
Develop, Visualize and Test Classical Planning Descriptions in your Browser

Maurı́cio Cecı́lio Magnaguagno, Ramon Fraga Pereira, Martin Duarte Móre
and Felipe Meneguzzi

Pontifical Catholic University of Rio Grande do Sul (PUCRS), Brazil
Graduate Program in Computer Science, School of Computer Science (FACIN)

{mauricio.magnaguagno, ramon.pereira, martin.more}@acad.pucrs.br
felipe.meneguzzi@pucrs.br

Abstract

Automated planning tools are complex pieces of soft-
ware that take declarative domain descriptions and gen-
erate plans for complex domains. New users often find it
challenging to understand the plan generation process,
while experienced users often find it difficult to track
semantic errors and efficiency issues. To simplify this
process, in this paper, we develop a cloud-based plan-
ning tool with code editing, code verification and vali-
dation, and problem visualization capabilities. The code
editor focuses on the domain, problem, and resulting
plan and other textual information, helping the user see
how such descriptions are connected without changing
context across multiple screens. The visualization tool
includes two alternative visualization schemes aimed at
illustrating the explored state-space and dependencies
between actions and predicates during plan execution.

Introduction
Classical planning algorithms typically require a declara-
tive domain specification describing action schemata, which,
in turn, define the dynamics of the underlying domain.
Since the inception of the International Planning Compe-
tition (IPC), the standard specification language for classi-
cal planning is the Planning Domain Definition Language
(PDDL) (Haslum et al. 2019). Given the declarative na-
ture of PDDL, planning algorithm implementations are of-
ten opaque regarding the intermediate steps between read-
ing the formalism and generating a plan. This creates a
twofold problem for domain engineers that wish to use auto-
mated planning technology to solve any given planning in-
stance: ensuring correctness, and optimizing the efficiency
of a planning algorithm.

First, ensuring correctness of PDDL specifications may
be a challenging task for new users even for simple domains,
while detecting semantic mistakes in complex domains is al-
ways non-trivial. Even when the user successfully compiles
and executes a planning instance with the chosen heuristic
function the planner may fail to find a correct plan for the
intended domain. In these cases, virtually no planning algo-
rithm offers extra information, and the user only knows that

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

either the domain has some kind of description error, or that
specific problem supplied to the planner is unsolvable.

Second, practical applications of classical planners re-
quire not only a formalization of the domain in PDDL that
is correct, but also exploit the search mechanisms employed
by the underlying planners to find solutions efficiently. Most
modern classical planning solvers (Richter and Westphal
2010; Hoffmann 2011) use heuristic functions to estimate
which states are likely to be closer to the goal state and
save time and memory during the planning process. Dif-
ferent heuristic functions may be more effective in solving
problems in different planning domains within a reasonable
time and a small memory footprint. Thus, key to understand-
ing the efficiency of a domain formalization is its impact on
the heuristic function used by the underlying planner.

In order to address these challenges, we developed WEB
PLANNER (Magnaguagno et al. 2017), an online tool aimed
at helping domain engineers to formalize classical planning
descriptions and spot semantic errors in planning domains.
Our tool, which we describe in the Architecture Section,
includes a PDDL code editor with syntax highlighting and
code auto-completion aimed at helping users to efficiently
develop planning instances in a similar workflow to many
popular Integrated Development Environments. Importantly,
we integrate the editor to other debugging tools, described in
the Capabilities Section, developed to help users cope with
the declarative nature of PDDL and explore the effects of
changes to the domain in solving concrete problems.

Architecture
We designed our tool envisioning a development process
centered around two tasks by the domain developer. In the
first task, the user aims to describe both domain and prob-
lem correctly. In the second task, the user tries to identify
details of the description (in terms of predicate use) that im-
pact performance and how these predicates occur during the
planning process. The domain designer is free to move be-
tween these tasks and repeat until satisfied with the results.
Once a planning instance is described it is possible to visual-
ize the explored state-space, even when the planning process
fails. When the planning process finishes, the user can visu-
alize how each action adds or deletes predicates during plan
execution. Such visualizations also help new users under-
stand how states are represented and operated internally.



To avoid the considerable setup time of some planner
implementations and maintain a consistent interface across
platforms, we use a web interface. Planner and analysis tools
are executed in the server, while the editor and visualization
animations are executed in the client browser. Communica-
tion between client and server uses JSON1 and is currently
stateless, information sent to the server during each request
is discarded once its resulting response is sent back to the
user. We illustrate this architecture in Figure 1.

Client 
 
 
 
 
 
 
 
 
 
 

Server 
 
 
 
 
 
 
 
 
 
 

Planner

State-space and 
plan data 

PDDL editor

Visualizations

Plan
Output

Verifier and 
Validator

Figure 1: Overview of the WEB PLANNER architecture.

Capabilities
Our implementation uses three distinct components to assist
planning: editor, verifier and validator, and visualizations.

Editor
The text editor interface uses a split-view of a domain and
problem to make clear to the user that both descriptions
are separate files but are often developed simultaneously.
The user is able to see both domain, problem and textual
outputs (such as the plan) without context switching. The
editor’s syntax-highlighter helps users identify missing ele-
ments, such as parentheses, while keyboard shortcuts allow
the user to generate common PDDL structures, such as ac-
tions.

Verifier and Validator
Plan output alone is not enough to identify errors in a plan-
ning description. The declarative nature of PDDL obscures
the intermediate structures of the planner for novice users (or
users without working knowledge of planner implementa-
tion), requiring further modification of the chosen planner to
log such information. Common mistakes can be identified by
a verifier, which tests both domain and problem for repeated
or undeclared elements (action names, parameters, precon-
ditions, effects), contradictions, invalid characters, etc.

A syntactically valid PDDL description can be verified
for errors, but one may ask if this is enough to obtain a valid
representation of the environment they are simulating. To
semantically validate one must execute plans. The validator
applies each plan action, testing if such action exists and is
applicable, and with their effects generate each intermediate
state, validating a final state that satisfies the goal. Verifiers
and validators are often separate tools (Howey, Long, and

1JSON (JavaScript Object Notation) is an open-standard format
for structuring data.

Fox 2004) outside the knowledge of novice users that could
greatly benefit from automated analysis of their descriptions.

Visualizations
Textual outputs describe details about the intermediate states
explored by a planner, but only visualizations can give an
idea of the whole state-space and plan in a single look.
We currently support two visualizations: an interactive state-
space tree and a puzzle-like plan metaphor (Magnaguagno,
Pereira, and Meneguzzi 2016). Such visualizations are use-
ful to explain high-level concepts, such as a heuristic func-
tion forcing search to explore selected branches of the state-
space tree or which previous actions satisfy preconditions to
apply other actions and achieve the goal state. By interact-
ing with these two visualizations, state-space tree and plan,
we expect users to obtain insights about the complexity and
relations between domain actions.

Conclusions
In this paper, we report on the WEB PLANNER demo, which
consists of a PDDL editor to formalize planning domains
and problems, a verifier and a validator to report common
errors, and visualizations to help understand the impact of
heuristic usage in state-space search. Our small scale user
testing with undergraduate students shows that such tool can
substantially mitigate the burden of complex installation and
usage instructions before required for new users to formalize
planning problems in PDDL. WEB PLANNER is available
at https://web-planner.herokuapp.com.

Acknowledgements: Felipe acknowledges support from CNPq
under project numbers 407058/2018-4 and 305969/2016-1, and
FAPERGS process number 18/2551-0000500-2. We acknowledge
support from HP Brasil using incentives of Brazilian Informatics
Law no 8.2.48 of 1991. We also acknowledge the support given
by CAPES under Finance Code 001 and the Pro-Alertas project
(88887.115590/2015-01).

References
Haslum, P.; Lipovetzky, N.; Magazzeni, D.; and Muise, C. 2019.
An introduction to the planning domain definition language. Syn-
thesis Lectures on Artificial Intelligence and Machine Learning
13(2):1–187.
Hoffmann, J. 2011. The Metric-FF Planning System: Translat-
ing ”Ignoring Delete Lists” to Numeric State Variables. CoRR
abs/1106.5271.
Howey, R.; Long, D.; and Fox, M. 2004. VAL: automatic plan
validation, continuous effects and mixed initiative planning using
PDDL. In ICTAI, 294–301.
Magnaguagno, M. C.; Pereira, R. F.; Móre, M. D.; and Meneguzzi,
F. 2017. Web planner: A tool to develop classical planning domains
and visualize heuristic state-space search. In Proceedings of UISP,
32–38.
Magnaguagno, M. C.; Pereira, R. F.; and Meneguzzi, F. 2016.
DOVETAIL - An Abstraction for Classical Planning Using a Vi-
sual Metaphor. In Proceedings of FLAIRS, 74–79.
Richter, S., and Westphal, M. 2010. The LAMA planner: Guiding
cost-based anytime planning with landmarks. JAIR 39(1):127–177.


