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Abstract
The BDI model forms the basis of much of the re-
search on symbolic models of agency and agent-
oriented software engineering. While many vari-
ants of the basic BDI model have been proposed in
the literature, there has been no systematic review
of research on BDI agent architectures in over 10
years. In this paper, we survey the main approaches
to each component of the BDI architecture, how
these have been realised in agent programming lan-
guages, and discuss the trade-offs inherent in each
approach.

1 Introduction
For the last 30 years, the BDI agent model based on the
mental attitudes of beliefs, desires and intentions has formed
the basis for much of the research on architectures for au-
tonomous agents. Starting with the philosophical work of
Bratman [1987], and implementations such as the Procedu-
ral Reasoning System (PRS) [Georgeff and Lansky, 1987],
the theory and practice of BDI agents has proceeded in paral-
lel, with innovations at the semantic level leading to new ar-
chitectural and language features, and new architectural fea-
tures leading to new and extended semantics. Over this pe-
riod, many agent architectures, languages, interpreters, plat-
forms, and theoretical formalisations have been developed,
embodying a wide range of agent programming features and
their corresponding semantics. The resulting space of the-
ories and implementations is complex, and a review of the
current state of the BDI ecosystem seems timely.1

In this paper we survey the most important features of BDI
agent architectures and their implementations in agent pro-
gramming languages. While the importance of a feature is
inevitably subjective, our survey is guided by two key cri-
teria. First, a feature must fall squarely within the original
BDI concept described by Bratman [1987]. This criterion ex-
cludes architectures that contain additional mental attitudes
such as obligations. Second, it must either implement or fa-
cilitate the implementation of Bratman’s notion of practical

1The most recent survey of which we are aware is [Bordini et al.,
2006]; [Kravari and Bassiliades, 2015] focuses on the pragmatics of
agent platforms, e.g., license and robustness rather than architectures
per se.

reasoning. This excludes features targeting, e.g., software de-
velopment issues, such as modules and debugging support.
Given the space available and the volume of work in the lit-
erature, we are only able to give representative examples for
many features we consider, and we apologise to the authors
whose work we had to omit.

2 The BDI Agent Architecture
The BDI agent architecture has its origins in the philosoph-
ical work of Bratman [1987]. Bratman argued that practical
reasoning can be thought of as the act of weighing multiple,
conflicting considerations for and against conflicting choices,
in light of what the agent believes, desires, values and cares
about. The first step in practical reasoning, known as de-
liberation, is to decide what state of affairs to bring about
from the (possibly conflicting) desires of the agent, and the
second step, known as means-ends reasoning, is to decide
how to bring about that state of affairs. In practice, means-
ends reasoning concerns the adoption of some ‘recipe’ or pre-
specified plan of action in order to bring about an intended
state of affairs. Bratman’s philosophical model inspired the
idea of programming intelligent agents based on the mental
attitudes of beliefs, desires and intentions.

In a BDI architecture, beliefs represent the agent’s informa-
tion about its environment, other agents and itself, goals (de-
sires) are states of affairs to achieve, and intentions are com-
mitments to achieving particular goals. A BDI agent program
consists of a set of initial beliefs (and in some cases goals)
and a set of plan-rules (analogous to methods in HTN plan-
ning) specifying when a plan can be used to achieve a goal
or respond to changes in the agent’s beliefs. Plans consist of
a sequence of steps, and may include belief updates, actions
and subgoals. The execution of an agent follows a delibera-
tion cycle implemented by an agent interpreter (Algorithm 1)
that realises both deliberation and means-ends reasoning. The
cycle begins with the agent updating its event queue with any
external events (e.g., new top-level goals or percepts) from
the environment and any internal events (e.g., subgoals) from
the previous cycle (Line 3). Any percepts (i.e., changes in the
state of the environment) are then used to update the agent’s
beliefs, giving an updated belief base Bel (Line 4). The agent
then uses the plan-rules comprising its plan library to respond
to new events. Each plan-rule proposes a plan to respond to
an event based on the agent’s current beliefs. If the event is



Algorithm 1 BDI Agent Interpreter
1: procedure AGENTINTERPRETER(〈Ev ,Bel ,PLib, Int〉)
2: while true do
3: Ev ← UPDATEEVENTS(Ev)
4: Bel ← UPDATEBELIEFS(Ev ,Bel)
5: Int ← SELECTPLANS(Ev ,Bel ,PLib, Int)
6: Ev ← EXECUTEINTENTION(Int ,Ev)

external, the plan forms the root of a new intention; if the
event is a subgoal, the plan is added to an existing inten-
tion (Line 5). Each intention thus comprises a stack of plans
adopted to achieve a hierarchy of subgoals. Finally, the agent
executes the next step of the topmost plan in an intention.
This may involve updating the event queue with a new sub-
goal, or executing an action in the environment (Line 6). The
cycle then repeats.

Algorithm 1 abstracts away from the detail of how each
step in the cycle is implemented, but illustrates the key fea-
tures of the BDI architectures and languages we consider in
this paper. For a more detailed exploration of a computable
BDI interpreter, see Meneguzzi and De Silva [2015]. How-
ever, while the basic components of the BDI architecture and
steps in the deliberation cycle have remained largely constant
throughout the history of research into BDI agents, they have
been elaborated and interpreted in a variety of ways as we
describe in the following sections.

3 Approaches to Beliefs
In most agent programming languages, an agent’s belief base
is represented as a conjunction of ground positive literals in
a first-order logical language. However, in many cases, this
basic representation is enriched in various ways as described
below.

3.1 Belief Formulas
In many languages, the beliefs of an agent represent only
‘true facts’ (i.e., positive literals). This has the advantage
of ensuring that the agent’s beliefs are always consistent;
however, representing negative information, e.g., that there
is no block on top of block1, typically requires additional flu-
ents, e.g., clear(block1). In such languages, negation (if it
is supported at all) is only allowed in plan-rules in the form
of negation as failure. That is, the agent implicitly believes
not(φ) if φ is not present in (or derivable from) the agent’s
belief base. However, some languages, e.g., Jason [Bordini
et al., 2007], allow negative literals in the agent’s belief base
(termed ‘strong negation’ in Jason). In addition, many lan-
guages allow the agent’s beliefs to include inference rules
(typically Horn clauses). Such rules are usually viewed as
representing fixed, ‘definitional’ information about a domain,
which is not updated by the agent’s percepts or messages
from other agents.

3.2 Extending the Belief Representation
There has also been work on extending the underlying be-
lief representation to support more complex forms of infer-
ence. For example, Moreira et al. [2006] develop a variant

of AgentSpeak(L) based on description logic rather than Pro-
log. This allows complex belief base queries to be expressed
more concisely, consistency checking of belief updates, more
flexible retrieval of plans based on the subsumption relation
between concepts, and the sharing of knowledge expressed
in ontology languages such as OWL. A similar approach was
taken in the JASDL extension of the Jason agent platform that
makes use of an existing OWL-API to provide features such
as plan trigger generalisation based on ontological knowledge
and the use of such knowledge in querying the agent’s belief
base [Klapiscak and Bordini, 2009].

Another strand of work seeks to avoid a commitment to any
particular knowledge representation (KR) technology, and in-
stead aims to make the underlying KR technology a ‘plug-
gable’ component. For example, Dastani et al. [2009] de-
velop two different approaches to integrating and combining
multiple KR techniques into a BDI-based agent programming
language: a meaning-preserving translation approach that
maps one representation to another, and an approach based
on ‘bridge rules’ which adds additional inference power to
an agent system with multiple KR technologies. An alterna-
tive approach to the integration of KR languages is to use a
generic KR interface, which can be used to integrate, e.g.,
both Prolog and OWL with rules [Bagosi et al., 2015]. On a
practical level, some languages, e.g., Jason, allow additional
information to be stored as ‘annotations’ on beliefs, e.g., the
source of the belief and the timestep at which it came to be
believed, which may be used by other forms of reasoning or
belief update procedures.

3.3 Uncertain Beliefs
There has also been work on extending BDI languages to
handle uncertain beliefs. For example, Kwisthout et al.
[2005] used Dempster-Shafer theory to model uncertainty in
an agent’s beliefs; Casali et al. [2011] proposed a graded BDI
agent model in which belief degrees represent the agent’s cer-
tainty about beliefs; Silva and Gluz [2011] presented a variant
of AgentSpeak(L) [Rao, 1996], AgentSpeak(PL), that sup-
ports probabilistic beliefs through the use of Bayesian Net-
works; and Bauters et al. [2014] extended the operational se-
mantics for the agent language CAN [Winikoff et al., 2002] to
deal with uncertain information. Other approaches separate
the symbolic BDI cycle from Bayesian update of percepts,
e.g., Coelho and Nogueira [2015], where the update function
uses a hidden Markov model internally but returns the most
probable percept as a symbolic element of the belief base.

3.4 Belief Revision
There has also been work on how an agent’s beliefs are up-
dated. For example, Alechina et al. [2006] have investigated
how AI belief revision techniques can be used to ensure con-
sistency of a BDI agent’s belief base. Another strand of work
investigates how argumentation theory can be used to reason
about contradictory information, e.g., in multi-agent interac-
tions. For example, Panisson et al. [2018] have developed
techniques to allow Jason/JaCaMo agents to choose between
conflicting conclusions, or to choose the most promising ar-
guments in a dialogue by considering information sources of
varying degrees of trustworthiness.



4 Approaches to Goals
Goals are another key concept in BDI agent programming. In
this section, we briefly review the most important approaches
to goals proposed in the literature, including the main types
of goals and their semantics.

4.1 Test Goals
A test goal is a goal to test whether a condition holds (is be-
lieved by the agent). In most BDI programming languages,
test goals occur only as (sub)goals in plans, and not as top-
level goals. A test goal is evaluated against the agent’s belief
(or goal) base, possibly unifying variables. If the goal eval-
uates to true, execution of the plan containing the goal con-
tinues. However, languages take differing approaches to test
goals that evaluate to false. For example in 2APL [Dastani,
2008] execution of the plan containing the goal blocks until
the goal evaluates to true (in PRS this is achieved using the
?WAIT construct), while in Jason, the failure of a test goal
may trigger a subgoal and the adoption of a plan to make the
test true, e.g., by asking other agents for information.

4.2 Achievement Goals
Achievement goals can be categorised into two main types.
Procedural achievement goals are ‘goals to do’, i.e., a com-
mitment to perform an action or sequence of actions in re-
sponse to a change in the agent’s goals or beliefs. Declarative
achievement goals, on the other hand, are goals ‘to be’, meant
to bring about a particular state of the environment or agent.
Declarative goals are intrinsically related to the agent’s be-
liefs: a rational agent should not have as a goal a state which
it currently believes to be the case. If the agent comes to
believe that the goal state is currently the case, it will drop
the goal. In contrast, procedural goals are generally indepen-
dent of the agent’s beliefs, in the sense that no change in the
agent’s beliefs will result in the agent dropping the goal.

Different agent programming languages typically support
either procedural or declarative goals but not both. For ex-
ample, languages such as PRS, JACK [Busetta et al., 1999],
3APL [Hindriks et al., 1999] Jason and Jadex [Braubach
et al., 2005] take a procedural view of achievement goals,
while languages such as GOAL [Hindriks et al., 2001], later
versions of 3APL [Dastani et al., 2004] and 2APL take a
declarative view. Some languages that take a procedural view
support declarative goals indirectly through programming id-
ioms. For example, Hübner et al. [2006] show how declar-
ative goals with both success and failure conditions can be
implemented in Jason using plan-rule patterns.

In languages that take a procedural approach to goals,
goals are typically represented by simple terms, possibly
containing variables, e.g., pickup(block1). If the agent has
multiple goals, they may be performed in any order or si-
multaneously, depending on the capabilities of the agent
and its program. In languages that support declarative
goals, goals are typically represented by conjunctions of
positive literals, possibly containing variables. For exam-
ple, on(block1, block2) ∧ on(block2, block3) specifies that
on(block1, block2) and on(block2, block3) should be true in
the same state. Each goal is assumed to be consistent, i.e., the

agent cannot have φ ∧ ¬φ as a goal. However, if the agent
has multiple goals, they do not need to be consistent, i.e.,
achieved simultaneously.

In some languages, e.g., PRS, CAN and Jadex, the specifi-
cation of an achievement goal may also include a ‘failure con-
dition’ specifying the situations in which the goal is consid-
ered unachievable or irrelevant and should be dropped. Goals
may also be dropped when the plan adopted to achieve them
fails, though this is usually determined by the deliberation
cycle as described in Section 6.

Both procedural and declarative goals are typically consid-
ered ‘adopted’, in the sense that the agent will pursue/achieve
them at some point in the future. However, the decision about
when a goal is achieved is typically left to the deliberation cy-
cle as discussed in Section 6. As such, they function more like
desires in BDI logics.

4.3 Maintenance Goals
A maintenance goal is a goal to maintain a particular state
of the environment. As with (declarative) achievement goals,
maintenance goals give rise to the adoption of plans when
the goal condition does not hold, or when a guard condi-
tion (termed a maintain condition in [Dastani et al., 2006])
becomes true, which implies the state to be maintained will
cease to hold in the near future. For example, a goal to main-
tain a charged battery may be activated by the charge level
dropping below 20%. In contrast to achievement goals which
may be achieved in the future, the guard condition becoming
true or the goal condition becoming false typically results in
the immediate adoption of a plan to re-establish or maintain
the goal condition. However, similar to achievement goals, if
the plan fails, how the failure is handled is determined by the
deliberation cycle as described in Section 6.

4.4 Temporally Extended Goals
Both (declarative) achievement and maintenance goals can be
seen as special cases of temporally extended goals. A tem-
porally extended goal is specified by a formula in temporal
logic. In this setting, achievement goals can be seen as reach-
ability properties (in the future φ holds), maintenance goals as
invariant properties (φ holds in all states), and the active pre-
serve goals of PRS as similar to Until formulas (ψ holds until
φ holds, although in PRS φ is a procedural goal). Dastani et
al. [2011] present a rich taxonomy of goal types, where the
goals are represented by LTL formulas which are translated
into combinations of more basic declarative and maintenance
goals. For example, an ‘achieve and maintain’ goal can be
defined as one which first achieves a certain condition (as in
a declarative achievement goal) and then maintains it over a
certain period of time. Dastani et al. sketch how such tem-
poral goals can be realised in standard agent programming
languages; however, with the exception of the special cases
noted above and preliminary work in [Hindriks et al., 2009],
temporal goals are not currently supported by most agent pro-
gramming languages.

4.5 Priorities, Deadlines and Plan Restrictions
In addition to the main goal types listed above, various addi-
tional properties and constraints on goals have been proposed



in the literature. These have mostly been explored in the
context of declarative goals, but in principle there is no rea-
son why they cannot be be applied to procedural goals, and,
in some cases to maintenance goals. For example, AgentS-
peak(XL) allows the utilities and deadlines of goals to be
specified, and the agent acts to maximise an objective func-
tion [Bordini et al., 2002]. Similarly, AgentSpeak(RT) allows
both the priority of a goal and deadline by which it should be
achieved to be specified, and, if not all goals can be achieved
(by their deadlines), an AgentSpeak(RT) agent will pursue a
priority maximal set of goals that can be achieved by their
deadlines [Vikhorev et al., 2011].

5 Approaches to Plans
A plan-rule typically comprises a trigger specifying when the
rule is relevant, a context condition specifying when the rule
is applicable (i.e., which beliefs the agent must have for the
plan to be appropriate), and a plan built from steps such as
goals, belief update operations, and actions. In the simplest
case, the steps comprising a plan are executed in sequence.
However, several languages provide constructs for control-
ling the order in which the steps in a plan are executed which
we discuss in this section.

5.1 Series-Parallel Interleaving
In languages that support series-parallel interleaving, plans
are built incrementally by the sequential and parallel compo-
sitions of other plans. One approach is to interleave execution
of the plan for a subgoal with the remaining steps in the plan
containing the subgoal by treating the subgoal as a separate
intention. For example, in Jason, the plan !!e; a1; a2 specifies
that the subgoal e should be treated as a new intention, allow-
ing the execution of the plan that achieves e to be interleaved
with the execution of a1; a2, i.e., the plan for e may execute
before, after or during the execution of a1; a2, and is com-
pletely independent of it. In particular the failure of the plan
for e is not considered a failure of the invoking plan.

Some languages, e.g., CAN and AgLOTOS [Chaouche et
al., 2014], allow finer control over the ordering for steps. For
example, the steps in the plan (a1; a2) | (a3; a4) can be exe-
cuted in any order (e.g., in the order a1·a3·a2·a4) provided a2
happens after a1, and a4 happens after a3. In AgLOTOS, the
interleaving of steps can also be synchronised. For example,
in the program (a1; a2; a3) | (a4; a2; a5) where a2 is a ‘syn-
chronisation step’, a1 and a4 can execute in any order, but the
two branches must then synchronise via action a2 before the
remaining actions can be executed.

5.2 Arbitrary Interleaving
Languages that support arbitrary interleaving allow more fine
grained ordering of steps than series-parallel interleaving. For
example, consider the series-parallel plan P =!e1;

(
!e5 |

(!e2; !e6)
)
; !e3; !e4, which is the sequential composition of the

subgoal e1, interleaved plan (!e5 | (!e2; !e6)), and sequential
plan !e3; !e4 (where !e indicates that the subgoal e needs to be
achieved). The interleaved plan specifies the interleaving of
the plan to achieve e5 and sequential plan !e2; !e6. Observe
that it would not be possible to modify P to specify that e6

(i.e., the plan chosen to handle it) should additionally be in-
terleaved with e3 (i.e., the plan chosen to handle it) without
violating the other ordering requirements (or the need to leave
certain steps unordered). However, systems that support arbi-
trary interleaving (e.g., PRS [de Silva et al., 2018] and HTN-
acting [de Silva, 2018]) allow specifying exactly the ordering
requirements in P as well as the interleaving of e6 and e3.
For example, this is done in HTN-acting by representing P
as a partially ordered set of labelled subprograms.

5.3 Non-Interleaving (True) Concurrency
Some languages support true concurrency, i.e., where steps
may be executed simultaneously. For example, the plan
P ‖ P ′ allows steps in P to be interleaved or executed si-
multaneously with those in P ′, e.g., on different processors.
In JACK a concurrent plan may be specified to execute in
one of four ways [de Silva, 2020]: (i) if a branch fails, the
plan is considered to have failed — the other branches are
notified and may perform ‘cleanup’ steps before terminating;
(ii) if a branch fails, the plan is considered to have failed but
the remaining branches are allowed to complete execution;
(iii) if a branch completes execution, the plan succeeds – the
other branches are notified and may perform ‘cleanup’ steps
before terminating; and (iv) if a branch completes execution,
the plan succeeds but the remaining branches are allowed to
complete execution. Other languages support fewer forms of
concurrency. For example, the Concurrent CAN operational
semantics supports the second approach [de Silva, 2020], and
OpenPRS supports the first directly [Ingrand, 2014] (and the
second through programming idioms). JAM supports a more
basic approach to true concurrency called ‘lock step concur-
rency’, where the first step in each branch is executed simul-
taneously, and then the same is done with the second step in
each branch, and so on [Huber, 2001].

5.4 Control Flow
In addition to the various forms of parallelism described
above, some languages such as Jadex, OpenPRS, the Refine-
ment Acting Engine (RAE) [Ghallab et al., 2016], JACK,
3APL, and Jason support conditional and looping constructs
found in imperative programming languages, e.g., if-then-
else statements and while loops. However, such constructs
are essentially ‘syntactic sugar’ and do not increase the ex-
pressive power of a BDI language, as the same effect can
be achieved using multiple plan-rules with different con-
text conditions. For example, to specify the equivalent of
if φ then a1 else a2 in languages such as AgentSpeak,
we can specify two plan-rules of the form e : φ ← a1 and
e : ¬φ ← a2, where achieving subgoal e represents execut-
ing the if statement. Moreover, a richer plan syntax may
make it more difficult to implement some of the extensions to
the BDI deliberation cycle discussed in the next section.

6 Approaches to the Deliberation Cycle
Finally, we discuss approaches to the deliberation cycle. We
focus on failure handling, intention scheduling for avoiding
or exploiting interactions between intentions, and meta-level
reasoning for implementing sophisticated agent behaviour, as
these have received most attention in the literature.



6.1 Failure Handling
In some BDI systems, failure recovery is manual in the sense
that it needs to be programmed by the developer via ‘failure’
plan-rules or procedures. However other languages support
various forms of automated failure recovery, i.e., the failure
recovery mechanisms are built into the behaviour of the sys-
tem.

Manual Failure Recovery. In some languages, e.g., JAM,
recovery is performed by ‘failure procedures’ associated with
each plan. A failure procedure is called when the associated
plan fails during execution, e.g., because an action in the plan
fails or because there are no applicable plan-rules for a sub-
goal. Failure procedures are mainly intended for specifying
‘cleanup steps’: they cannot include subgoals and are exe-
cuted atomically (i.e., execution is not interleaved with ex-
ecution of other intentions). Other languages, e.g., Jason,
treat recovering from a failure as a particular kind of goal
to be achieved. The failure of a plan for a goal !e causes
the associated intention to be suspended and a corresponding
‘goal deletion’ event −!e to be posted. Goal deletion events
trigger ‘failure’ plan-rules, where the plan typically contains
‘cleanup steps’, possibly followed by the re-posting of the
goal that failed.

A more sophisticated approach adopted by, e.g., 3APL and
Jadex, is to use special failure plan-rules to perform meta-
level reasoning about the intention that failed. Such rules are
triggered by (partial) plans rather than goals or beliefs. For
example, a rule whose head matches a sequence of plan steps
beginning with a failed step may replace the failed step and
some or all of the subsequent steps, effectively rewriting the
plan at run time. Handling failure using meta-level reasoning
allows more informed recovery than the approaches above,
as there is access to information that is not in the belief base,
e.g., the (remaining) steps in an intention.

Automated Failure Recovery. The most basic approach to
automated failure recovery is to repeatedly retry the failed
action until it succeeds [Wobcke, 2001]. However, in most
languages, e.g., CAN, JACK, RAE, and HTN-acting, auto-
mated failure recovery happens at the level of goals. That is,
if a plan fails to achieve its triggering goal !e, an alternative
applicable plan-rule is selected from the ones that are relevant
for !e. If no alternatives exist, or the plans for all alternative
applicable rules also fail, the agent then backtracks to !e’s
‘parent’ goal (i.e., the triggering goal of the plan that posted
!e as a subgoal), in order to try an alternative applicable rule
at that level. This backtracking process may continue until
the top-level goal is reached. Three main approaches to se-
lecting an alternative applicable plan-rule have been proposed
in the literature: (i) in some languages, e.g., JACK, plan-rule
context conditions can be checked ‘early’, i.e., immediately
after they are added to the set of relevant rules for a goal, in
order to instantiate the applicable rules and store them for use
later upon failure; (ii) in languages such as e.g., CAN and
RAE, plan-rule context conditions are (re)checked only after
failure occurs and an applicable alternative is required (which
may be well after the set of relevant rules was created); and
(iii) in HTN-acting, plan-rule context conditions are checked
immediately before the first step in the plan is executed.

However, in HTN-acting, a plan-rule is checked (for appli-
cability) only once, i.e., the rule is not re-checked on the fail-
ure of another plan for the goal. A more ‘complete’ account is
given as part of the second approach to failure above, which
re-checks a plan-rule unless an instance of its plan has failed
(as in, e.g., CAN), or re-checks plan-rule instances whose
plans have not failed (as in, e.g., JACK, RAE, and the CAN
variant in [Sardina and Padgham, 2011]). An even more com-
plete account, as stated in [Ghallab et al., 2016], would be to
re-check plan-rule instances whose plans have failed, if the
conditions responsible for the failure no longer hold.

6.2 Intention Scheduling
Intention scheduling is the process of suitably interleaving
the intentions of an agent. The most basic approaches in-
volve executing one step in an intention at each deliberation
cycle, in either a FIFO or round robin manner as in, e.g.,
JACK and Jason, or an intention with the highest utility as
in JAM, where the utility of an intention is computed from
the utilities of the goals the intention achieves and the plans
used. However, such simple approaches can result in conflicts
between intentions (where the execution of an action in one
intention destroys the precondition of an action in another in-
tention) and/or ‘wasted effort’ (e.g., where the same subgoal
is achieved by multiple intentions), and several approaches
to intention scheduling have been proposed that focus on ex-
ploiting positive interactions between interleaved intentions,
and/or avoiding negative interactions between intentions or
between intentions and the environment.

Exploiting Positive Interactions. When the next action in
an intention cannot be executed because the preconditions
of the action do not hold at the current deliberation cycle
or there is no applicable plan for a subgoal, it may be pos-
sible to progress a different intention that has as a ‘side ef-
fect’ the (re)establishment of the preconditions of the action
or context condition in the blocked intention. This is termed
a positive interaction, and differs from the failure handling
approaches discussed above, where the plan containing the
blocked action would be aborted (perhaps after performing
some ‘cleanup’ steps), and an alternative applicable plan-rule
selected for the corresponding goal. To exploit such posi-
tive interactions, Yao et al. [2016] proposed a scheduling ap-
proach based on Monte-Carlo Tree Search, in which pseu-
dorandom simulations of different interleavings of the steps
within each intention are used to determine which intention
to progress next.

Avoiding Negative Interactions. A negative interaction
occurs when a step that is executed in one intention brings
about an effect that causes a condition in another intention
to become violated. To avoid such conflicts, Thangarajah
et al. [2011] compute ‘summary’ information offline from
the agent’s goals and plan-rules that describes the necessary
and possible pre- and post-conditions for different ways of
achieving a goal. This information is used at runtime to
schedule intentions, by checking whether a newly adopted
goal will definitely be safe to execute without conflicts, def-
initely result in conflicts, or possibly result in conflicts. If
the goal cannot be achieved without conflicts the correspond-



ing intention is deferred. Waters et al. [2014] compute an
intention’s ‘coverage’, i.e., how complete the available plan-
rules are for achieving the intention, relative to the set of
possible environmental situations. Their intention scheduler
prioritises intentions with low coverage, i.e., those with a
high chance of becoming non-executable due to changes in
the environment. However, in their approach and in that of
Thangarajah et al. [2011], intentions are scheduled at the
plan level. Yao et al. [2016] show how an approach based on
Single-Player Monte-Carlo Tree Search can be used to sched-
ule intentions at the action level so as to avoid negative inter-
actions.

The approaches above make use of information derived
from the pre- and postconditions of actions and the context
conditions of plan-rules. An alternative approach is for de-
velopers to provide additional information about plan-rules.
For example, Bordini et al. [2002] proposed an extended ver-
sion of AgentSpeak, AgentSpeak(XL), that uses a scheduler
to generate schedules for AgentSpeak intentions, e.g., to de-
cide which goals to perform, how to perform them, and the
order in which they should be performed. Their approach re-
lies on the manual provision of relations between plan-rules,
e.g., whether a plan ‘facilitates’ or ‘hinders’ some other plan.

6.3 Meta Level Reasoning
In many languages, the choice between the applicable plan-
rules for a goal is arbitrary or based on the order in which
rules appear in the agent program, and changing this default
behaviour requires essentially re-implementing part of the in-
terpreter. In addition to failure handling as discussed above,
meta-level reasoning can be used to choose the most appro-
priate applicable plan-rule for a goal. One approach is for
meta-level plan-rules to have higher priority than standard
plan-rules (as in OpenPRS and meta-APL [Leask and Logan,
2018]). Alternatively, the existence of more than one applica-
ble plan-rule for a goal triggers a special goal that is handled
by a meta-level plan-rule (as in JACK). This is used to rea-
son about the computed set of applicable plan-rules (e.g., by
reading a ‘meta-predicate’ which stores this set) and then se-
lect a plan-rule from this set for the current situation, based
on criteria such as the success rate of executing that rule in
the past. Meta-level reasoning can also be used to access and
modify values in the agent’s internal data structures (e.g., us-
ing ‘meta-functions’ as in Jason), in order to, for example,
abort a declarative goal being pursued. Finally, meta-level
reasoning can be used in OpenPRS to execute all the agent’s
intentions (truly) concurrently, rather than interleaving them.

7 Discussion
In this section, we identify some key open research questions
relating to beliefs, goals, plans and the deliberation cycle,
and highlight some possible directions for future work in BDI
agent architectures.

While the simple approach to beliefs currently used by
many agent programming languages is sufficient for a large
class of applications, it seems likely that richer representa-
tions will be required for emerging application areas such as
‘assistive agents’ that must maintain models of the beliefs and

goals of the humans they are assisting, and robotics and au-
tonomous systems which must integrate sub-symbolic infor-
mation from sensors into the agent’s beliefs. This is likely to
lead to work in, e.g., representing nested and uncertain be-
liefs, and belief revision among others.

The ‘long term autonomy’ necessary for many autonomous
systems will also drive future research on approaches to
goals. For example, it is likely that reasoning about mainte-
nance goals and their interaction with achievement goals will
become more important, as will properties and constraints on
goals such as priorities and deadlines. Previous work in this
area, e.g., [Harland et al., 2014] requires the developer to
anticipate and manage possible interactions between goals,
which is likely to be infeasible for agents with extended ‘life-
times’. In addition, most BDI languages provide no support
for deliberating about whether an agent should adopt a goal,
e.g., an autonomously generated goal. Future work in this
area may draw on recent work on goal reasoning [Coman and
Aha, 2018] that attempts to provide mechanisms for goal gen-
eration and management.

Robotics applications are also likely to place greater em-
phasis on truly concurrent plan execution, leading to work
on, e.g., formalising interactions between concurrently exe-
cuting branches, and between the agent’s deliberation cycle
and durative actions. Another area of future work involves
the use of AI techniques such as machine learning to sup-
plement pre-defined plan-rules or generate new rules. Pre-
vious work in this area, e.g., [Singh and Hindriks, 2013],
has focussed on learning context conditions for plan-rules,
but it would be interesting to explore the integration of learnt
behaviours into a BDI framework (perhaps using techniques
from the work on learning HTN methods), and to extend pre-
vious work on the generation of new plans at runtime using
AI planning [Meneguzzi et al., 2015].

The application areas highlighted above also have implica-
tions for future work on the agent’s deliberation cycle. For
example, support for uncertain beliefs has implications both
for when a declarative goal may be considered ‘achieved’ (or
unachievable), and for intention scheduling approaches based
on simulations of interleavings, as in [Yao and Logan, 2016].
Similarly, we would expect to see further work on other as-
pects of intention scheduling, such as deadlines, resource us-
age, and compliance with social norms [Meneguzzi et al.,
2012] that are critical in many autonomous systems.

In many cases, the research questions identified above draw
on synergies with other areas of AI, e.g., machine learning,
HTN planning, and NLP; we believe this will be an important
direction for future research in BDI agent architectures.

Acknowledgements
Felipe Meneguzzi acknowledges support from CNPq under
project numbers 407058/2018-4 and 302773/2019-3.

References
[Alechina et al., 2006] Natasha Alechina, Rafael Bordini,
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Multi-Agent Systems in AgentSpeak using Jason. John
Wiley & Sons, 2007.

[Bratman, 1987] Michael E. Bratman. Intention, Plans and
Practical Reason. Harvard University Press, 1987.

[Braubach et al., 2005] Lars Braubach, Alexander Pokahr,
and Winfried Lamersdorf. Jadex: A BDI-agent system
combining middleware and reasoning. In Rainer Un-
land, Monique Calisti, and Matthias Klusch, editors, Soft-
ware Agent-Based Applications, Platforms and Develop-
ment Kits, pages 143–168, 2005.

[Busetta et al., 1999] Paolo Busetta, Ralph Rönnquist, An-
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