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Abstract
The Procedural Reasoning System (PRS) is ar-
guably the first implementation of the Belief–
Desire–Intention (BDI) approach to agent program-
ming. PRS remains extremely influential, directly
or indirectly inspiring the development of subse-
quent BDI agent programming languages. How-
ever, perhaps surprisingly given its centrality in the
BDI paradigm, PRS lacks a formal operational se-
mantics, making it difficult to determine its expres-
sive power relative to other agent programming lan-
guages. This paper takes a first step towards clos-
ing this gap, by giving a formal semantics for a sig-
nificant fragment of PRS. We prove key properties
of the semantics relating to PRS-specific program-
ming constructs, and show that even the fragment
of PRS we consider is strictly more expressive than
the plan constructs found in typical BDI languages.

1 Introduction
The Procedural Reasoning System (PRS) [Georgeff and In-
grand, 1989; Georgeff and Lansky, 1987; 1986] is generally
recognised as one of the first implementations of the Belief–
Desire–Intention (BDI) [Bratman, 1987] model of agency
and practical reasoning. PRS has been extremely influential,
and is still widely used [Ghallab et al., 2016], particularly
in robotics, e.g., [Ingrand et al., 1996; Alami et al., 1998;
Foughali et al., 2016; Niemueller et al., 2017; Lemaignan et
al., 2017]. For example, PRS-based systems secured first and
second places in recent RoboCup and ICAPS logistics com-
petitions. PRS has also influenced the design of many subse-
quent BDI-based agent programming languages, e.g., [Rao,
1996; Huber, 1999; Busetta et al., 1999; Winikoff et al., 2002;
Morley and Myers, 2004; Sardina et al., 2006; Sardina and
Padgham, 2011], though most of these languages implement
only a subset of the programming language features sup-
ported by PRS. Surprisingly, given its centrality in the BDI
paradigm, PRS lacks a formal operational semantics, which
makes it difficult to determine its expressive power relative to
other BDI agent programming languages, or to verify the cor-
rectness of PRS programs. For example, there is a widespread
“folk belief” in the agent programming community that the
plan graphs used by PRS are more expressive than most if

not all other BDI agent formalisations, yet no proof of this
intuition exists.

In this paper, we give a formal semantics for a signifi-
cant fragment of PRS. We focus on language features spe-
cific to PRS, and in particular, its graph-based representa-
tion for plans and its programming constructs for maintaining
a condition (i.e., maintenance goals). We make three main
contributions. First, we develop a formalisation for the syn-
tax of PRS as a directed bipartite graph (Section 2). Sec-
ond, we provide an operational semantics that accounts for
graph-based plans and adopting, suspending, resuming, and
aborting (nested) maintenance goals (Section 3). Third, we
prove key properties of the semantics of these PRS-specific
programming constructs, and show that PRS plan-graphs are
strictly more expressive than the plan rules found in typical
BDI languages (Section 4). In Section 5, we briefly discuss
related work and conclude.

2 PRS Syntax
We briefly recall the syntax and deliberation cycle of PRS,
as defined in [Ingrand, 1991]. In the interests of brevity, we
omit some features of the language, including meta-level rea-
soning, ‘true concurrency’, semaphores, and features such as
‘if’ and ‘else’ statements expressible in terms of the fragment
we define. Plans in PRS consist of graphs. For compact-
ness, and to allow a precise specification of the semantics, we
adopt a plan-rule notation similar to that used in other BDI-
based agent programming languages to specify the triggering
and context conditions of plans, and specify plan bodies us-
ing a textual representation of bipartite graphs. We assume
a first-order language with a vocabulary consisting of mutu-
ally disjoint and infinite sets of variable, constant, predicate,
node, event-goal, and action symbols.

A PRS agent is defined by a belief base B, an action-library
Λ, and a plan-library Π. A belief base is a set of ground
atoms. An action-library is a set of action-rules specify-
ing the actions available to the agent. An action is of the
form act(~t), where act is an n-ary action symbol denoting
an evaluable function that may change the agent’s environ-
ment, and ~t = t1, . . . , tn are (possibly ground) terms. Action-
rules are similar to STRIPS operators, and are of the form
act(~v):ψ ← Φ+; Φ−, where ~v = v1, . . . , vn are variables; ψ
is a formula specifying the precondition of the action; and the



add-list Φ+ and delete-list Φ− are sets of atoms that specify
the effects of executing the action. A plan-library Π consists
of a set of plan-rules of the form e(~t):ϕ ;ψ ← G, where
e is an n-ary event-goal symbol, ~t = t1, . . . , tn are terms, ϕ
and ψ are formulas, and G is a plan-body graph. The rule
states that, if the context condition ψ holds, G is a ‘standard
operating procedure’ for achieving the event-goal e(~t) or the
goal-condition ϕ.

Plan-body graphs are built from the following set of user
programs: actions; belief addition +b adds the atom b to
B; belief removal −b removes the atom b from B; test ?φ,
where φ is a formula, tests whether φ holds in B; event-goal
program or goal-condition program !ev, where ev ∈ {e, φ},
specifies that ev needs to be achieved; wait WT(φ) waits un-
til formula φ holds in B; passive preserve PRp(!ev, φ) spec-
ifies that !ev needs to be achieved while monitoring φ and
aborted if ev fails or φ does not hold; and active preserve
PRa(!ev, φ), which is similar to the former except that if con-
dition φ does not hold, the plan-body graph for !ev is sus-
pended and the re-achievement of φ is attempted by posting
the goal !φ. If the goal succeeds and φ is re-achieved then
the active preserve is resumed, and otherwise it is aborted (if
the goal fails) or re-suspended (if the goal succeeds but φ is
still not achieved). Since user program !ev may generate sub-
goals, wait and preserve programs may also become ‘nested’
within one another, giving rise to potentially complex inter-
actions. We use PRx(!ev, φ) to denote either PRa(!ev, φ) or
PRp(!ev, φ). Formally, a user program Pu is a formula in the
language defined by the grammar

Pu ::= act | ?φ | +b | −b | !ev | WT(φ) | PRx(!ev, φ).

A plan-body graph is a directed bipartite graph represent-
ing a partially ordered set of user programs, where the set of
nodes (i.e., node symbols) is split into state nodes, and tran-
sition nodes initially labelled with the user programs.

Definition 1. Let Pu be the set of all user programs. A plan-
body graph G is a tuple 〈S ,T ,Ein ,Eout ,L0 ,N , s0 〉, where:
(i) S is a set of state nodes and s0 ∈ S the initial node; (ii) T
is a disjoint set of transition nodes; (iii) Ein ⊆ S×T is a set
of input edges; (iv) Eout ⊆ T ×S is a set of output edges; (v)
function L0 : T 7→ Pu represents the user programs labelling
transition nodes; and (vi)N ⊆ S∪T is a set of current nodes.

We stipulate that for any node n ∈ S ∪ T there exists a se-
quence s1 · t1 · . . . · sk−1 · tk−1 · sk, such that s0 = s1, node n
is in the sequence, and for each i ∈ [1, k − 1] : (si, ti) ∈ Ein
and (ti, si+1) ∈ Eout.

The PRS deliberation cycle consists of three main steps:
processing environment updates, e.g., new event-goals or be-
lief updates; instantiating a plan-body graph to achieve an
event-goal or goal condition, or executing a single step in an
instantiated plan-body graph; and notifying plan-body graphs
when conditions they are monitoring are established or vio-
lated. Execution of a plan-body graph starts in the initial node
(s0), and progresses to one or more state/transition nodes (N ).
Transition nodes initially represent user programs (L0) and
evolve following the semantics in Section 3 until they reach
the ‘empty program’ and terminate. The plan-body graph fin-
ishes executing (successfully) if no current state nodes N of
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Figure 1: Plan-body graphs Gwalk and Gpw. Gpw occurs in a plan-
rule for the event-goal program !pw (prepare to walk) in Gwalk.

G lead anywhere. Formally, the plan-body graph is initial if
N = {s0}, and finished, denoted by fin(G), if N ⊆ S, and
for all s ∈ N and t ∈ T : (s, t) 6∈ Ein. All plan-body graphs
occurring in a plan-library are initial.
Example 1. Consider an agent that has a goal to travel from
its current location to a destination d [Sardina and Padgham,
2011]. The goal can be achieved in various ways depending
on the distance to the destination, represented by the follow-
ing plan-rules (each omitted goal-condition ϕ is >):

travel(d) : At(x) ∧WalkDist(x, d)← Gwalk ,

travel(d) : At(x) ∧ ∃y(InCity(x, y) ∧ InCity(d, y))← Gcity ,

travel(d) : At(x) ∧ ¬∃y(InCity(x, y) ∧ InCity(d, y))← Gfar .

The first plan-rule refers to the plan-body graphGwalk shown
in Fig. 1.

3 PRS Semantics
Our semantics for PRS follows the approach adopted by the
CAN [Winikoff et al., 2002] agent programming language, as
defined in [Sardina and Padgham, 2011], where a transition
relation on agent configurations is defined in terms of a set of
derivation rules [Plotkin, 1981]. An agent configuration is a
tuple [Π ,Λ,B,A,Γ ] where Π is a plan-library, Λ is an action-
library, B is a belief base,A is a sequence of executed actions,
and Γ is a set of intentions (as Π and Λ do not change during
execution, we omit them from derivation rules). Agent con-
figurations represent the execution state of a PRS agent, and
intentions are the current states of full programs being pur-
sued in order to achieve top-level event-goals. As in CAN,
full programs extend the syntax of user programs to repre-
sent the current evolution of a user program, and may contain
information used to decide the next transition, e.g. the plan-
body graphs yet to be tried in achieving an event-goal.

Formally, a full program (or simply program) is a formula
in the language defined by the grammar P ::=

η | act | ?φ | +b | −b | !ev | WTx(φ) | PRx(P, φ) |
ev : L{ψ1 : G1, . . . , ψn : Gn}M | P  P ′ | G . P | η . P

where η, (‘nil’) indicates that there is nothing left to execute;
WTx(φ) denotes either WT(φ) or WT(φ), where WT(φ) in-
dicates that program WT(φ) has been adopted (i.e., its exe-
cution has started); ev : Lψ1 : G1, . . . , ψn : GnM represents
the set of relevant plan-rules for achieving the event-goal
or goal-condition ev; P  P ′ represents a suspended ac-
tive preserve program P ′ whose associated condition is be-
ing re-achieved by a recovery program P ; G . P , where
P = ev : Lψ1 : G1, . . . , ψn : GnM, represents the default de-
liberation mechanism for ‘goal commitment’: achieve ev us-
ing an applicable plan-body graph G, but if that fails, try an



[B,A,+b]→ [B ∪ {b},A, η]
add

[B,A,−b]→ [B \ {b},A, η]
del

act′ : ψ ← Φ+; Φ− ∈ Λ act′θ = act B |= ψθ

[B,A, act ]→ [(B \ Φ−θ) ∪ Φ+θ,A · act , η]
A

[B,A,G]→ [B′,A′,G ′]
[B,A,G B P ]→ [B′,A′,G ′ B P ]

Bstp
[B,A, η B P ]→ [B,A, η]

Bend
¬fin(G) [B,A,G] 6→ [B,A,P ]→ [B′,A′,P ′]

[B,A,G B P ]→ [B′,A′,P ′]
Bf

Figure 2: PRS derivation rules for actions, belief updates, and goal commitment.

alternative applicable graph from those appearing in P ; and
η . P indicates that a plan-body graph for ev has succeeded.
Note that full programs are more general than those yielded
by our semantics.

We first give derivation rules for configurations of the form
[Π ,Λ,B,A,P ], where P is a full program, i.e., for a sin-
gle intention. We give the derivation rules for actions, be-
lief operations, goal and plan adoption, and goal commit-
ment in Section 3.1; for advancing plan-body graphs in Sec-
tion 3.2; for PRS-specific wait and preserve programs in
Section 3.3; and for agents with configurations of the form
[Π ,Λ,B,A,Γ ], i.e., multiple intentions, in Section 3.4.

3.1 Semantics for Actions, Belief Updates, Goal
and Plan Adoption, and Goal Commitment

Fig. 2 shows the derivation rules for actions and belief oper-
ations. Rules add and del simply update B, replacing pro-
grams +b and −b with η (A remains unchanged). The se-
mantics for actions is given by ruleA. The antecedent checks
whether there is a relevant action-rule for act (i.e., one whose
‘head’ act′ matches act under substitution θ), and whether
the action is applicable (i.e., its precondition holds in B); the
conclusion of the derivation rule applies the action’s add- and
delete-lists to B and appends the action to A.

Rule Ev1 adopts the event-goal program !e by creating the
set ∆ of plan-rules relevant for the event, i.e, the rules in Π
with event-goals matching e via a most general unifier mgu.

∆ = {ψθ : Gθ | e′ : ϕ ;ψ ← G ∈ Π, θ = mgu(e, e′)} 6= ∅
[B,A, !e]→ [B,A, e : L∆M]

Ev1

Example 2. Processing an event-goal program of the form
!travel(Uni) using rule Ev1 yields the following (full) pro-
gram, encoding all relevant options for this event:

travel(Uni) : Lψ1 : Gwalk, ψ2 : Gcity, ψ3 : GfarM

with ψ1 = At(x) ∧WalkDist(x, Uni);
ψ2 = At(x) ∧ ∃y(InCity(x, y) ∧ InCity(Uni, y)); and
ψ3 = At(x) ∧ ¬∃y(InCity(x, y) ∧ InCity(Uni, y)).

Similarly, rule Ev2 adopts the goal-condition program !φ
by creating the set ∆ of plan-rules in Π that can achieve φ.

∆ = {ψθ : Gθ | e : ϕ ;ψ ← G ∈ Π, ϕθ |= φ} 6= ∅
[B,A, !φ]→ [B,A, φ : L∆M]

Ev2

Rule Sel selects an applicable plan-rule for event-goal or
goal-condition ev from the set of relevant rules, and schedules
the associated plan-body graph for execution.

ψ : G ∈ ∆ B |= ψθ

[B,A, ev : L∆M]→ [B,A,Gθ B ev : L∆ \ {ψ : G}M] Sel

Rules for goal commitment are shown in Fig. 2. RuleBstp
executes a single step in a program G B P if the plan-body
graphG has neither failed nor finished (see Section 3.2). Rule
Bend discards the alternative program P in a program η B P
(where η here represents a completed graph). Finally, rule
Bf schedules the alternative P = ev : L∆M for execution and
executes a single step in it, provided G has failed and P has
not, i.e., an applicable plan-rule exists for ev.

3.2 Semantics for Plan-Body Graphs
We extend the definition of a plan-body graph in Definition 1
to a full plan-body graph, representing the current ‘state’ in
the evolution of an initial plan-body graph. A full plan-body
graph is of the form G = 〈S ,T ,Ein ,Eout ,L0 ,Lc ,N , s0 〉
where Lc : T 7→ P is a function that maps each transition
node t ∈ T to a full program P ∈ P, which represents the
current form of the possibly evolved (initial) user program
L0(t). We use the following auxiliary definitions: bef (t) =
{s | (s, t) ∈ Ein} are the input state nodes of t; aft(t) = {s |
(t, s) ∈ Eout} are its output state nodes; and the update to
function Lc with a (new) program P for t is

UPD(Lc, t, P ) =
(
Lc \ {〈t ,Lc(t)〉}

)
∪ {〈t ,P〉}.1

The first rule states that a transition node t, in the case
where it is not initially associated with a test condition, be-
comes active if it is not already active but all of its input states
are. Becoming active includes (re-)initialising t to correspond
to its user program. This is done in case t is part of a cycle.

t ∈ T t 6∈ N bef (t) ⊆ N L0(t) 6=?φ

[B,A,G]→ [B,A,G ′] GPstart

where G′ = 〈S ,T ,Ein ,Eout ,L0 ,L
′
c ,N

′, s0 〉;
L′c = UPD(Lc, t, L0(t)); N ′ =

(
N \ bef (t)

)
∪ {t}.

Once a transition node t is active, it can perform a single
execution step in its associated (current) program Lc(t).

t ∈ N [B,A,Lc(t)]→ [B′,A′,P ]

[B,A,G]→ [B′,A′,G ′]
GPstp

G′ = 〈S ,T ,Ein ,Eout ,L0 ,L
′
c ,N , s0 〉; L′c = UPD(Lc, t, P ).

If a transition node’s program has finished execution, the
node becomes inactive and its outgoing nodes become active.

t ∈ N Lc(t) = η

[B,A,G]→ [B,A,G ′] G
P
end

G′ = 〈S ,T ,Ein ,Eout ,L0 ,Lc ,N
′, s0 〉;N ′ = (N \ {t}) ∪ aft(t).

1We treat the functions L0 and Lc as relations, i.e., as sets of
ordered pairs of the form 〈t ,P〉.



Example 3. Suppose that the agent believes it is currently
at home, which is walking distance to the university. In
this case, the Sel rule transforms the set of relevant options
represented by the program in Example 2 into the program
Gwalk B travel(Uni) : Lψ2 : Gcity, ψ3 : GfarM, i.e., the
agent selects the Gwalk plan-body graph while keeping the
other graphs as backup alternatives, represented by the right-
hand side of the B operator. When the agent starts executing
theGwalk graph, the ruleGPstart removes s0 fromN and adds
the transition node associated with subgoal !pw. This is then
executed using rule GPstp, whose antecedent uses rule Ev1 to
resolve the subgoal.

If a transition node is initially associated with a test con-
dition, then the node becomes active only if the condition
holds in the current belief base. The chosen transition node
also becomes inactive at the same execution step, as once the
condition is tested there is nothing left to execute. Under
this semantics, PRS allows choices in execution within the
graph: either a non-deterministic choice when multiple tran-
sition nodes, with non ‘mutex’ test programs, exit the same
state node, or deterministic choices induced by such tests.

t ∈ T bef (t) ⊆ N L0(t) =?φ B |= φ

[B,A,G]→ [B,A,G ′]
G?φ
stp

G′ = 〈S ,T ,Ein ,Eout ,L0 ,L
′
c ,N

′, s0 〉;
L′c = UPD(Lc, t, η); N ′ =

(
N \ bef (t)

)
∪ aft(t).

The case where B 6|= φ holds represents failure, i.e., the in-
ability to execute a step in t.

Finally, if a plan-body graph has finished (Section 2), rule
Gend replaces it with program η.

fin(G)

[B,A,G]→ [B,A, η]
Gend

Example 4. Consider the evolution Gpw B pw : L∆pwM of
subgoal !pw. Achieving the former using the graph in Fig-
ure 1 involves the parallel execution of the programs P 1

pw and
P 2
pw. This ‘split’ is represented by the outgoing edges from

the transition node associated with the ?> user program, and
results in state nodes s4 and s5 being added to N , using rule
G?φ
stp. Note that for the transition node associated with !ev2 to

become active, both P 1
pw and P 2

pw must complete execution,
and transition to s6 and s7, respectively.

3.3 Semantics for Wait and Preserve Programs
We now give a semantics for wait and preserve programs of
the form WT(φ), PRp(P, φ), and PRa(P, φ), and suspended
active preserve programs of the form P1  PRa(P2, φ),
where P1 is the recovery program. In all cases, we assume
that condition φ is ground when the program is adopted.

Rule Wadopt adopts a wait program, i.e., changes its form
to indicate that condition φ is now being monitored. Rule W
specifies that the wait for φ should continue if φ does not hold
in the belief base. Finally, rule Wend specifies that the wait
should end if φ does hold. In all cases, C = [B,A,WT(φ)].

[B,A,WT(φ)]→ C
Wadopt

B 6|= φ

C → C
W

B |= φ

C → [B,A, η]
Wend

The first set of derivation rules for preserve programs apply to
both passive and active preserves. Rule Pradopt specifies the
adoption of a preserve program, i.e., the adoption of its event-
goal or goal-condition program !ev. Rule Prstp executes a
single step in a preserve program if φ is not violated, and
Prsucc removes a completed preserve program.

[B,A, !ev]→ [B,A, ev : L∆M]
[B,A, PRx (!ev, φ)]→ [B,A, PRx (ev : L∆M, φ)]

Pradopt

P 6=!ev B |= φ [B,A,P ]→ [B′,A′,P ′]
[B,A, PRx (P , φ)]→ [B′,A′, PRx (P ′, φ)]

Prstp

[B,A, PRx (η, φ)]→ [B,A, η]
Prsucc

Rule Prfail specifies that the passive preserve fails if φ is
violated or P is blocked.

P 6∈ {η, !ev}
(
B 6|= φ ∨ [B,A,P ] 6→

)
[B,A, PRp(P , φ)]→ [B,A, ?false]

Prfail

Rules APrfail to APrstp2sus operationalise adopted active and
suspended preserve programs. We define three special multi-
sets.2 Given an expression E that is either a program or plan-
body graph G = 〈S, T,Ein, Eout, L0, Lc, N, s0〉, we define
a ‘path’ of ‘nested’ (adopted) preserve and wait programs as
any element in the multiset T (E), defined as T (E) =

{E · τ | τ ∈ T (P̂ )} if E = P  PRa(P̂ , φ) ∧ P 6= GB P1;

{E · τ | τ ∈ T (P̂ )}
] T (G) if E = (GB P ) PRa(P̂ , φ);
{E · τ | τ ∈ T (G)} if E = PRx(GB P, φ);
{E} if E ∈

{
WT(φ), PRx(ev : L∆M, φ)

}
;

T (G) if E = GB P ;
T (Lc(t1))
] . . . ] T (Lc(tn)) if E = G and N ∩ T = {t1, . . . , tn};
∅ otherwise.

When E = Gwe take the multiset union of the sequences cor-
responding to transition nodes in G that are executed in par-
allel. The first element in such a sequence is a ‘most abstract’
preserve or wait program occurring in E , and the last element
is a ‘most deeply’ nested preserve or wait program occurring
in E . We use Sτ (E) and Pτ (E) to denote the multisets of all
the elements in all the sequences in T (E) that are, and are
not, of the form P  P ′, respectively; i.e., any element in
Sτ (E) is a suspended (adopted) active preserve program, and
any element in Pτ (E) is an adopted wait, passive preserve, or
active preserve program that is not suspended. We use T (E)
to check whether a wait/preserve program in some ‘path’ in E
may be ‘pruned’ by a more abstract preserve program in the
path, and we use Sτ (E) and Pτ (E) to count the number of
suspended and unsuspended programs occurring in E .
Example 5. Suppose P 1

pw and P 2
pw have evolved to, respec-

tively, adopted programs WT(φ) and PRp(P, φ
′), with P =

e : L∆M (i.e., one parallel branch waits for a condition φwhile
the other tries to achieve an event-goal program !e while pre-
serving φ′). Then, T (Gwalk) = {WT(φ), PRp(P, φ

′)}. More-
over, if P evolves to P ′ = Ge B e : L∆′M, where Ge men-
tions an adopted program, e.g., WT(φ′′), then T (Gwalk) =
{WT(φ), PRp(P

′, φ′) · WT(φ′′)}.
2Adapted from [Sardina and Padgham, 2011].



C1
INT

=⇒ C2 C2
EVENT
=⇒ C3 C3

COND∗=⇒ C4 C4 6
COND
=⇒

C1
PRS

=⇒ C4

Aprs
P ∈ Γ [B,A,P ]→ [B′,A′,P ′]

C INT
=⇒ [B′,A′, (Γ \ {P}) ∪ {P ′}]

Aint

P ∈ Γ [B,A,P ] 6→

C INT
=⇒ [B,A,Γ \ {P}]

Arem
e1, . . . , en are external event-goals

C EVENT
=⇒ [B,A,Γ ∪ Γ ′]

Aev
P ∈ Γ [B,A,P ]→ [B,A,P ′] P ′ ≺ P

C COND
=⇒ [B,A, (Γ \ {P}) ∪ {P ′}]

Acond

Figure 3: Agent-level derivation rules; each Ci is an agent configuration, C = [B,A,Γ ], and Γ′ = {!e1, . . . , !en}.

RuleAPrfail specifies that the adopted active preserve pro-
gram PRa(P, φ) fails if P fails and the monitored condition φ
is not violated. If φ is violated,APrsus suspends the preserve
program and attempts to re-establish φ using the recovery
(goal-condition) program !φ. Rules APrfailsus and APrunsus
specify, respectively, that a suspended preserve program fails
if the recovery program fails, and is resumed if the recovery
program completes.

P 6∈ {η, !ev} B |= φ [B,A,P ] 6→
[B,A, PRa(P , φ)]→ [B,A, ?false]

APrfail

P 6∈ {η, !ev} B 6|= φ

[B,A, PRa(P , φ)]→ [B,A, !φ PRa(P , φ)]
APrsus

P1 6= η [B,A,P1 ] 6→
[B,A,P1  P2 ]→ [B,A, ?false]

APrfailsus

[B,A, η  PRa(P , φ)]→ [B,A, PRa(P , φ)]
APrunsus

Finally, rules APrstp1sus and APrstp2sus define the execution
of recovery programs and suspended (active preserve) pro-
grams. Rule APrstp2sus executes a single ‘cleanup’ or ‘noti-
fication’ step in the suspended program. Such an execution
step amounts to a program P1 evolving to a program P2 that
has fewer suspended programs, or fewer unsuspended pre-
serve or wait programs, e.g. due to a failed passive preserve
that had a ‘nested’ wait program. The relation P ≺ P ′ is
defined for programs P and P ′ as: P ≺ P ′

def
= |Pτ (P )| <

|Pτ (P ′)| ∨ |Sτ (P )| < |Sτ (P ′)|.

[B,A,P1 ]→ [B′,A′,P ′1 ]

[B,A,P1  P2 ]→ [B′,A′,P ′1  P2 ]
APrstp1sus

[B,A,P2 ]→ [B,A,P ′2 ] P ′2 ≺ P2

[B,A,P1  PRa(P2 , φ)]→ [B,A,P1  PRa(P ′2 , φ)]
APrstp2sus

Note that rule APrstp2sus implies that if an active preserve
is suspended, all of the (possibly adopted) ‘nested’ programs
occurring in P2 are ‘implicitly suspended’, i.e., they can only
perform ‘cleanup’ or ‘notification’ steps, so we are guaran-
teed to terminate.

Proposition 1. Any sequence of configurations [B1 ,A1 ,P1 ]·
. . . · [Bn ,An ,Pn ] is finite if for all i ∈ [1, n − 1], we have
that Pi+1 ≺ Pi and [Bi ,Ai ,Pi ]→ [Bi+1 ,Ai+1 ,Pi+1 ].

Proof. Since each such execution step from Pi to Pi+1 must
yield fewer wait programs, preserve programs, and/or pro-
grams of the form P  PRa(P ′, φ), it is sufficient to consider
whether a ‘switch’ of the latter to resume PRa(P ′, φ) can lead
to it (possibly with an ‘evolved’ P ′) being suspended again,
and whether this can continue indefinitely.

For PRa(P ′, φ) to resume, we must have P = η, and then
if φ still does not hold, the program will indeed evolve to
!φ  PRa(P ′, φ). Moreover, recovery program !φ does have
at least one relevant plan-rule, as it was once able to evolve
to η (recall that φ has been ground from the moment its as-
sociated active preserve program was adopted). However, the
only possible execution step on !φ cannot reduce the number
of aforementioned programs.

We use the notation C C ′ to denote that there exists a
non-empty sequence of configurations from C to C ′.

3.4 Agent-Level (‘Top-Level’) Semantics
We now give the derivation rules for the top-level execu-
tion of an agent program. Transitions between agent con-
figurations are defined by the derivation rules in Fig. 3; an
expression C t

=⇒ C′ denotes a transition of type t ∈
{PRS, EVENT, COND, INT}.

Rule Aprs is the top-level rule, and represents the PRS de-
liberation cycle. A single PRS type execution step comprises
three things: progressing an intention by one step, or remov-
ing a completed intention (i.e., P = η) or a failed one (us-
ing rules Aint or Arem, respectively); processing newly ob-
served event-goals (using ruleAev), i.e., creating an intention
for each new event-goal that is observed from the (external)
environment; and finally, performing all the necessary ‘notifi-
cation’ and ‘cleanup’ steps on wait, preserve, suspended, and
recovery programs (using rule Acond) to leave the agent in
a ‘sound’ or ‘stable’ configuration. More specifically, Acond
takes a single step in an intention if the step will yield an
intention with fewer suspended programs, or fewer unsus-
pended (adopted) preserve or wait programs.

4 Properties of the Semantics
We now prove key properties of the semantics and show the
greater expressivity of our PRS fragment compared to CAN.
In what follows, we use [B,A,P ] → as an abbreviation for
∃B′,A′, P ′ : [B,A,P ] → [B′,A′,P ′], and C1, C2 are agent
configurations of the form [Bi ,Ai ,Γi ] such that C1 is sound
and C1

PRS
=⇒ C2. A configuration C = [Λ,Π ,B,A,Γ ] is

sound iff (i) for all WT(φ) ∈ Pτ (Γ), B 6|= φ; (ii) for all
P  P ′ ∈ Sτ (Γ), [B,A,P ]→; and (iii) for all PRx(P, φ) ∈
Pτ (Γ), B |= φ and [B,A,P ]→.

Theorem 1 states that all configurations resulting from ap-
plying rule Aprs on a sound configuration are sound.

Theorem 1. Let C1 and C2 be as above. Then, C2 is sound.

Proof Sketch. Observe from the antecedent of derivation rule
Aprs that only one step of type INT is performed on C1,



followed by one of type EVENT, and zero or more of type
COND. Assume the theorem does not hold because there is
a passive preserve PRp(P, φ) ∈ Pτ (Γ2), for some P , such
that B2 6|= φ or [B2 ,A2 ,P ] 6→. Then, since PRp(P, φ) is
an adopted program appearing in some intention PI ∈ Γ2,
either rule Prfail or Prsucc can be applied to configuration
[B2 ,A2 , PRp(P , φ)] to yield an intention P ′I . Since P ′I ≺ PI ,
rule Acond will be applied (possibly multiple times) to PI
until PRp(P

′, φ) 6∈ Pτ (Γ2) for all P ′, which contradicts our
assumption. Assume instead that the theorem does not hold
because there is a program P  P ′ ∈ Sτ (Γ2) such that
[B2 ,A2 ,P ] 6→. Then, either rule APrfailsus or APrunsus
will be applied to configuration [B2 ,A2 ,P  P ′] or its
‘evolution’, again resulting in a contradiction. The remaining
cases are proved similarly. �

The next theorem states that an adopted wait program is
only removed in a PRS step if either its condition becomes
satisfied, or the program is pruned, i.e., it is a descendant of
an adopted preserve or a suspended preserve that is discarded.
Given a program P and ‘path’ τ ∈ T (P ), we denote the pro-
gram at index n > 0 as τ [n] (where τ [1] is τ ’s most abstract
program). A program P is pruned between C1 and C2 iff for
any τ ∈ T (Γ1) with T (Γ) =

⊎
P ′∈Γ T (P ′) and τ [k] = P

for some k > 0, there exists a 0 < j < k such that:3

1. τ [j] = PRp(Pj , φj) and B2 6|= φj ;

2. τ [j] = PRa(Pj , φj), B2 6|= φj , and [B2 ,A2 , !φj ] 6→; or

3. τ [j] = P1  P2 and either
[B2 ,A2 ,P1 ] [B2 ,A2 ,P

′
1 ] 6→, or

[B1 ,A1 ,P1 ]→ [B2 ,A2 ,P
′
1 ] [B2 ,A2 ,P

′′
1 6= η] 6→.

Theorem 2. Let C1 and C2 be as before. For each WT(φ) ∈
Pτ (Γ1) such that WT(φ) 6∈ Pτ (Γ2), we have that B2 |= φ, or
WT(φ) is pruned between C1 and C2.

Proof Sketch. Let WT(φ) ∈ Pτ (Γ1) be a program such
that WT(φ) 6∈ Pτ (Γ2). Let t be a transition node currently
labelled with WT(φ), where T = {t, . . .} and N = {t, . . .}
are the transition nodes and current nodes in a (‘partially
executed’) plan-body graph G. We consider the case where if
B2 6|= φ, then WT(φ) must have been pruned between C1 and
C2, because no other derivation rules can ‘remove’ WT(φ).
First, rule Gend (which, if applicable, ‘removes’ G) requires
fin(G) to hold, which cannot be the case as t ∈ N ; for the
same reason, rule GPstart cannot ‘reset’ WT(φ). Second, the
antecedent of rule Bf requires that [B,A,G ] 6→ (for some A
and B ∈ {B1,B2}), which cannot hold as we can take a step
on WT(φ) via rule W . Similarly, if P is an intention in which
G occurs, the antecedent of agent-level rule Arem cannot
hold (i.e., [B1 ,A,P ] 6→ cannot hold for any A). Then, it
follows that WT(φ) is pruned between C1 and C2. �

Theorem 3 states that an adopted preserve program is only
‘removed’ if: its condition becomes violated; its associated
program becomes blocked; or the preserve program is pruned.

3The definitions of Pτ (E) and Sτ (E), for some expression E ,
can be generalised similarly.

Theorem 3. If C1 and C2 are as before, and PRx(P, φ) ∈
Pτ (Γ1) is a program s.t. PRx(P2, φ) 6∈ Pτ (Γ2) for any P2:

1. B2 6|= φ or [B2 ,A2 ,P ] [B2 ,A2 ,P
′] 6→;

2. [B1 ,A1 ,P ]→ [B2 ,A2 ,P
′] [B3 ,A3 ,P

′′] 6→; or
3. PRx(P, φ) is pruned between C1 and C2.

Proof Sketch. We show that if two of the conditions above do
not hold, then the third will. For example, if (2) and (3) do
not hold, then PRx(P, φ) must have been ‘removed’ by rule
Prfail or suspended by APrsus, whose antecedents entail
(1). Similarly, if (1) and (2) do not hold, then PRx(P, φ) must
have been pruned between C1 and C2 for the reasons given
in the proof of Theorem 2. �

Theorem 4 states that a suspended preserve program is only
‘removed’ during a PRS step if: the recovery program com-
pletes and the preserve program’s condition is re-established;
the recovery program becomes blocked; or both are pruned.
Theorem 4. If C1 and C2 are as before, and P1  
PRa(P2, φ) ∈ Sτ (Γ1) is a program s.t. P  PRa(P ′, φ) 6∈
Sτ (Γ2) for any P and P ′:

1. [B1 ,A1 ,P1 ]→ [B1 ,A1 , η] and B1 |= φ;
2. [B2 ,A2 ,P1 ] [B2 ,A2 ,P

′
1 ] 6→;

3. [B1 ,A1 ,P1 ]→ [B2 ,A2 ,P
′
1 ] [B3 ,A3 ,P

′′
1 6= η] 6→;

4. or P1  PRa(P2, φ) is pruned between C1 and C2.
The proof of Theorem 4 is similar to that of Theorem 3.

Theorems 3 and 4 considered the case where all occur-
rences of preserve programs associated with the same con-
dition φ, e.g. in multiple intentions in Γ1, are removed in a
PRS step. There is also the case where only some of them
are removed in such a step. It is not difficult to develop the-
orems for this case, though we would need additional formal
machinery. Similarly, we can show that active preserve pro-
grams are suspended and resumed for the right reasons. For
example, with a minor extension to Theorem 3, we can show
that if PRa(P, φ) becomes suspended (i.e., !φ PRa(P, φ) ∈
Sτ (Γ2)), then B2 6|= φ and [B2 ,A2 , !φ]→ hold.

In the remainder of this section, we characterise the relative
expressivity of our PRS fragment and the CAN formalism as
defined in [Sardina and Padgham, 2011]. A CAN plan-rule
is of the form e : ψ ← P , where e is an event-goal, ψ is a
context condition, and P is a plan-body, i.e., a formula in the
language defined by the grammar P ::=

act | ?φ | +b | −b | !e | P1;P2 | P1 ‖ P2 | Goal(φs, P ′, φf ),

where P1;P2 is sequential composition, P1 ‖ P2 is paral-
lel composition, and Goal(φs, P ′, φf ) is a declarative goal
specifying that formula φs (the goal) should be achieved us-
ing program P ′, failing if φf becomes true. The remaining
programs are defined as for PRS user programs.

To state our results, we need the notions of execution traces
and solutions. We define these only for PRS as the definitions
for CAN are analogous.
Definition 2. An execution trace of an agent configuration
C = [Λ,Π ,B,A,Γ ] is a finite sequence of agent configura-
tions C1 · . . . · Cn such that C = C1 and Ci

PRS
=⇒ Ci+1 for all



i ∈ [1, n− 1]; the solution in C1 · . . . · Cn is the sequence A
of actions such that An = A1 · A.

With Λ,Π,B, and Γ as above, SOL(Λ,Π,B,Γ) denotes the
set of solutions, i.e., the set of sequences of actions performed
in the execution traces of configuration [Λ,Π ,B, ε,Γ ], where
ε denotes the empty string. Theorem 5 states that a CAN
plan-library Π−c not mentioning Goal(φs, P, φf ) programs
(as there is no corresponding program in PRS) can be trans-
lated into an equivalent PRS plan-library.
Theorem 5. If Π−c is a CAN library and Λ an action-library,
there exists a PRS library Πp s.t. for any event-goal !e and
beliefs B: SOL(Λ,Π−c ,B, {!e}) = SOL(Λ,Πp,B, {!e}).
Proof Sketch. Given a CAN plan-rule e : ψ ← P ∈ Π−c ,
the first step is to obtain the corresponding PRS plan-
rule e : >;ψ ← G. We define three functions: g(P, n)in,
g(P, n)out, and g(P, n)L, where n ∈ N. When n = 1, these
functions represent respectively the elements Ein, Eout, and
L0 in G. If P = act, we define g(P, n)in = {(n · s, n · t)};
g(P, n)out = {(n · t, n · s′)}; and g(P, n)L = {〈n · t ,P〉},
where s, s′ and t are unique symbols (and thus, n · t, for ex-
ample, is a string). We also define g(P, n)start = n · s and
g(P, n)end = n · s′. Intuitively, n uniquely identifies the PRS
plan-body ‘subgraph’ corresponding to P . If P = P1;P2 is
the sequential composition of CAN programs P1 and P2,

g(P, n)out =
g(P1, n · 1)out ∪ g(P2, n · 2)out ∪ {(n · t′′, n · s′′),
(n · t, g(P1, n · 1)start), (n · t′, g(P2, n · 2)start)};

g(P, n)in =
g(P1, n · 1)in ∪ g(P2, n · 2)in ∪ {(n · s, n · t),(
g(P1, n · 1)end, n · t′

)
,
(
g(P2, n · 2)end, n · t′′

)
};

g(P, n)L = g(P1, n · 1)L ∪ g(P2, n · 2)L ∪
{〈n · t , ?>〉, 〈n · t ′, ?>〉, 〈n · t ′′, ?>〉},

where transition node n · t′ ‘connects’ the subgraphs corre-
sponding to P1 and P2. As before, we define g(P, n)start =
n ·s and g(P, n)end = n ·s′′, and s, s′′, t, t′ and t′′ are unique
symbols. We similarly define the subgraph corresponding to
a CAN parallel composition P1||P2, test program, etc.

We then show by induction on the structures of P and G
above that their traces yield the same solutions. For example,
the derivation rules for CAN’s sequential composition can be
simulated by repeatedly applying the GPstart, G

P
stp and GPend

rules of PRS, and vice versa. �

Theorem 6 states that the converse does not hold: even
if we ignore programs that have no counterparts in CAN,
PRS plan-libraries cannot be ‘directly mapped’ to CAN li-
braries. This result follows from a similar one in [de Silva,
2017] which showed that the ‘plan-body’ representation used
in HTN planning allows a more fine-grained interleaving of
steps than do CAN plan-bodies: a CAN plan-body must spec-
ify steps in a ‘series-parallel’ manner, whereas HTN ‘plan-
bodies’ (and PRS plan-body graphs) do not.

In what follows, Π−p denotes PRS plan-libraries that do
not mention goal-condition, wait, nor preserve programs, and
Πc ∈ CAN(Π−p ) denotes a directly mapped CAN library, i.e.,
one obtained from Π−p by ignoring the goal-condition ϕ in
each plan-rule, and replacing each graph G appearing in Π−p

with a CAN plan-body P such that the multisets of (user)
programs occurring in G and P are the same.
Theorem 6. There exists a PRS library Π−p , an action-library
Λ, and event-goal !e, s.t. for any CAN library Πc ∈ CAN(Π−p )

and beliefs B: SOL(Λ,Π−p ,B, {!e}) 6= SOL(Λ,Πc,B, {!e}).
Proof Sketch. We translate an example HTN ‘plan-body’ pro-
vided in [de Silva, 2017] into a PRS plan-body graph. First,
we create the PRS plan-rule etop : >;> ← G, in particular
by taking the following input and output edges for G:

Ein = {(s1, t1), (s2, t2), (s3, t3), (s4, t4),
(s5, t4), (s6, t5), (s7, t6), (s8, t6)}; and

Eout = {(t1, s2), (t1, s3), (t2, s4), (t3, s5),
(t3, s6), (t4, s7), (t5, s8), (t6, s9)}.

Second, we set the initial program L0(ti) for each ti ∈
{t1, . . . , t6} to a different event-goal eti , each of which is
associated with a single plan-body graph representing the se-
quence of unique actions a1

ti · a
2
ti . Finally, we show that the

following sequence of actions:

a1
t1 · a

2
t1 · a

1
t2 · a

1
t3 · a

2
t3 · a

1
t5 · a

2
t2 · a

1
t4 · a

2
t4 · a

2
t5 · a

1
t6 · a

2
t6

cannot be produced by any CAN trace of program !etop, rela-
tive to any CAN plan-library that is directly mapped from the
above set of PRS plan-rules; e.g., the CAN body et1 ; (et2 ‖
(et3 ; et5)); et4 ; et6 does not allow a2

t5 to follow a2
t4 . �

5 Discussion
We proposed an operational semantics for a significant frag-
ment of the OpenPRS variant of PRS that accounts for (possi-
bly nested) graph-based plan-bodies; language features such
as active preserves; and for adopting, suspending, resuming,
and aborting such programs. We showed that our seman-
tics is sound, correctly accounts for the key interactions be-
tween (nested) wait and preserve programs, and that plan-
body graphs do not have a direct translation to plan-bodies in
a typical BDI-based agent programming language (CAN).

Our work is closely related to that of Dastani et al. [2011]
on the semantics of resuming, suspending, and aborting main-
tenance goals. They define complex goal types that include
achievement of goal formulas, maintenance goals and com-
plex temporal goals. All of these can be encoded as plan-
body graphs in PRS through a straightforward mapping. Van
Riemsdijk et al. [2009] develop a modal logic for goal repre-
sentation and reasoning mechanisms for non-temporal goals.
While the goal types they consider could probably be rep-
resented as PRS plan-body graphs, encoding the associated
mechanisms for reasoning about goal conflicts is less straight-
forward. Thangarajah et al. [2011; 2014] define an opera-
tional semantics for various types of goals, most of which
can be implemented using PRS plan-body graphs and pro-
grams. However, their maintenance goals include a con-
struct to proactively maintain a goal condition by anticipat-
ing whether it will fail. This specific capability of predicting
conditions in the future is lacking in our semantics.

Future work includes investigating whether an arbitrary
PRS plan-rule can be simulated by a set of CAN (or
AgentSpeak) plan-rules, and extending our semantics to add
more PRS features, e.g. meta-level reasoning and plan steps
that can overlap in execution.
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