
Distributed Fault Diagnostic for Multiple Mobile
Robots Using an Agent Programming Language

Márcio G. Morais and Felipe R. Meneguzzi and Rafael H. Bordini and Alexandre M. Amory
Informatics Faculty, PUCRS University, Porto Alegre, Brazil

Abstract—Programming autonomous multi-robot systems can
be extremely complex without the use of appropriate software
development techniques to abstract the hardware heterogeneity
from the complexity of distributed software to coordinate au-
tonomous behavior. Moreover, real environments are dynamic,
which can generate unpredictable events that can lead the robots
to failure. This paper presents a highly abstract cooperative fault
diagnostic method for a team of mobile robots described on
a programming environment based on ROS (Robot Operating
System) and the Jason multi-agent framework. When a robot
detects a failure, it can perform two types of diagnostic methods: a
local method executed on the faulty robot itself and a cooperative
method where another robot helps the faulty robot to determine
the source of failure. A case study demonstrates the success of
the approach on two turtlebots.

I. INTRODUCTION

Autonomous mobile robots are being increasingly em-
ployed in real-world applications and places such as homes,
hospitals, and shopping malls. Such robots have different types
of sensors, actuators, and processing elements, resulting in a
typically highly heterogeneous hardware platform. Moreover,
the services that the robots provide are also becoming more
sophisticated, enabling some degree of autonomy even in
unknown or partially known environments. Consequently, it
is becoming unfeasible to program such sophisticated systems
as a single monolithic application. For this reason, several
software architectures were created to enable modular software
design, where the modules can interact with each other by
passing data and messages [1], [2]. This approach allows the
design of parallel applications, making software complexity
manageable and resulting in highly maintainable and reusable
software modules.

When the robots face the real world, many unpredicted sit-
uations can occur. Carlson et al. [3] demonstrate that reliability
in the field is typically low, between 6 to 24 hours of mean time
between failures (MTBF), even for tele-operated robots. This
low reliability requires constant human intervention, which
hinders the purpose of using robots in the first place. One
common way to increase the reliability is by redundancy (in
hardware or software). However, this increases the cost and
design complexity which can also hamper the use of mobile
robots for cost-sensitive applications. Instead of building a
single very expensive robot with extensive use of redundancy
to increase reliability, it might be more efficient, economic,
and reliable to have multiple simpler robots collaborating in
a given task. Multiple robots provide parallelism, redundancy,
and tolerance to individual robot failure.

The motivation of this work is to provide a programming
infrastructure which enables hardware abstraction and code

reuse for the described fault plans, increasing the robot’s fault
diagnosis capability and its overall reliability. The fault plans
presented in this paper are described in a highly abstract way
using an agent programming language (at the top layer) and
a robotic software framework (at the middle layer). Thus, our
main contribution in this paper is a method of cooperative high-
level fault diagnostic using an agent programming language
where two or more robots can collaborate to improve the fault
diagnostic, abstracting hardware details from fault diagnostic
procedure, enabling fault plan reuse in a heterogeneous robotic
system, and potentially enabling a more effective fault isolation
and recovery methods.

The rest of this paper is organized as follows. Section II
surveys two main software programming environments for
robotics: robotic software frameworks (RSF) and multi-agent
systems (MAS). Section III reviews both programming envi-
ronments in terms of their existing fault tolerance features.
Section IV describes the main contribution of this paper,
including a case study of the integration of RSF and MAS
to describe more abstract fault plans. Section VI gives some
final remarks and discusses directions for future work.

II. ROBOT PROGRAMMING APPROACHES

Abstract and structured programming approaches become
necessary as robotic applications require additional complexity
in behavior, increased autonomy, and the ability to adapt to
dynamic events. In this context, robotic software architectures
require more scalability, reusability, efficiency and fault tol-
erance [2] to cope with unforeseen events once they are de-
ployed in a real-world environment. For these reasons, modern
robotic software architectures have a number of common key
features [2], such as: a distributed architecture and inter process
communication; high modularity to improve code reuse and
scalability; robustness and fault tolerance to avoid a single fault
causing the entire system to crash, and to allow the system to
achieve its goals with the available resources; and the capacity
to deal with events in real time and with high efficiency.

Robotic Software Frameworks (RSFs) typically consist of
software modules that can interact with each other via inter-
process communication, as well as a set of tools for usual
software development tasks such as package creation, building,
execution, simulation, debugging, and logging. Importantly,
RFSs also include the most common drivers for “off-the-shelf”
robotics sensors/actuators, well-known libraries for modeling
kinematics, physics, localization, mapping, navigation, grip-
ping among other common robotics capabilities. There are
several RSFs available such as Orocos [4], MIRA [5], ROS [6],
among many others that have been surveyed in [1], [2]. In
those surveys, ROS stands out because it is fast becoming the

de facto open source platform used for applications in robotics,
with a large number of resources, libraries, drivers, and tools
incorporated. Therefore, we have selected ROS to use as the
lower level software platform in our research to interface high-
level agent programming and low-level robotic algorithms and
hardware.

Recent work on Multiagent Robotic Systems (MARS) [2]
compares software infrastructure for MAS and for RSF. The
authors suggest advantages when both software systems are
used in robotics, enabling the programming of high-level
behaviors. For this reason we selected Jason [7] as an extension
of the well-known AgentSpeak(L) language [8] as the pro-
gramming abstraction for goal-directed behavior in our multi-
robot programming platform. AgentSpeak is an agent program-
ming language that follows the Beliefs, Desires, and Intentions
(BDI) architecture [9]. In BDI agents, reasoning is based on
three main mental components: beliefs (representing an agent’s
knowledge), desires (representing goals to be achieved) and
intentions (representing commitments to particular desires and
courses of actions to achieve them). The authors suggest the
book [7] for more details on how to program plans with
AgentSpeak

III. RELIABILITY IN ROBOTICS

As mentioned before, the typical MTBF of robotic systems
is very low. According to Carlson et al. [3], it is between 6
to 24 hours. Crestani and Godary-Dejean [10] also report low
MTBF for robots used in military, urban, and rescue missions.
Most common faults are related to actuators [3].

System-level reliability methods generally implement at
least these three main steps: fault detection; fault diagnosis;
recovery. Most papers on fault tolerance for robotics propose
some new fault detection / diagnostic approaches for mobile
robots, which were surveyed in [11]. However, the focus of this
paper is on a system-wide and integrated diagnostic approach
for multi robots. The rest of this section reviews the existing
approaches for RSF and MAS.

The RSF survey papers [1], [2], [10] raise criticism about
fault tolerance in robotics: despite the obvious need for fault
tolerance, only a few RSFs implement any FT mechanism.
Elkady and Sobh [1] evaluates several RSFs in terms of criteria
such as fault detection and recovery capabilities. Most of them
have no explicit fault handling capability except for the support
of software exceptions, logging, and playback. Melchior and
Smart [12] describe a recovery-oriented framework for mobile
robots which requires no outside intervention. The authors
focus on general programming faults that can cause programs
to halt or crash. In this case, the recovery mechanism can
restart the process before a complete system failure. Kirchner
et al. [13] propose a self-healing architecture for multi-robot
systems based on ROS. It enables the developer to add com-
ponents for monitoring, diagnostic, and recovery. The authors
present no quantitative or qualitative evaluation.

IV. CASE STUDY ON COOPERATIVE FAULT PLANS FOR
MULTIPLE ROBOTS

This section presents the case study used to evaluate the
proposed cooperative fault plans for multiple robots. Sec-
tion IV-A describes the case study, Section IV-B details the

(a) Faulty (b) Helper

Fig. 1: Faulty and Helper robots used in the experiments.

RFS/MAS interface, and Section IV-C presents the robot’s
local and cooperative fault plans.

A. Case Study and Fault Model

The photo in Figure 1 illustrates our experimental set up
with the two Turtlebots1. Both robots (called, respectively,
Faulty and Helper) have similar hardware: a laptop computer
(Core i7 with 8GByte RAM), Kobuki mobile base with 2
differential wheels with wheel encoders. The Helper robot has
a Kinect sensor array, and the Faulty robot has two colored
cylinders on its top, for the purposes of identification and pose
estimation. Both robots have the same software, which consists
of the software environment presented in Section IV-B and the
fault plans described in Section IV-C.

Faulty only has wheel encoders to monitor its movements,
it has neither depth sensor nor camera, which would be
useful to disambiguate faults by itself. Helper has wheel
encoders, depth sensors, and camera, to safely navigate on
an environment. Kinect is a cheap and effective depth sensor
for robotics, although it has a limited field of view (57◦

horizontally and 43◦ vertically) and it has a minimum viewing
distance of approximately 80 cm. Thus, obstacles outside the
field of view or closer to the minimum distance cannot be
detected by the robot, potentially causing undesired collisions.
Moreover, Kinect is not able to detect reflective surfaces and
glass walls/windows. Due to these limitations, we require a
fault plan to identify the root cause of a navigation failure.

We consider the following fault scenarios within the fault
plans. The Faulty robot is expected to move a certain distance
and one of the following outcomes can happen: (i) the robot
is able to perform the action; (ii) there is a fault on the wheel
encoders. (iii) there is a fault in both actuators of the wheels;
(iv) there is a fault in the actuator of one of the wheels;

Note that there are multiple causes in the situation where
a robot cannot achieve a certain navigation goal. For instance,
the robot may not move forward because a wheel is stuck or
the actuator is defective; the motor is actually working but the
wheel encoder is not detecting the resulting wheel movement
(e.g., broken wire). Each of these causes is ambiguous since
they may lead to the same outcome: the robot cannot reach
the desired destination. The purpose of the fault plan is to
automatically identify which of the possible faults actually
happened so that an adequate recovery strategy can be started.

1http://www.turtlebot.com/.

In some situations, Faulty cannot identify the source of a
fault with its own sensors, since the sensors themselves can
be the source of the fault. In this case, the robot asks for help
from other robots, which in our scenario is exemplified by the
Helper robot. The Helper “lends” its perceptions so that the
Faulty robot can disambiguate and confirm the source of the
fault, enabling an effective fault recovery. For instance, during
an action where a robot needs to perform some movement, if
their odometry system reports no progress, the robot is not
able to determine if the odometry system is the source of
the fault itself or whether the odometry system is correctly
reporting some fault in the motion system. A similar situation
happens when an actuator has fault. This fault produces an
unexpected movement and Faulty is not able to isolate the
source of the fault that can be a fault in one of the actuators
or the encoders reporting wrong values. In these situations, an
inspector robot plays a key role in the fault isolation process
since it can help the faulty robot by visually locating it and
detecting any movement, then giving feedback during the fault
isolation procedure. Feedbacks of movement during the fault
isolation procedure help Faulty to know whether it is moving
or not and, in case of movement, whether the robot can move
in a straight line or not.

The experiment consists of generating each of these faults
to evaluate the diagnostic correctness of the proposed cooper-
ative fault plans presented in Section IV-C.

B. ROS Layers

Figure 2 illustrates the RSF layer describing the ROS nodes
used in the described case study. This figure is divided into
three parts representing the types of ROS nodes: drivers, ROS
application, Jason.

A set of ROS nodes has been implemented to perform
different tasks according to the needs of the case study. In func-
tional layer, freenect node and Kobuki node, provide the inter-
face to the hardware; In execution layer, motion decomposer,
visual synthesizer, and fault injector are responsible for the
execution of actions and generation of information to decision
layer; In decision layer, Jason agents connected to ROS take
decisions based on information coming from execution layer.

1) Functional Layer: The functional layer is the lowest
layer within the three-tier architecture. It is responsible for im-
plementing an interface between the layers of the highest level
and the hardware through elementary operations performed on
sensors and actuators. This section presents an overview of the
rosnodes from functional layer, they are already available as
part of ROS packages.

freenect node 2 is a ROS node which is a ROS driver for
kinect hardware, that acquires data from Kinect and publishes
messages on several topics related with camera calibration,
image, depth and combined information such as registered
depth camera (aligned with RGB camera) and point clouds.

Similar to freenect node, kobuki node is a ROS wrapper
for the iClebo Kobuki 3 mobile base driver. kobuki node
publishes messages on several topics about hardware diagnos-
tics, events (for instance, a bumper hit) and odometry. It also

2freenect node is a libfreenect-based ROS driver for the Microsoft Kinect.
libfreenect is available at http://openkinect.org

3http://kobuki.yujinrobot.com

subscribes to topics related to commands to actuators and its
internal odometry system.

2) Execution Layer: The execution layer is responsible
for defining a software infrastructure where the exchange
of information between layers or modules of the system is
performed. Among its responsibilities are the use of raw data
aiming to provide resources and services to the system, and the
interconnection between the functional layer and the decision
layer.

The motion decomposer ROS node translates the agent’s
high-level basic motion actions as “turn(45)” into ROS mes-
sages to the nodes of the functional layer. This node subscribes
to the topic /jason/actions and handles incoming messages
whose high-level action is “move” or “turn”.

The fault injector is a ROS service that intercepts messages
from other nodes to kobuki node and changes the value of the
parameters simulating the behavior of the active fault.

This visual synthesizer ROS node gives to the Helper’s
agent a perception of the presence of Faulty and its coordi-
nates, in order to locate Faulty or give it a feedback during
a cooperative fault diagnosis procedure. The perception about
Faulty is given in form of its position, pose and depth.

The colored cylinders are detected by using OpenCV
functions to extract blobs4 according to the desired colors.
InRange function is used to filter color pixels out by checking
if image color pixels lie between lower and upper boundaries.
Morphological operations are performed to remove small ob-
jects and fill small holes. Thus, the remaining shapes in the
resulting image are the candidate blobs.

The procedure to determine the best pair of blobs is
executed in two steps. First, the pairs of blobs whose distance
is greater than 25 cm or less than 22 cm (22.7 cm is the
known distance between cylinders) of distance between them
are excluded. Second, among the remaining pairs, the pair
whose distance is closer to 22.7 cm is selected.

Once the colored cylinders have been identified, the cen-
troid of their areas is calculated and their depths extracted from
the point cloud; the distance depth between the robots is the
mean value from the depth of the centroid of the region of
each cylinder c1 and c2 and it is extracted directly from the
point cloud.

depth =
c1 + c2

2

Position is given in degrees from the distance between the
center of the captured image and the middle-point of the pair
of the cylinders. Once it is known that Kinect has a horizontal
field of view of 57◦, it is possible to map angular offsets up to
28.5◦ left or right, from the image center to middle point of
the pair of colored cylinders. Thus, angle is given as follow:

angle =
qrc center w − (img width

2)
img width

2

× 28.5

Where qrc center w is the middle-point of a pair of colored
cylinders and img width is the total number of columns of the
image frame.

4In computer vision, blobs are regions in a digital image that differ in
properties, such as brightness or color, compared to surrounding regions.

(a) Faulty (b) Helper

Fig. 2: Nodes organization for Faulty(a) and Helper(b).

Since the distance H between the colored cylinders is
known (22.7 cm), and the distance from the Helper to the
centroid of the colored cylinders has been obtained from the
depth point cloud, it is possible to estimate the pose of Faulty
in relation to Helper by estimating the value of the cosine of
β, as follows:

cos(β) =
hypotenuse

adjacent cathete
=

H

c2− c1
Where c1 and c2 are the distances from the Helper to the
centroid of the cylinders.

3) Decision Layer: In order to integrate ROS and Jason, we
developed a standardized interface that allows Jason agents to
connect to ROS and communicate with ROS nodes in charge
of sending information and executing actions. The interface
comprises two internal classes in Jason to become Jason agents
into ROS nodes named RasonNodes. Thus, decision layer has
Jason running agents with fault plans which have only high-
level actions and perceptions which are not hardware-specific.
The plans are explained in Subsection IV-C.

Figure 2 represents the internal software organization of
our two robots, Faulty (Figure 2a) and Helper (Figure 2b).
In this example, a single agent represents a single robot with
one computer. However, it is possible to model a single robot
with multiple computers or even multiple agents. For instance,
an humanoid robot can have an agent for each arm, another
agent for the legs, etc. Multiple robots can be modeled by
instantiating multiple agents in the robot’s computers. Jason
agents running on different computers can communicate via
JADE [14].

C. Agents’ Plans

This section describes the fault plans used to isolate and
diagnose the faults described in Section IV-A. Figures 3 and
4 present behavior trees which illustrate the robots plans. A
Behavior Tree is a model of plan execution used robotics
to describe switchings between a finite set of tasks in a
modular way. Each node represents a task and a complex
task could have several child tasks. There are two key node
types in Behavior trees: selector and sequencer. The selector,

Fig. 3: Faulty’s behavior tree.

represented by a “?” symbol, executes the next sibling node
when the execution of the current node fails. The sequencer
node, identified by a “→” symbol, executes the next sibling
node when the current node has its execution successfully
finished.

1) Faulty’s Plans: Figure 3 shows a behavior tree that
describes the Faulty’s plans used to reach the goal as well
as plans to deal with its faults. Initially, the faulty robot tries
to reach a destination using the goal goToDestination.
When Faulty detects it is not able to reach the destination
(due to the failure of goToDestination action), it executes
its local fault plan diagnoseAlone. The local fault plan
for the fault scenarios described in Section IV-A is empty
once Faulty has no devices to disambiguate the source of
the fault. When the second attempt to move fails, it starts
a cooperative fault detection strategy by broadcasting a help
request (broadcastHelp). When Faulty receives a positive
response from Helper, it asks Helper to track it (trackMe)
and, when Helper is ready to track it (tryMove), Faulty tries
to move again. After completing the movement, Faulty asks
Helper for a feedback on its movement and evaluates the
source of the fault(feedback). A thanks is sent back to
Helper to let it know the help is no more needed.

The resulting movement is calculated according to the
fault detected. When Faulty tries to move but no progress
is detected, if Helper reports a current position, pose, or
depth different than the initial one, it considers the encoders
have fault, otherwise either the actuators have faults or the
wheels are stuck. When Faulty detected a movement that is in
discordance with the expected movement, the composition of
Faulty’s pose and angle is compared to the projected values,
higher values indicate fault in right actuator, lower values
indicate fault in left actuator, otherwise is considered a false
positive.

2) Helper’s Plans: As we saw in Section IV-C, when the
Faulty robot fails to isolate the source of a fault, it asks for
help, broadcasting a help request in the network. This situation
results in the Helper robot receiving a request to help Faulty,
and the two robots trying to diagnose the problem interacting
between them, using the plans presented in the behavior trees
shown in Figure 3 and Figure 4. The next steps refer to
Helper’s behavior tree, shown in Figure 4.

When the Helper robot receives a request for help from
Faulty (helpMe), it first tries to detect the Faulty robot
by slowly rotating on its axis until both colored cylinders
from the Faulty robot are close to the center of its field of

Fig. 4: Helper’s behavior tree

vision (findRobot). Once Faulty was detected and Helper is
positioned, the latter informs Faulty that it has found it. Upon
receiving confirmation that it has been detected, Faulty in turn
asks Helper to keep tracking it while it moves (trackMe).
Helper then proceeds to track Faulty’s movement by telling
it to move, and observing Faulty’s behavior. When Faulty has
completed its movement, it requests Helper’s perceptions about
its position, pose, and depth (giveMeFeedback). Once the
diagnosis has been completed, Faulty sends a message to
Helper to let it know that the cooperative diagnostic procedure
is finished, so Helper can reset the information about Faulty
and return to its tasks (thanks).

V. RESULTS

This section presents the results for the fault scenarios
described in the case study in Section IV in terms of latency
to complete the diagnostic steps, which are: the fault detection
step, the robot detection step, and the fault diagnosis step. The
fault detection step is not a cooperative step but, as all the
other steps, it involves the integration between Jason and ROS,
either to move the robot or to generate events of faults to the
decision layer. This step begins when Faulty starts pursuing its
goal and finishes when Faulty detects a fault and asks for help.
In the robot detection step initiates the cooperation between the
robots. Once the Faulty has detected a fault and it is not able
to diagnose alone, since there is ambiguity according to the
nature of the fault, it asks for help, and Helper starts looking for
Faulty through the perception coming from its computer vision
synthesizer node. The robot detection step finishes when Faulty
is detected or a full turn is completed without detecting Faulty.
In the diagnosis step, Faulty tries to perform the actions needed
to disambiguate the diagnosis and, after that, it requests some
feedback from Helper, that reports position and pose according
to its beliefs, based on its own perceptions. Several runs were
performed for each one of the proposed fault scenarios. The
tests were recorded during theirs executions and the elapsed
time for each step was extracted based on the logs.

The robots are positioned side by side and separated by a
distance of 1.5 meters in order to give Faulty enough space to
move according to the injected fault, and to create in Helper
the need for movement to find Faulty. The faults are injected
before executing the plan of the agent associated with the
Faulty robot.

On the fault scenario where both actuators have faults, the
injected fault was detected, Faulty robot was located by Helper

and the cooperative diagnosis has successfully been done in
all runs. Table I shows the value for each step of all runs.
The mean of the total time is 22.42 seconds and the standard
deviation is 0.78 seconds, which corresponds to less than 4%
of the mean time.

Fault
detection step

Robot
detection step

Diagnosis
step Total

Run 1 4.3 s 14.7 s 4.4 s 23.4 s
Run 2 4.0 s 14.2 s 4.7 s 22.9 s
Run 3 4.5 s 13.8 s 4.2 s 22.5 s
Run 4 4.1 s 12.4 s 4.9 s 21.4 s
Run 5 4.5 s 13.1 s 4.4 s 22.0 s

TABLE I: Latency on a diagnosis of faults in both actuators.

On the fault where Faulty tries to move but, differently
from the previous fault scenario, the actuators worked properly,
and the encoders do not detect any movement in the wheels, the
injected fault was successfully detected by the Faulty robot in
all runs, and Faulty robot was detected successfully by Helper
robot in 85% of the runs. Table II shows the value for each
step of all runs. From the successful runs, the mean of the
total time is 25.55 seconds and the standard deviation is 10.97
seconds, which corresponds to approximately 43% of the mean
time.

Fault
detection step

Robot
detection step

Diagnosis
step Total

Run 1 7.1 s 7.4 s 7.0 s 21.5 s
Run 2 6.7 s 7.0 s 6.1 s 19.8 s
Run 3 6.6 s 8.7 s 5.7 s 21.0 s
Run 4 7.3 s 8.5 s 5.8 s 21.6 s
Run 5 7.3 s 62.3 s +INF +INF
Run 6 7.7 s 35.1 s 5.1 s 47.9 s
Run 7 6.7 s 8.8 s 5.9 s 21.5 s

TABLE II: Latency on a diagnosis of encoders faults.

In Table II, the high standard deviation is due to the fact
that Helper, in run number 6, after detecting robot Faulty,
required repositioning to keep Faulty close to the center of its
visual field, preventing from visual loss. During the process of
repositioning, Faulty was not perceived in the center of image
and, as a consequence, Helper kept turning to centralize Faulty.
Thus, despite Faulty’s being at the center of the visual field,
Helper continued believing that Faulty was at its right side
and kept moving until Faulty was perceived in a wrong place.
When Helper then, realized that Faulty was on its left side,
it needed to reposition itself again. All the process of dealing
with interaction faults during the robot detection step increased
the time needed for Helper to get ready to help Faulty.

In run number 5, during the time which Faulty was within
the Helper’s field of view, Faulty was not perceived or Helper
had an incomplete perception of Faulty, i.e., the colored
cylinders which identify Faulty were not detected in the same
image frame. Thus, Helper was not able to help Faulty.

On the fault scenario where Faulty detects the fault in
one of the actuators, two experiments were done. In the first
experiment a fault was injected in the left actuator, and after,
in the right actuator. Beside being the same fault model, Faulty
places itself in different locations, that could create different
difficulties to the fault diagnosis process.

When the fault was injected in the left actuator, Faulty
was located by Helper and the cooperative diagnosis was
successfully done in all runs. Table III shows the value for each
step of all runs. The mean of the total time is 30.25 seconds

and the standard deviation is 1.52 seconds, which corresponds
to 5% of the mean time. Besides the fault being detected
in all runs, in run number 3 the diagnosis was based on a
perception of a previous state of Faulty due to occlusion of the
orange cylinder. In run number 4, the diagnosis also occurred
based on a perception of a previous state of Faulty, due to the
impossibility of depth extraction from the point cloud and, for
consequence, pose estimation when Faulty reached the target
position.

A similar situation happened in both cases when the diag-
nosis happened based on perceptions which did not represented
the current state of Faulty. Once Faulty was positioned on the
right side of Helper and Faulty had a fault in the left actuator,
Faulty performed a soft turn to the left side, positioning itself
in front of Helper. Faulty’s pose, close to 90◦ in relation to
Helper, caused the occlusion of the orange cylinder, preventing
Helper from retrieving its depth.

Fault
detection step

Robot
detection step

Diagnosis
step Total

Run 1 18.5 s 0.9 s 10.3 s 29.7 s
Run 2 19.2 s 1.6 s 11.3 s 32.1 s
Run 3 18.1 s 2.4 s 10.5 s 31.0 s
Run 4 17.8 s 1.4 s 9.4 s 28.6 s

TABLE III: Latency on a diagnosis of faults in the left actuator

When the fault was injected in the right actuator, despite
similarities related to the behavior of the robots and fault
characteristics, instead of positioning itself in front of Helper,
Faulty performs a soft turn to the right side, moving away from
Helper.

The injected fault was detected, Faulty robot was located
by Helper, and the cooperative diagnosis was successfully done
in all runs. Table IV shows the value for each step of all runs.
The mean of the total time is 40.73 seconds and the standard
deviation is 1.60 seconds, corresponding to less than 4% of
mean time. Besides the fault being detected in all runs, in
run number 3 the diagnosis was based on a perception of the
previous state of Faulty, due to the non-detection of the orange
cylinder caused by illumination issues.

Fault
detection step

Robot
detection step

Diagnosis
step Total

Run 1 17.6 s 10.6 s 11.3 s 39.5 s
Run 2 18.9 s 9.2 s 14.2 s 42.3 s
Run 3 16.9 s 11.9 s 13.1 s 41.9 s
Run 4 15.6 s 10.8 s 12.8 s 39.2 s

TABLE IV: Latency on a diagnosis of faults in the right
actuator

Tables III and IV show high latencies to the fault detection
step once Faulty moves slowly due to the actuator fault. Low
latencies in robot detection step (Table III) are a consequence
of Faulty’s movement to wrong direction, positioning itself
in front of Helper when the fault is in the left actuator.
When the robot detection steps began, Helper had already
perceived Faulty. Differently from the previous scenario, the
robot detection step has its latency time increased when the
fault was injected in the right actuator (Table IV) since Helper
performed a turn to locate Faulty.

VI. CONCLUSIONS

This paper presented a method of cooperative high-level
fault diagnostic using an agent programming language. A

case study is presented on two physical robots executing a
cooperative fault diagnostic plan used to disambiguate the root
cause of a fault.

Results presented in Section V show a success rate of 85%
for the scenario of fault in the encoders and 100% for the
remaining fault scenarios. Once the issues encountered during
the tests are related to the computer vision techniques applied
to locate and track Faulty and not the method by itself, we
consider viable the development of better plans to diagnose
faults as well as new plans to perform a compensation of
the workload, to delegate tasks or even reconsider plans and
goals. From the diagnosis step, it would be possible to increase
robustness and fault tolerance in the system by triggering a
recovery method or even using the presented method as part
of a control loop.

As future work, we aim to improve the computer vision
techniques to minimize interaction faults and to further eval-
uate the combined framework in various other fault situations
and to assess the use of other multi-agent coordination tech-
niques for applications with larger numbers of robots.

REFERENCES

[1] A. Elkady and T. Sobh, “Robotics Middleware: A Comprehensive Lit-
erature Survey and Attribute-Based Bibliography,” Journal of Robotics,
vol. 2012, pp. 1–15, 2012.

[2] P. Iñigo Blasco, F. Diaz-del Rio, M. C. Romero-Ternero, D. Cagigas-
Muñiz, and S. Vicente-Diaz, “Robotics software frameworks for multi-
agent robotic systems development,” Robotics and Autonomous Systems,
vol. 60, no. 6, pp. 803–821, Jun. 2012.

[3] J. Carlson, S. Member, and R. R. Murphy, “How UGVs Physically
Fail in the Field,” IEEE Transactions on Robotics, vol. 21, no. 3, pp.
423–437, 2005.

[4] H. Bruyninckx, “Open robot control software: the OROCOS project,”
in IEEE International Conference on Robotics and Automation (ICRA),
2001, pp. 2523–2528.

[5] E. Einhorn and T. Langner, “MIRA-middleware for robotic applica-
tions,” in Intelligent Robots and Systems (IROS), no. Iros, 2012, pp.
2591–2598.

[6] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, 2009.

[7] R. Bordini, J. Hübner, and M. Wooldridge, Programming multi-agent
systems in AgentSpeak using Jason. John Wiley & Sons, 2007.

[8] A. S. Rao, “AgentSpeak(L): BDI agents speak out in a logical com-
putable language,” in Proceedings of the 7th MAAMAW, ser. LNCS,
W. V. de Velde and J. W. Perram, Eds. Springer-Verlag, 1996, vol.
1038, pp. 42–55.

[9] M. E. Bratman, D. J. Israel, and M. E. Pollack, “Plans and resource-
bounded practical reasoning,” Computational Intelligence, vol. 4, no. 4,
pp. 349–355, 1988.

[10] D. Crestani and K. Godary-Dejean, “Fault Tolerance in Control Archi-
tectures for Mobile Robots: Fantasy or Reality?” in National Conference
on Control Architectures of Robots, 2012.

[11] Y. Zhang and J. Jiang, “Bibliographical review on reconfigurable fault-
tolerant control systems,” Annual Reviews in Control, vol. 32, no. 2,
pp. 229–252, Dec. 2008.

[12] N. Melchior and W. Smart, “A framework for robust mobile robot
systems,” in Proc. SPIE 5609, Mobile Robots XVII, 2004.

[13] D. Kirchner, S. Niemczyk, and K. Geihs, “RoSHA: A Multi-Robot
Self-Healing Architecture?,” in RoboCup International Symposium
RoboCup-2013, 2013.

[14] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-Agent
Systems with JADE. John Wiley & Sons, 2007.

