eff +(õp), eff −(õp), ẽff
+

(õp), ẽff
−

(õp)〉,
where: pre(õp) and eff (õp) have the same semantics as
in the STRIPS (Fikes and Nilsson 1971) domain models;
and possible preconditions p̃re(õp) ⊆ R that might be

required as preconditions, as well as ẽff
+

(õp) ⊆ R
and ẽff

−
(õp) ⊆ R that might be generated as possible

effects respectively as add or delete effects. An incom-
plete domain D̃ has a completion set 〈〈D̃〉〉 comprising
all possible domain models derivable from the incom-
plete one. There are 2K possible such models where

K =
∑

õp∈Õ(|p̃re(õp)| + |ẽff
+

(õp)| + |ẽff
−

(õp)|), and
a single (unknown) ground-truth model D∗ that actually
generates the observed state. An incomplete planning
problem derived from an incomplete domain D̃ and a set of
typed objects Z is defined as P̃ = 〈F , Ã, I, G〉, where: F
is the set of facts (instantiated predicates from Z), Ã is the
set of incomplete instantiated actions from Õ with objects
from Z, I ⊆ F is the initial state, and G ⊆ F is the goal
state. Example 1 from Weber and Bryce (2011) illustrates
an abstract incomplete domain and problem.

Example 1 Let P̃ be an incomplete planning problem,
where: F = {p, q, r, g}; Ã = {ã, b̃, c̃}, where:

• pre (̃a) = {p, q}, p̃re (̃a) = {r}, ẽff
+
(̃a) = {r}, ẽff

−
(̃a) = {p}

• pre (̃b) = {p}, eff + (̃b) = {r}, eff− (̃b) = {p}, ẽff
−
(̃b) = {q}

• pre (̃c) = {r}, p̃re (̃c) = {q}, eff + (̃c) = {g}
• I = {p, q}; and G = {g}.

Goal Recognition in Incomplete Domains
Goal recognition is the task of recognizing an agents’ goals
by observing their interactions in an environment. Whereas
most planning-based goal recognition approaches assume
complete domain model (Ramı́rez and Geffner 2009; 2010;
E.-Martı́n, R.-Moreno, and Smith 2015; Sohrabi, Riabov,
and Udrea 2016; Pereira and Meneguzzi 2016; Pereira,
Oren, and Meneguzzi 2017), we assume that the observer
has an incomplete domain model while the observed agent
is planning and acting with a complete domain model. To ac-
count for such uncertainty and incompleteness, the domain
model available to the observer contains possible precondi-
tions and effects (as defined in Section 2). Definition 1 for-
malizes goal recognition over incomplete domain models.

Definition 1 (Goal Recognition Problem) A goal recogni-
tion problem with an incomplete domain model is a quin-
tuple T̃ = 〈D̃, Z, I,G, Obs〉, where: D̃ = 〈R, Õ〉 is an
incomplete domain model (with possible preconditions and

effects); Z is the set of typed objects in the environment, in
which F is the set of instantiated predicates from Z, and Ã
is the set of incomplete instantiated actions from Õ with ob-
jects from Z; I ∈ F an initial state; G is the set of possible
goals, which include a correct hidden goal G∗ (i.e., G∗ ∈
G); and Obs = 〈o1, o2, ..., on〉 is an observation sequence
of executed actions, with each observation oi ∈ Ã. Obs cor-
responds to the sequence of actions (i.e., a plan) to solve a
problem in a complete domain in 〈〈D̃〉〉.

A solution for a goal recognition problem in incomplete
domain models T̃ is the correct hidden goal G∗ ∈ G that
the observation sequence Obs of a plan execution achieves,
specifically, the correct hidden goal is the intended goal that
the observed agent wants to achieve. As most keyhole goal
recognition approaches, observations consist of the actions
of the underlying plan, more specifically, we observe in-
complete actions with possible precondition and effects, in
which some of the preconditions might be required and some
effects might change the environment. While a full (or com-
plete) observation sequence contains all of the action signa-
tures of the plan executed by the observed agent, a partial
observation sequence contains only a sub-sequence of ac-
tions of a plan and thus misses some of the actions actually
executed in the environment. Our approaches are not lim-
ited to use just actions as observations and can also deal
with logical facts as observations, i.e., state observations,
like (Sohrabi, Riabov, and Udrea 2016).

3 Extracting Landmarks
in Incomplete Domain Models

In planning, landmarks are facts (or actions) that must be
achieved (or executed) at some point along all valid plans to
achieve a goal from an initial state (Hoffmann, Porteous, and
Sebastia 2004). Landmarks are often used to build heuris-
tics for planning algorithms (Richter, Helmert, and West-
phal 2008; Richter and Westphal 2010). Whereas landmark-
based heuristics extract landmarks from complete and cor-
rect domain models in the planning literature, we extend the
landmark extraction algorithm of Hoffmann et al. in (2004)
to extract definite and possible landmarks in incomplete
STRIPS domain models. This algorithm uses a Relaxed
Planning Graph (RPG), which is a leveled graph that ig-
nores the delete-list effects of all actions, thus containing
no mutex relations (Hoffmann and Nebel 2001). This algo-
rithm builds the RPG and then extracts a set of landmark
candidates by back-chaining from the RPG level in which
all facts of the goal state G are possible, and, for each fact g
in G, it checks which facts must be true until the first level
of the RPG. For example, if fact B is a landmark and all
actions that achieve B share A as precondition, then A is a
landmark candidate. To confirm that a landmark candidate is
indeed a necessary condition, and thus a landmark, the algo-
rithm builds a new RPG removing actions that achieve the
landmark candidate (called achiever actions) and checks the
solvability over this modified problem, which can be done
in polynomial time (Blum and Furst 1997). If the modified
problem is unsolvable, then the landmark candidate is a nec-



essary landmark, and the actions that achieve it are necessary
to solve the original problem.

Like most planning approaches in incomplete do-
mains (Weber and Bryce 2011; Nguyen and Kambhampati
2014; Nguyen, Sreedharan, and Kambhampati 2017), we
reason about possible plans with incomplete actions (obser-
vations) by assuming that they succeed under the most op-
timistic conditions: (1) possible preconditions do not need
to be satisfied; (2) possible and known delete-effects are ig-
nored; and (3) possible add effects are assumed to occur.
Thus, we adapt the extraction algorithm from Hoffmann,
Porteous, and Sebastia (2004) to extract landmarks from in-
complete domain models by building an Optimistic Relaxed
Planning Graph (ORPG) instead of the original RPG. An
ORPG is leveled graph that deals with incomplete domain
models by assuming the most optimistic conditions. While
the optimistic assumption may lead our landmark extraction
algorithm to consider an infeasible goal possible, it never
rules out a possible goal. The ORPG allows us to extract the
definite and possible landmarks from Definitions 2 and 3.

Definition 2 (Definite Landmark) A definite landmark
LD is a fact (landmark) that is extracted from a known add
effect eff +(a) of an achiever a (action) in the ORPG.

Definition 3 (Possible Landmark) A possible landmark
LP is a fact (landmark) that is extracted from a possible

add effect ẽff
+

(a) of an achiever a (action) in the ORPG
and is such that LP ∩ LD = ∅.

Figure 1 shows the ORPG for Example 1. The set of def-
inite landmarks is {p, r, g}, and the set of possible land-
marks is {q}. The classical landmark extraction algorithm
from Hoffmann, Porteous, and Sebastia, returns {p, r, g} as
landmarks ignoring q as a fact landmark because it does
not assume the most optimistic condition that possible add
effects always occur, disregarding action a as a possible
achiever. During the landmark extraction process, our al-
gorithm selects first the action achievers that have known
add effect (eff +(a)) to a candidate landmark, prioritizing
achievers of definite landmarks over achievers of possible
landmarks. For example, consider the ORPG in Figure 1, in
this graph the action achievers of r are the actions a and b,
and our algorithm selects first the action b because it has a
known add effect to r, and so on.
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Figure 1: ORPG for Example 1. Green arrows represent pre-
conditions, Orange arrows represent add effects, and Pur-
ple dashed arrows represent possible add effects. Light-Blue
boxes represent definite landmarks and Light-Yellow boxes
represent possible landmarks. Hexagons represent actions.

4 Heuristic Goal Recognition Approaches
using Enhanced Landmarks

Under the optimistic assumption we use in our technique, an
incomplete action ã instantiated from an incomplete opera-
tor õp is applicable to a state S iff S |= pre(ã) and results

in a new state S′ such that S′ := (S/eff −(a))∪ (ẽff
+

(ã)∪
eff +(a)). Thus, a valid plan π that achieves a goal G from
I in an incomplete planning problem P̃ is a sequence of ac-
tions that corresponds to an optimistic sequence of states.

The [ã, b̃, c̃] sequence of actions is a valid plan to achieve
goal state {g} from the initial state {p, q} from Exam-
ple 1. It corresponds to the optimistic state sequence: s0 =
{p, q}, s1 = {p, q, r}, s2 = {q, r}, s3 = {q, r, g}. The num-
ber of completions for this example is |〈〈D̃〉〉| = 25, i.e. 2
possible preconditions, 1 possible add effect and 2 possible
delete effects.

Key to our goal recognition approaches is observing the
evidence of achieved landmarks during observations to rec-
ognize which goal is more consistent with the observations
in a plan execution. To do so, our approaches combine the
concepts of definite and possible with that of overlooked
landmarks (Definition 4).

Definition 4 (Overlooked Landmark) An overlooked la-
ndmark LO is an actual landmark, a necessary fact for all
valid plans towards a goal from an initial state, that was not
detected by approximate landmark extraction algorithms.

Most landmark extraction algorithms extract only a sub-
set of landmarks for a given planning problem, and to over-
come this problem, we aim to extract overlooked landmarks
by analyzing preconditions and effects in the observed ac-
tions of an observation sequence. Since we are dealing with
incomplete domain models, and it is possible that some in-
complete planning problems have few (or no) definite and/or
possible landmarks, we extract overlooked landmarks from
the evidence in the observations as we process them in order
to enhance the set of landmarks useable by our goal recogni-
tion heuristics. This on the fly landmark extraction checks if
the facts in the known preconditions and known and possible
add effects are not in the set of extracted definite and possi-
ble landmarks, and if they are not, we check if these facts
are overlooked landmarks. To do so, we use a function that
builds a new ORPG by removing all actions that achieve a
fact (i.e., a potentially overlooked landmark) and checks the
solvability of this modified problem. If the modified prob-
lem is indeed unsolvable, then this fact is an overlooked
landmark. We check every candidate goal G in G using this
function to extract additional (overlooked) landmarks. Ex-
ample 2 illustrates how we extract overlooked landmarks on
the fly for a given candidate goal and an observed action.

Example 2 Consider the goal state defined in Example 1 as
a candidate goal G = {g}, for a recognition problem with
initial state I = {p, q}, and an observed action a. Assume
that a landmark extraction algorithm extracts L = {p, q, g}
for initial state I and candidate goal G. Given the ob-
served action a, we check if the facts in the preconditions
and known/possible effects of a are in L, and these facts



are: {p, q, r}. Since r is not in L, r can be an overlooked
landmark. To check if r is an overlooked landmark, we build
ORPG removing all actions that achieve r (i.e., actions a
and b) and check whether G remains solvable in this ORPG.
In this case, the goal atom g is unreachable (andG is unsolv-
able) because r is a necessary fact to achieve g. Figure 1 il-
lustrates that g is unachievable without actions a and b, and
consequently without r, because there is no action that adds
this fact. Thus, r is an overlooked landmark that was not ex-
tracted by the extraction algorithm, but it was extracted on
the fly from an observed action during plan execution.

Enhanced Goal Completion Heuristic
By combining our new notions of landmarks we develop a
goal recognition heuristic for recognizing goals in incom-
plete domain models. Our heuristic estimates the correct
goal in the set of candidate goals by calculating the ratio be-
tween achieved definite (ALG), possible (ÃLG), and over-
looked (ANLG) landmarks and the amount of definite (LG),
possible (L̃G), and overlooked (NLG) landmarks. The esti-
mate computed using Equation 1 represents the percentage
of achieved landmarks for a goal from observations.

h
G̃C

(G) =

(
ALG + ÃLG +ANLG

LG + L̃G +NLG

)
(1)

Enhanced Uniqueness Heuristic
Most recognition problems contain multiple candidate goals
that share common fact landmarks, generating ambiguity
that jeopardizes the goal completion heuristic. Clearly, land-
marks that are common to multiple candidate goals are less
useful for recognizing a goal than landmarks that occur for
only a single goal. As a consequence, computing how unique
(and thus informative) each landmark is can help disam-
biguate similar goals for a set of candidate goals (Pereira,
Oren, and Meneguzzi 2017). Our second heuristic approach
is based on this intuition, which we develop through the con-
cept of landmark uniqueness, which is the inverse frequency
of a landmark among the landmarks found in a set of candi-
date goals. Intuitively, a landmark L that occurs only for a
single goal within a set of candidate goals has the maximum
uniqueness value of 1. Equation 2 formalizes the computa-
tion of the landmark uniqueness value for a landmark L and
a set of landmarks for all candidate goals KG .

LUniq(L,KG) =

 1∑
L∈KG

|{L|L ∈ L}|

 (2)

Using the concept of landmark uniqueness value, we es-
timate which candidate goal is the intended one by sum-
ming the uniqueness values of the landmarks achieved in
the observations. Unlike our previous heuristic, which esti-
mates progress towards goal completion by analyzing just
the set of achieved landmarks, the landmark-based unique-
ness heuristic estimates the goal completion of a candidate

goal G by calculating the ratio between the sum of the
uniqueness value of the achieved landmarks of G and the
sum of the uniqueness value of all landmarks of a goal G.
Our new uniqueness heuristic also uses the concepts of def-
inite, possible, and overlooked landmarks. We store the set
of definite and possible landmarks of a goal G separately
into LG and L̃G, and the set of overlooked landmarks into
NLG. Thus, the uniqueness heuristic effectively weighs the
completion value of a goal by the informational value of a
landmark so that unique landmarks have the highest weight.
To estimate goal completion using the landmark uniqueness
value, we calculate the uniqueness value for every extracted
(definite, possible, and overlooked) landmark in the set of
landmarks of the candidate goals using Equation 2. Since
we use three types of landmarks and they are stored in three
different sets, we compute the landmark uniqueness value
separately for them, storing the landmark uniqueness value
of definite landmarks LG into ΥL, the landmark unique-
ness value of possible landmarks L̃G into ΥL̃, and the land-
mark uniqueness value of overlooked landmarks NLG into
ΥNLG

. Our uniqueness heuristic is denoted as h
ŨNIQ

and
formally defined in Equation 3.

h
ŨNIQ

(G) =


∑

AL∈ALG

ΥL(AL) +
∑

ÃL∈ÃLG

ΥL̃(ÃL) +
∑

ANL∈ANLG

ΥNLG
(ANL)

∑
L∈LG

ΥL(L) +
∑

L̃∈L̃G

ΥL̃(L̃) +
∑

NL∈NLG

ΥNLG
(NL)


(3)

5 Experiments and Evaluation
We evaluate our approaches empirically in two ways. First,
we compare the recognition performance of our approaches
against the two landmark-based approaches of Pereira, Oren,
and Meneguzzi (2017), which we use as baselines. We then
empirically evaluate the effect of the various types of land-
marks to recognition performance.

Datasets and Setup
We used openly available goal and plan recognition
datasets (Pereira and Meneguzzi 2017) for our experiments.
These datasets contain thousands of recognition problems
comprising large and non-trivial planning problems (with
optimal and sub-optimal plans as observations) for 15
planning domains, including domains and problems from
datasets that were developed by Ramı́rez and Geffner (2009;
2010). All planning domains in these datasets are en-
coded using the STRIPS fragment of PDDL. Domains
include those modeled after realistic applications (e.g.,
DWR, ROVERS, LOGISTICS), as well as hard artificial do-
mains (e.g., SOKOBAN). Each recognition problem in these
datasets contains a complete domain definition, an initial
state, a set of candidate goals, a correct hidden goal in the
set of candidate goals, and an observation sequence. An ob-
servation sequence contains actions that represent an op-
timal or sub-optimal plan that achieves a correct hidden
goal, and this observation sequence can be full or partial.
A full observation sequence represents the whole plan that
achieves the hidden goal, i.e., 100% of the actions hav-



ing been observed. A partial observation sequence repre-
sents a plan for the hidden goal, varying in 10%, 30%,
50%, or 70% of its actions having been observed. To evalu-
ate our recognition approaches in incomplete domain mod-
els, we modify the domain models of these datasets by
adding annotated possible preconditions and effects. Thus,
the only modification to the original datasets is the gen-
eration of new, incomplete, domain models for each prob-
lem, varying the percentage of incompleteness in these do-
mains. We vary the percentage of incompleteness of a do-
main from 20% to 80%. For example, consider that a com-
plete domain has, for all its actions, a total of 10 precon-
ditions, 10 add effects, and 10 delete effects. A derived
model with 20% of incompleteness needs to have 2 possi-
ble preconditions (8 known preconditions), 2 possible add
effects (8 known add effects), and 2 possible delete effects
(8 known delete effects), and so on for other percentages
of incompleteness. Like (Nguyen and Kambhampati 2014;
Nguyen, Sreedharan, and Kambhampati 2017), we gener-
ated the incomplete domain models by following three steps
involving randomly selected preconditions/effects: (1) move
a percentage of known preconditions and effects into lists of
possible preconditions and effects; (2) add possible precon-
ditions from delete effects that are not preconditions of a cor-
responding operator; and (3) add into possible lists (of pre-
conditions, add effects, or delete effects) predicates whose
parameters fit into the operator signatures and are not pre-
condition or effects of the operator. These steps yield three
different incomplete domain models from a complete do-
main model for each percentage of domain incompleteness
with different possible lists of preconditions and effects. We
ran all experiments using a single core of a 12 core Intel(R)
Xeon(R) CPU E5-2620 v3@2.40GHz with 16GB of RAM,
with a time limit of 2 minutes and memory limit of 2GB.

Experimental Results: ROC Space
Our approaches recognize goals at low recognition time
for most planning domains, taking at most 2.7 seconds,
including the process of extracting landmarks, among all
goal recognition problems, apart from IPC-GRID and
SOKOBAN, which took substantial recognition time. So,
1092 (20% of domain incompleteness) out of 4368 prob-
lems for IPC-GRID and SOKOBAN do not exceed the time
limit of 2 minutes (for both our approaches and the base-
line). SOKOBAN exceeds the time limit of 2 minutes for
most goal recognition problems because this dataset con-
tains large problems with a huge number of objects, lead-
ing to an even larger number of instantiated predicates and
actions. For example, as domain incompleteness increases
(i.e., the ratio of possible to definite preconditions and ef-
fects), the number of possible actions (moving between cells
and pushing boxes) increases substantially in a grid with 9x9
cells and 5 boxes as there are very few known preconditions
for several possible preconditions. As a basis of comparison,
state-of-the-art planners (Nguyen and Kambhampati 2014;
Nguyen, Sreedharan, and Kambhampati 2017) for incom-
plete domain models take substantially more time than our
2-minute timeout to generate a single plan for domains that
our approach recognizes in less than 2 seconds. For exam-

ple, CPISA (Nguyen, Sreedharan, and Kambhampati 2017)
takes ≈ 300 seconds to find a plan with 25 steps in domains
(e.g., SATELLITE) with 2 possible preconditions and 3 pos-
sible add effects, whereas our dataset contains much more
complex incomplete domains and problems. The average
number of possible complete domain models |〈〈D̃〉〉| is huge
for several domains, showing that the task of goal recogni-
tion in incomplete domain models is quite difficult and com-
plex. For instance, the average number of possible complete
domains in this dataset varies between 9.18 (SOKOBAN with
20% of domain incompleteness) and 7.8415 (ROVERS with
80% of domain incompleteness).

We adapt the Receiver Operating Characteristic (ROC)
curve metric to show the trade-off between true positive and
false positive results. An ROC curve is often used to com-
pare true positive and false positive predictions of the exper-
imented approaches. Here, each prediction result of our goal
recognition approaches represents one point in the space,
and thus, instead of a curve, our graphs show the spread of
our results over ROC space. The diagonal line in ROC space
represents a random guess to recognize a goal from obser-
vations. This line divides the ROC space in such a way that
points above the diagonal represent good classification re-
sults (better than random guess), whereas points below the
line represent poor results (worse than random guess). The
best possible (perfect) prediction for recognizing goals are
points in the upper left corner (0,100).

Figure 2 shows ROC space graphs corresponding to
recognition performance over the four percentages of do-
main incompleteness we used in our experiments. We ag-
gregate multiple recognition problems for all domains and
plot these results in ROC space varying the percentage of
domain incompleteness. We compare our enhanced heuris-
tics (h

G̃C
and h

ŨNIQ
) using the various types of landmarks

(definite, possible, and overlooked) against the baseline (hgc

and huniq ) (Pereira, Oren, and Meneguzzi 2017), that uses
just the landmarks extracted by a classical landmark extrac-
tion algorithm, i.e., ignoring the incomplete part of the do-
main model (possible preconditions and effects). Although
the true positive rate is high for most recognition problems at
most percentages of domain incompleteness, as the percent-
age of domain incompleteness increases, the false positive
rate also increases, leading to several problems being rec-
ognized with a performance close to the random guess line.
This happens because the number of extracted landmarks
decreases significantly as the number of known precondi-
tions and effects diminishes, and consequently, all candidate
goals have few (if any) landmarks. For example, in several
cases in which domain incompleteness is 60% and 80%, the
set of landmarks is quite similar, leading our approaches to
return more than one candidate goal as the correct one. Thus,
there are more returned goals during the recognition process
as incompleteness increases. These results show that our en-
hanced approaches perform better and are more accurate
than the baselines, aggregating most points in the left cor-
ner, while the points for the baseline approaches are closer
to (and sometimes below) the random guess line.
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Figure 2: ROC space for all four percentage of domain incompleteness, comparing our enhanced heuristic approaches against
the baseline for both Goal Completion and Uniqueness Heuristic.

Ablation Study: The Impact of Landmarks

Since the key contribution of our approaches are based on
the new types of landmarks (definite, possible, and over-
looked), as opposed to the traditional landmarks from plan-
ning heuristic, we wanted to objectively measure the effect
of these new types of landmark on the recognition perfor-
mance of our heuristics. Thus, we performed an ablation
study that consists of measuring the performance of our
approaches using some possible combinations of landmark
types. This ablation study evaluates only linear combina-
tions of landmark types, and some combinations are not in-
cluded in this paper because they had poor performance and
seem to be not relevant for the ablation study. We evaluate
our approaches using the standard metrics of precision (ra-
tio of correct positive predictions among all predictions) and
recall (ratio between true positive results and total true pos-
itive and false negative results). In order to present a unified
metric, we report the F1-score (harmonic mean) of preci-
sion and recall. To perform our ablation study, we use the
correlation (C) between the averages of F1-score (F1) and
the absolute number of the various types of landmarks (def-
inite D, possible P , and overlooked O landmarks) over all
domains and problems, and Spread S, representing the av-
erage number of returned goals.

In what follows, the correlation is a real value in [−1, 1]
such that −1 represents an anti-correlation between the
landmarks and the F1-score, 0 represents no correlation be-
tween the landmarks and the F1-score, whereas a value of
1 represents that more landmarks correlate to a higher F1-
score. We computed the correlation between the averages of
landmarks and F1-scores over all domains and degrees of

incompleteness in Table 1 and plot these correlations as a
function of the level of incompleteness in Figures 3a–3f as
opposed to how traditional landmarks affect performance on
the baseline approaches (correlation varying between 0.32
and 0.67 for a lower F1-score, Table 1, lines 1 and 2). Fig-
ures 3a and 3d show how all types of landmark correlate to
performance in the complete technique (represented by G̃C
(D+P+O) and ˜UNIQ (D+P+O)). At low levels of incom-
pleteness we have larger F1-scores and larger numbers of
definite landmarks, leaving a smaller number of overlooked
landmarks to be inferred on the fly. Under these conditions,
overlooked landmarks start off at a slight anti-correlation
with performance. As the level of incompleteness of the do-
main description increases, the number of definite landmarks
decreases, but their correlation to performance increases, as
the more landmarks we can infer, the better performance we
can achieve. The number of overlooked landmarks remains
broadly the same over time, as they are tied to the observa-
tions more than they are tied to the domain description, and
their correlation to performance monotonically increases as
the incompleteness increases. This indicates that overlooked
landmarks play an increasingly important role in recogni-
tion performance as incompleteness increases, giving more
information to our enhanced heuristics. The number of pos-
sible landmarks also varies with incompleteness, initially in-
creasing as the number of possible effects increases, to sub-
sequently decrease as the number of possible effects leads
to less bottlenecks in the state-space to yield landmarks. As
the number of possible effects increases, so does their unre-
liability as sources of landmarks, which is reflected in their
decreasing correlation to performance.



Domain Incompleteness 20% Domain Incompleteness 40% Domain Incompleteness 60% Domain Incompleteness 80%
|D| |P | |O| |S| |F1| CD/CP/CO |D| |P | |O| |S| |F1| CD/CP/CO |D| |P | |O| |S| |F1| CD/CP/CO |D| |P | |O| |S| |F1| CD/CP/CO

Baseline (gc) 11.5 0 0 1.53 0.44 0.35/0/0 4.9 0 0 2.27 0.36 0.42/0/0 3.5 0 0 3.32 0.31 0.65/0/0 2.9 0 0 4.85 0.34 0.67/0/0
Baseline (uniq) 11.5 0 0 1.48 0.44 0.32/0/0 4.9 0 0 1.95 0.34 0.36/0/0 3.5 0 0 2.83 0.32 0.33/0/0 2.9 0 0 4.12 0.33 0.40/0/0
G̃C (D+P+O) 11.6 1.4 21.2 1.06 0.74 0.22/0.13/-0.51 9.6 2.1 19.0 1.17 0.73 0.56/0.23/-0.20 7.1 2.3 19.4 1.31 0.67 0.73/0.41/0.16 6.8 1.2 19.1 1.38 0.65 0.61/0.02/0.33
G̃C (D+O) 11.6 0 25.5 1.06 0.75 0.23/0/-0.42 9.6 0 24.9 1.23 0.74 0.57/0/-0.11 7.1 0 25.8 1.38 0.68 0.76/0/0.37 6.8 0 22.5 1.66 0.66 0.62/0/0.35
G̃C (P+O) 0 1.4 42.8 6.11 0.32 0/-0.13/-0.44 0 2.1 35.3 5.93 0.34 0/-0.06/-0.30 0 2.3 29.7 5.86 0.33 0/0.25/-0.22 0 1.2 27.9 5.84 0.27 0/-0.20/-0.03
G̃C (P) 0 1.42 0 7.24 0.22 0/0.29/0 0 2.13 0 7.18 0.29 0/0.07/0 0 2.23 0 7.01 0.26 0/0.56/0 0 1.18 0 6.99 0.19 0/0.06/0
G̃C (O) 0 0 47.5 1.12 0.71 0/0/-0.21 0 0 41.4 1.23 0.70 0/0/0.05 0 0 35.9 1.39 0.65 0/0/0.42 0 0 31.2 1.68 0.63 0/0/0.34

ŨNIQ (D+P+O) 11.6 1.4 21.2 1.05 0.69 0.21/0.23/-0.37 9.6 2.1 19.0 1.16 0.67 0.28/0.21/-0.10 7.1 2.3 19.4 1.29 0.63 0.82/0.59/0.31 6.8 1.2 19.1 1.37 0.61 0.61/0.034/0.41
ŨNIQ (D+O) 11.6 0 25.5 1.05 0.68 0.35/0/-0.26 9.6 0 24.9 1.20 0.65 0.38/0/0.11 7.1 0 25.8 1.38 0.61 0.66/0/0.41 6.8 0 22.5 1.41 0.62 0.63/0/0.34
ŨNIQ (P+O) 0 1.4 42.8 5.50 0.32 0/-0.14/-0.52 0 2.1 35.3 5.71 0.35 0/-0.19/-0.53 0 2.3 29.7 5.49 0.33 0/0.10/-0.33 0 1.2 27.9 5.65 0.29 0/-0.57/-0.45
ŨNIQ (P) 0 1.42 0 6.87 0.28 0/-0.27/0 0 2.13 0 6.15 0.27 0/-0.42/0 0 2.23 0 5.92 0.27 0/-0.19/0 0 1.18 0 5.81 0.27 0/-0.55/0
ŨNIQ (O) 0 0 47.5 1.05 0.71 0/0/-0.11 0 0 41.4 1.17 0.70 0/0/0.03 0 0 35.9 1.28 0.64 0/0/0.39 0 0 31.2 1.36 0.62 0/0/0.33

Table 1: Ablation study results comparing the baselines with heuristics using various combinations of landmark types.
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Figure 3: Correlation of landmarks to performance. Note
that this does not report absolute F1-score.

As we ablate landmarks, performance drops most sub-
stantially when we remove either definite or possible land-
marks from the heuristics (Figures 3c and 3f), indicating
their importance to recognition accuracy. We can see that
using overlooked landmarks exclusively, in G̃C (O) and˜UNIQ (O) provides a close approximation of the perfor-
mance of the technique using all landmark types. This is
strong evidence that overlooked landmarks are the most im-
portant contribution of our technique.

Figure 4 compares all approaches with respect to F1-score

averages varying the domain incompleteness. Thicker lines
represent the approaches that have higher F1-scores: our en-
hanced heuristics (G̃C and ˜UNIQ) that combine the use
of the new types of landmarks, i.e., D+O, D+P+O, and O,
showing that using overlooked landmarks substantially im-
proves goal recognition accuracy.
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Figure 4: F1-score average of all evaluated approaches over
the dataset varying the domain incompleteness.

Table 2 reports the results for all evaluated approaches and
domains varying not only domain incompleteness but also
the percentage of observability of the observations, showing
the averages for all types of landmarks, F1-score, and corre-
lation. Namely, each inner table in Table 2 represents the re-
sults for each percentage of observability (10%, 30%, 50%,
70%, and 100%) over the evaluated dataset. It is possible to
see that our complete technique (D+P+O) when applied for
both heuristics outperforms the other combinations (includ-
ing the baseline approaches) in all variations of domain in-
completeness and observability. Thus, from these results, we
can conclude the combination of all types landmarks (defi-
nite, possible, and overlooked) yields better results in com-
parison to other combinations over the dataset.

6 Conclusions and Future Work
We have developed novel goal recognition approaches that
deal with incomplete domains that represent possible pre-
conditions and effects besides traditional models where such



10% of Observability

Domain Incompleteness 20% Domain Incompleteness 40% Domain Incompleteness 60% Domain Incompleteness 80%
|D| |P | |O| |S| |F1|CD/CP/CO |D| |P | |O| |S| |F1|CD/CP/CO |D| |P | |O| |S| |F1|CD/CP/CO |D| |P | |O| |S| |F1|CD/CP/CO

Baseline (gc) 11.5 0.0 0.0 1.77 0.33 -0.04/0/0 4.9 0.0 0.0 2.41 0.28 -0.02/0/0 3.5 0.0 0.0 2.45 0.25 0.34/0/0 2.9 0.0 0.0 2.79 0.26 0.36/0/0
Baseline (uniq) 11.5 0.0 0.0 1.36 0.33 -0.11/0/0 4.9 0.0 0.0 1.67 0.29 -0.02/0/0 3.5 0.0 0.0 1.42 0.28 0.08/0/0 2.9 0.0 0.0 1.90 0.28 0.09/0/0

G̃C (D+P+O) 11.6 1.4 1.3 1.94 0.46 -0.11/-0.08/-0.61 9.6 2.1 1.2 2.24 0.44 0.16/-0.13/-0.47 7.1 2.2 1.4 2.86 0.40 0.31/0.16/-0.26 6.8 1.1 1.3 3.27 0.39 0.21/-0.40/-0.24

G̃C (D+O) 11.6 0.0 1.7 2.03 0.45 -0.13/0/-0.55 9.6 0.0 1.7 2.51 0.44 0.15/0/-0.42 7.1 0.0 1.9 3.23 0.40 0.28/0/-0.16 6.8 0.0 1.6 3.58 0.38 0.20/0/-0.23

G̃C (P+O) 0.0 1.4 3.0 4.30 0.30 0/-0.16/-0.37 0.0 2.1 2.4 4.11 0.31 0/-0.14/-0.26 0.0 2.2 2.0 4.08 0.29 0/0.01/-0.27 0.0 1.1 1.8 4.26 0.28 0/-0.55/-0.18

G̃C (P) 0.0 1.4 0.0 2.31 0.24 0.11/0/0 0.0 2.1 0.0 2.29 0.22 -0.07/0/0 0.0 2.2 0.0 2.08 0.22 0.28/0/0 0.0 1.1 0.0 2.20 0.21 -0.29/0/0

G̃C (O) 0.0 0.0 3.4 3.54 0.43 0/0/-0.39 0.0 0.0 2.9 3.92 0.42 0/0/-0.34 0.0 0.0 2.6 4.38 0.38 0/0/-0.16 0.0 0.0 2.1 4.51 0.37 0/0/-0.19

ŨNIQ (D+P+O) 11.6 1.4 1.3 1.87 0.40 -0.12/-0.02/-0.46 9.6 2.1 1.2 2.01 0.40 0.08/-0.16/-0.39 7.1 2.2 1.4 2.34 0.35 0.24/0.12/-0.23 6.9 1.1 1.3 2.91 0.35 0.13/-0.57/-0.26

ŨNIQ (D+O) 11.6 0.0 1.7 2.00 0.38 -0.13/0/-0.43 9.6 0.0 1.7 2.39 0.38 0.06/0/-0.39 7.1 0.0 1.9 3.01 0.35 0.16/0/-0.26 6.9 0.0 1.6 3.12 0.34 0.12/0/-0.31

ŨNIQ (P+O) 0.0 1.4 3.0 4.38 0.30 0/-0.23/-0.47 0.0 2.1 2.4 3.98 0.32 0/-0.33/-0.46 0.0 2.2 2.0 3.79 0.29 0/-0.15/-0.34 0.0 1.1 1.8 3.73 0.29 0/-0.62/-0.35

ŨNIQ (P) 0.0 1.4 0.0 1.25 0.26 -0.26/0/0 0.0 2.1 0.0 1.32 0.27 -0.42/0/0 0.0 2.2 0.0 1.32 0.27 -0.20/0/0 0.0 1.1 0.0 1.32 0.27 -0.55/0/0

ŨNIQ (O) 0.0 0.0 3.4 3.37 0.43 0/0/-0.42 0.0 0.0 2.9 3.80 0.42 0/0/-0.34 0.0 0.0 2.6 4.24 0.38 0/0/-0.17 0.0 0.0 2.1 4.40 0.37 0/0/-0.19

30% of Observability

Domain Incompleteness 20% Domain Incompleteness 40% Domain Incompleteness 60% Domain Incompleteness 80%
|D| |P | |O| |S| |F1|CD/CP/CO |D| |P | |O| |S| |F1|CD/CP/CO |D| |P | |O| |S| |F1|CD/CP/CO |D| |P | |O| |S| |F1|CD/CP/CO

Baseline (gc) 11.5 0.0 0.0 1.46 0.33 0.14/0/0 4.8 0.0 0.0 1.64 0.28 0.29/0/0 3.5 0.0 0.0 1.90 0.25 0.55/0/0 2.9 0.0 0.0 2.16 0.26 0.59/0/0
Baseline (uniq) 11.5 0.0 0.0 1.33 0.33 0.15/0/0 4.8 0.0 0.0 1.59 0.29 0.20/0/0 3.5 0.0 0.0 1.72 0.28 0.21/0/0 2.9 0.0 0.0 2.07 0.28 0.30/0/0

G̃C (D+P+O) 11.5 1.4 4.4 1.39 0.66 0.09/0.05/-0.64 9.6 2.1 4.0 1.55 0.63 0.48/0.16/-0.45 7.1 2.2 4.4 1.88 0.57 0.70/0.54/-0.04 6.8 1.1 4.2 2.15 0.55 0.53/-0.08/0.10

G̃C (D+O) 11.6 0.0 5.5 1.41 0.65 0.09/0/-0.56 9.6 0.0 5.4 1.64 0.63 0.50/0/-0.35 7.1 0.0 6.0 2.01 0.57 0.69/0/0.16 6.8 0.0 5.1 2.29 0.55 0.54/0/0.15

G̃C (P+O) 0.0 1.4 9.5 4.88 0.32 0/0/-0.41 0.0 2.1 7.6 4.49 0.34 0/0/-0.29 0.0 2.2 6.5 4.42 0.32 0/0/-0.18 0.0 1.1 6.0 4.66 0.30 0/0/-0.23

G̃C (P) 0.0 1.4 0.0 1.91 0.29 0/0.17/0 0.0 2.1 0.0 1.92 0.28 0/0.01/0 0.0 2.2 0.0 1.83 0.28 0/0.52/0 0.0 1.1 0.0 1.77 0.27 0/-0.34/0

G̃C (O) 0.0 0.0 10.7 1.97 0.64 0/0/-0.35 0.0 0.0 9.2 2.16 0.61 0/0/-0.19 0.0 0.0 8.2 2.50 0.54 0/0/0.18 0.0 0.0 6.8 2.69 0.53 0/0/0.13

ŨNIQ (D+P+O) 11.6 1.4 4.4 1.28 0.61 0.06/0.15/-0.52 9.6 2.1 4.0 1.36 0.58 0.28/0.14/-0.40 7.1 2.2 4.4 1.64 0.52 0.62/0.60/-0.02 6.8 1.1 4.2 1.94 0.50 0.53/-0.08/0.12

ŨNIQ (D+O) 11.6 0.0 5.5 1.28 0.59 0.08/0/-0.51 9.6 0.0 5.4 1.47 0.55 0.28/0/-0.28 7.1 0.0 6.0 1.84 0.50 0.53/0/0.09 6.8 0.0 5.1 2.12 0.51 0.55/0/0.04

ŨNIQ (P+O) 0.0 1.4 9.5 4.06 0.32 0/0/-0.50 0.0 2.1 7.6 3.78 0.33 0/0/-0.53 0.0 2.2 6.5 3.50 0.32 0/0/-0.34 0.0 1.1 6.0 3.26 0.29 0/0/-0.38

ŨNIQ (P) 0.0 1.4 0.0 1.25 0.26 0/-0.26/0 0.0 2.1 0.0 1.31 0.26 0/-0.42/0 0.0 2.2 0.0 1.31 0.27 0/-0.19/0 0.0 1.1 0.0 1.31 0.27 0/-0.55/0

ŨNIQ (O) 0.0 0.0 10.7 1.80 0.63 0/0/-0.34 0.0 0.0 9.2 2.01 0.61 0/0/-0.16 0.0 0.0 8.2 2.31 0.54 0/0/0.19 0.0 0.0 6.8 2.55 0.52 0/0/0.14

50% of Observability

Domain Incompleteness 20% Domain Incompleteness 40% Domain Incompleteness 60% Domain Incompleteness 80%
|D| |P | |O| |S| |F1|CD/CP/CO |D| |P | |O| |S| |F1|CD/CP/CO |D| |P | |O| |S| |F1|CD/CP/CO |D| |P | |O| |S| |F1|CD/CP/CO

Baseline (gc) 11.5 0.0 0.0 1.36 0.44 0.38/0/0 4.8 0.0 0.0 1.50 0.36 0.43/0/0 3.5 0.0 0.0 1.74 0.31 0.63/0/0 2.9 0.0 0.0 1.95 0.34 0.71/0/0
Baseline (uniq) 11.5 0.0 0.0 1.27 0.45 0.32/0/0 4.8 0.0 0.0 1.48 0.34 0.41/0/0 3.5 0.0 0.0 1.56 0.32 0.31/0/0 2.9 0.0 0.0 1.74 0.32 0.46/0/0

G̃C (D+P+O) 11.6 1.4 8.8 1.24 0.76 0.29/0.17/-0.45 9.6 2.1 7.9 1.31 0.76 0.63/0.37/-0.20 7.1 2.2 8.5 1.53 0.70 0.85/0.55/0.24 6.8 1.1 8.2 1.76 0.67 0.65/0.05/0.35

G̃C (D+O) 11.6 0.0 10.9 1.26 0.76 0.34/0.0/-0.35 9.6 0.0 10.6 1.33 0.76 0.66/0.0/-0.04 7.1 0.0 11.4 1.59 0.69 0.84/0.0/0.46 6.8 0.0 9.8 1.84 0.67 0.65/0.0/0.39

G̃C (P+O) 0.0 1.4 18.6 5.19 0.18 0/-0.11/-0.37 0.0 2.1 14.9 4.73 0.20 0/-0.04/-0.28 0.0 2.2 12.6 4.82 0.19 0/0.34/-0.17 0.0 1.1 11.7 4.87 0.16 0/-0.50/-0.28

G̃C (P) 0.0 1.4 0.0 1.94 0.31 0/0.20/0 0.0 2.1 0.0 1.96 0.35 0/0.11/0 0.0 2.2 0.0 2.02 0.33 0/0.65/0 0.0 1.1 0.0 1.70 0.30 0/-0.27/0

G̃C (O) 0.0 0.0 20.7 1.54 0.74 0/0/-0.07 0.0 0.0 17.8 1.59 0.74 0/0/0.10 0.0 0.0 15.7 1.88 0.66 0/0/0.45 0.0 0.0 13.3 2.08 0.64 0/0/0.31

ŨNIQ (D+P+O) 11.6 1.4 8.8 1.13 0.72 0.32/0.26/-0.32 9.6 2.1 7.9 1.18 0.70 0.33/0.37/-0.07 7.1 2.2 8.5 1.38 0.64 0.83/0.64/0.36 6.8 1.1 8.2 1.60 0.62 0.63/0.06/0.40

ŨNIQ (D+O) 11.6 0.0 10.9 1.14 0.70 0.39/0.0/-0.21 9.6 0.0 10.6 1.25 0.67 0.45/0.0/0.17 7.1 0.0 11.4 1.52 0.62 0.68/0.0/0.44 6.8 0.0 9.8 1.78 0.63 0.66/0.0/0.33

ŨNIQ (P+O) 0.0 1.4 18.6 4.02 0.32 0/-0.13/-0.48 0.0 2.1 14.9 3.83 0.35 0/-0.17/-0.51 0.0 2.2 12.6 3.72 0.33 0/0.18/-0.29 0.0 1.1 11.7 3.21 0.29 0/-0.57/-0.41

ŨNIQ (P) 0.0 1.4 0.0 1.25 0.26 0/-0.26/0 0.0 2.1 0.0 1.31 0.27 0/-0.42/0 0.0 2.2 0.0 1.31 0.27 0/-0.19/0 0.0 1.1 0.0 1.31 0.27 0/-0.55/0

ŨNIQ (O) 0.0 0.0 20.7 1.39 0.74 0/0/-0.02 0.0 0.0 17.8 1.46 0.74 0/0/0.11 0.0 0.0 15.7 1.68 0.66 0/0/0.46 0.0 0.0 13.3 1.93 0.64 0/0/0.32

70% of Observability

Domain Incompleteness 20% Domain Incompleteness 40% Domain Incompleteness 60% Domain Incompleteness 80%
|D| |P | |O| |S| |F1|CD/CP/CO |D| |P | |O| |S| |F1|CD/CP/CO |D| |P | |O| |S| |F1|CD/CP/CO |D| |P | |O| |S| |F1|CD/CP/CO

Baseline (gc) 11.5 0.0 0.0 1.35 0.50 0.49/0/0 4.8 0.0 0.0 1.46 0.41 0.54/0/0 3.5 0.0 0.0 1.70 0.33 0.67/0/0 2.9 0.0 0.0 1.90 0.37 0.71/0/0
Baseline (uniq) 11.6 0.0 0.0 1.23 0.49 0.45/0/0 4.8 0.0 0.0 1.37 0.36 0.49/0/0 3.5 0.0 0.0 1.45 0.33 0.42/0/0 2.9 0.0 0.0 1.67 0.34 0.50/0/0

G̃C (D+P+O) 11.5 1.4 14.4 1.09 0.88 0.38/0.27/-0.14 9.6 2.1 12.8 1.14 0.87 0.62/0.31/0.12 7.1 2.2 13.6 1.30 0.83 0.72/0.32/0.27 6.8 1.1 13.2 1.43 0.80 0.65/0.11/0.48

G̃C (D+O) 11.6 0.0 17.5 1.11 0.87 0.38/0/-0.04 9.6 0.0 17.0 1.15 0.87 0.62/0/0.20 7.1 0.0 18.0 1.33 0.82 0.78/0/0.51 6.8 0.0 15.6 1.48 0.80 0.66/0/0.48

G̃C (P+O) 0.0 1.4 29.7 5.62 0.31 0/-0.09/-0.40 0.0 2.1 24.1 5.03 0.35 0/-0.04/-0.29 0.0 2.2 20.4 5.13 0.35 0/0.25/-0.25 0.0 1.1 19.0 5.11 0.33 0/-0.48/-0.34

G̃C (P) 0.0 1.4 0.0 2.10 0.30 0/0.26/0 0.0 2.1 0.0 2.07 0.31 0/0.10/0 0.0 2.2 0.0 2.19 0.28 0/0.59/0 0.0 1.1 0.0 1.72 0.27 0/-0.21/0

G̃C (O) 0.0 0.0 33.0 1.25 0.84 0/0/0.038 0.0 0.0 28.5 1.28 0.84 0/0/0.30 0.0 0.0 24.9 1.47 0.78 0/0/0.52 0.0 0.0 21.4 1.63 0.77 0/0/0.47

ŨNIQ (D+P+O) 11.6 1.4 14.4 1.09 0.83 0.46/0.37/-0.09 9.6 2.1 12.8 1.10 0.80 0.35/0.34/0.21 7.1 2.2 13.6 1.23 0.76 0.84/0.56/0.46 6.8 1.1 13.2 1.37 0.74 0.64/0.18/0.56

ŨNIQ (D+O) 11.6 0.0 17.5 1.09 0.81 0.61/0/0.17 9.6 0.0 17.0 1.15 0.77 0.45/0/0.46 7.1 0.0 18.0 1.32 0.75 0.70/0/0.57 6.8 0.0 15.6 1.46 0.76 0.68/0/0.52

ŨNIQ (P+O) 0.0 1.4 29.7 4.20 0.32 0/-0.09/-0.49 0.0 2.1 24.1 3.97 0.35 0/-0.14/-0.51 0.0 2.2 20.4 3.91 0.34 0/0.18/-0.31 0.0 1.1 19.0 3.13 0.29 0/-0.56/-0.46

ŨNIQ (P) 0.0 1.4 0.0 1.25 0.26 0/-0.27/0 0.0 2.1 0.0 1.31 0.27 0/-0.42/0 0.0 2.2 0.0 1.31 0.27 0/-0.20/0 0.0 1.1 0.0 1.31 0.27 0/-0.55/0

ŨNIQ (O) 0.0 0.0 33.0 1.14 0.83 0/0/0.16 0.0 0.0 28.5 1.19 0.83 0/0/0.26 0.0 0.0 24.9 1.35 0.77 0/0/0.49 0.0 0.0 21.4 1.54 0.75 0/0/0.46

100% of Observability

Domain Incompleteness 20% Domain Incompleteness 40% Domain Incompleteness 60% Domain Incompleteness 80%
|D| |P | |O| |S| |F1|CD/CP/CO |D| |P | |O| |S| |F1|CD/CP/CO |D| |P | |O| |S| |F1|CD/CP/CO |D| |P | |O| |S| |F1|CD/CP/CO

Baseline (gc) 11.5 0.0 0.0 1.42 0.53 0.58/0/0 4.8 0.0 0.0 1.57 0.42 0.62/0/0 3.5 0.0 0.0 1.77 0.36 0.66/0/0 2.9 0.0 0.0 1.89 0.38 0.72/0/0
Baseline (uniq) 11.5 0.0 0.0 1.39 0.53 0.59/0/0 4.8 0.0 0.0 1.54 0.38 0.54/0/0 3.5 0.0 0.0 1.63 0.35 0.48/0/0 2.9 0.0 0.0 1.83 0.35 0.52/0/0

G̃C (D+P+O) 11.6 1.4 21.2 1.04 0.96 0.35/0.23/0.32 9.6 2.1 19.0 1.07 0.94 0.46/0.31/0.34 7.1 2.2 19.6 1.21 0.91 0.58/0.23/0.41 6.8 1.1 19.1 1.27 0.88 0.57/0.25/0.60

G̃C (D+O) 11.6 0.0 25.5 1.05 0.95 0.35/0/0.30 9.6 0.0 24.7 1.08 0.93 0.46/0/0.36 7.1 0.0 25.7 1.23 0.90 0.61/0/0.53 6.8 0.0 22.5 1.29 0.88 0.57/0/0.60

G̃C (P+O) 0.0 1.4 42.8 6.10 0.32 0/-0.09/-0.47 0.0 2.1 35.2 5.47 0.36 0/-0.03/-0.37 0.0 2.2 29.7 5.39 0.35 0/0.27/-0.23 0.0 1.1 27.8 5.44 0.32 0/-0.46/-0.40

G̃C (P) 0.0 1.4 0.0 2.46 0.24 0/0.29/0 0.0 2.1 0.0 2.38 0.23 0/0.12/0 0.0 2.2 0.0 2.32 0.23 0/0.58/0 0.0 1.1 0.0 1.88 0.22 0/-0.17/0

G̃C (O) 0.0 0.0 47.4 1.12 0.91 0/0/0.12 0.0 0.0 41.4 1.13 0.90 0/0/0.39 0.0 0.0 35.9 1.28 0.86 0/0/0.57 0.0 0.0 31.2 1.39 0.84 0/0/0.58

ŨNIQ (D+P+O) 11.6 1.4 21.2 1.01 0.92 0.36/0.37/0.31 9.6 2.1 19.0 1.03 0.88 0.15/0.25/0.49 7.1 2.2 19.6 1.09 0.85 0.65/0.39/0.56 6.8 1.1 19.1 1.17 0.83 0.53/0.26/0.65

ŨNIQ (D+O) 11.6 0.0 25.5 1.02 0.90 0.46/0/0.53 9.6 0.0 24.7 1.07 0.87 0.22/0/0.62 7.1 0.0 25.7 1.16 0.85 0.58/0/0.59 6.8 0.0 22.5 1.23 0.85 0.55/0/0.60

ŨNIQ (P+O) 0.0 1.4 42.8 5.40 0.33 0/-0.07/-0.50 0.0 2.1 35.2 5.16 0.36 0/-0.12/-0.51 0.0 2.2 29.7 5.06 0.34 0/0.18/-0.29 0.0 1.1 27.8 5.01 0.30 0/-0.54/-0.54

ŨNIQ (P) 0.0 1.4 0.0 2.22 0.26 0/-0.27/0 0.0 2.1 0.0 2.25 0.27 0/-0.42/0 0.0 2.2 0.0 2.30 0.27 0/-0.19/0 0.0 1.1 0.0 2.31 0.27 0/-0.55/0

ŨNIQ (O) 0.0 0.0 47.4 1.05 0.89 0/0/0.33 0.0 0.0 41.4 1.09 0.90 0/0/0.32 0.0 0.0 35.9 1.23 0.85 0/0/0.51 0.0 0.0 31.2 1.35 0.82 0/0/0.53

Table 2: Performance results for ablation study, comparing the baseline approaches against our heuristics using some possible
combinations of landmark types, separated by observability (10%, 30%, 50%, 70%, and 100%).



information is assumed to be known. The main contribu-
tions of this paper include the formalization of goal recog-
nition in incomplete domains, two (enhanced) goal recog-
nition heuristics, novel notions of landmarks for incomplete
domains, and a dataset to evaluate the performance of such
approaches. Our novel notions of landmarks include that
of possible landmarks for incomplete domains as well as
overlooked landmarks that allow us to compensate fast but
non-exhaustive landmark extraction algorithms, the latter of
which can also be employed to improve existing goal recog-
nition approaches (Pereira and Meneguzzi 2016; Pereira,
Oren, and Meneguzzi 2017). Experiments over thousands of
recognition problems in 15 planning domain models show
two key results of our approaches. First, these approaches
are fast and accurate when dealing with incomplete domains
at all variations of observability and domain incompleteness.
Our use of novel heuristics frees us from using full fledged
incomplete-domain planners as part of the recognition pro-
cess. Approaches that use planners for goal recognition are
already very expensive for complete domains and are even
more so in incomplete domains, since they often generate
plans taking into consideration many of the possible mod-
els, and even then they often fail to generate robust plans
for these domains. Second, our ablation study shows that
our additional notions of landmarks have substantial impact
on the accuracy of our approaches over simply ignoring the
uncertain information from the domain model, as we use in
the baseline approach. Importantly, the ablation study shows
that overlooked landmarks contribute substantially to the ac-
curacy of our approaches. We envision such techniques to
be instrumental in using learned planning models (Asai and
Fukunaga 2018) for goal recognition (Amado et al. 2018).
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