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Abstract—With the growth of video content produced by
mobile cameras and surveillance systems, an increasing amount
of data is becoming available and can be used for a variety
of applications such as video surveillance, smart homes, smart
cities, and in-home elder monitoring. Such applications focus
in recognizing human activities in order to perform different
tasks allowing the opportunity to support people in their different
scenarios. In this paper we propose a deep neural architecture for
kitchen human action recognition. This architecture contains an
ensemble of convolutional neural networks connected through
different fusion methods to predict the label of each action.
Experiments show that our architecture achieves the novel state-
of-the-art for identifying cooking actions in a well-known kitchen
dataset.

I. INTRODUCTION

Effective assistive applications require accurate identifica-
tion of the activities that are performed by the user being
helped. Here, activity recognition refers to the task of dealing
with noisy low-level data directly from sensors [1]. Such task
is particularly challenging in the real physical world, since it
either involves fusing information from a number of sensors
or inferring enough information using a single sensor. Failure
to correctly identifying the activity the user is performing has
a cascade effect that often leads to users being frustrated and
giving up using the assistive application.

Single-sensor activity recognition often relies on a video
camera feed [2], which has posed a challenging research
problem in computer vision and machine learning. Advances
in hardware and greater availability of data have allowed
deep learning algorithms, and Convolutional Neural Networks
(CNNs) [3] in particular, to consistently improve on the state-
of-the-art. CNNs achieve state-of-the-art results when dealing
with image-based tasks such as object recognition, detection,
and semantic segmentation [4], [5]. Encouraged by those
results, more and more applications are relying on deep neural
architectures to perform video-based tasks [2].

In this paper, we address the problem of recognizing human
activities in an indoor environment with a single static camera.
Our main contribution is on supporting people when they are
in the kitchen, with the final goal of recognizing their actions
when cooking meals. Our approach relies on a deep neural
architecture that comprises multiple convolutional neural net-
works that are fused prior to performing the action classifica-

tion. We perform experiments using the Kitchen Scene Context
based Gesture Recognition dataset (KSCGR) [6], and we show
that our proposed approach outperforms the current state-of-
the-art method [7] for this particular dataset.

This paper is organized as follows. Section II details our
novel deep neural architecture for action recognition, whereas
Section III presents a thorough experimental analysis for as-
sessing the performance of our proposed approach. Section IV
points to related work and we finish this paper with our
conclusions and future work directions in Section V.

II. ARCHITECTURE DESIGN

Machine learning algorithms such as artificial neural net-
works (ANN) have been used to address many challenges of
action and activity recognition. For decades, building machine
learning systems required considerable domain expertise to
create an internal representation (feature construction [8])
from which the learning subsystem could detect or classify
patterns within the input. Deep learning approaches such
as convolutional neural networks mitigate this problem by
automatically learning representations in terms of hierarchical
features, allowing the computer to build complex concepts out
of simpler concepts. In this paper, we develop a deep neural
architecture for action recognition in indoor environments with
a fixed camera using an ensemble of convolutional neural
networks (CNNs). Four different fusion methods including
a support vector machine classifier (SVM) [9] and a long
short-term memory network (LSTM) [10] are used to fuse
the output of the CNNs and provide the final prediction of
the input frame. Our architecture has three main components:
i) data pre-processing, ii) convolutional networks for action
recognition, and iii) fusion strategies for final classification.

Figure 1 illustrates the pipeline of our architecture where
RGB represents the pre-processed dataset with RGB video
frames; OFL represents the pre-processed dataset generated
by dense optical flow; AlexNet, GoogLeNet, and SqueezeNet
are the convolutional neural network architectures we use to
recognize activities; NN is a neural network that weights the
contribution of the probabilities generated by the output of
the previous CNNs; Mean computes the arithmetic mean of
the probabilities provided by the CNNs; SVM is a support
vector machine classifier with linear kernel that classifies the



Fig. 1. Pipeline of our architecture for action recognition.

probability vectors from the CNNs; and LSTM is a recurrent
neural network architecture that fuses the output probability
vectors from the CNNs to provide the final classification.

We separate the convolutional neural network architectures
into two groups: the pre-trained CNNs and the fully-trained
CNNs. The pre-trained group contains 3 neural networks that
were pre-trained on the ImageNet data [11]. We use the pre-
trained AlexNet [4], GoogLeNet [12], and SqueezeNet [13]
models freely-available in the Caffe Model Zoo repository1.
The fully-trained group contains a single neural network that
is trained from scratch in the well-known kitchen dataset
KSCGR [6].

The pipeline of our architecture receives images from the
kitchen dataset as input for pre-processing. Pre-processing
extracts dense optical flow representations from the input
images and resizes all images to 256×256, generating two new
input data hereafter called OFL for images with dense optical
flow and RGB for the original RGB data. The system feeds the
pre-trained and fully-trained networks with the RGB and OFL
data, generating output vectors that indicate the probability an
image has of belonging to each class. Each fusion method
(NN, Mean, SVM and LSTM) receives the concatenation of
the probability vectors from the CNNs and predicts the final
class of the input image. In what follows, we further detail
each component of the proposed architecture.

A. Data pre-processing

Pre-processing consists of two steps: image resizing and
optical flow generation. Resizing is important since it reduces
the multidimensional space required by the CNNs to learn
suitable features for image classification, as well as the total
processing time. This step resizes all images of the dataset to
a fixed resolution of 256 × 256. The second step generates
the dense optical flow representation [14] of adjacent frames.
In a nutshell, optical flow represents the 2D displacement of

1https://github.com/BVLC/caffe/wiki/Model-Zoo

pixels between frames generating vectors corresponding to
the movement of points from the first frame to the second.
Dense optical flow generates these displacement vectors, i.e.,
for both horizontal and vertical displacements, regarding all
points within frames. In order to generate the final image
for each sequence of frames, we combine the 2-channel
optical flow vectors and associate color to their magnitude and
direction. Magnitudes are represented by colors and directions
through hue values. The output of the data pre-processing step
consists of two datasets containing the original data with RGB
channels and resized size (RGB), and the optical flow data that
encapsulates motion across frames (OFL).

B. CNN Architectures

In this work, we divided the convolutional neural networks
into two groups: fully-trained and pre-trained networks. The
fully-trained networks have the same architecture and training
hyper-parameters, and they are trained from scratch receiving
the two streams of data (RGB and OFL). The network trained
on RGB is hereafter called GoogLeNet[RGB], whereas the
network trained on OFL is called GoogLeNet[OFL]. Both archi-
tectures are 22-layer deep and their inception modules contain
convolutional filters in different scales/resolutions, covering
clusters of diverse information. Each network receives video
frames as input, which traverse several convolutional lay-
ers, pooling layers, and fully-connected layers (FC). After a
Softmax layer, the network outputs a vector containing the
probability each frame has of belonging to each class.

Even though a number of off-the-shelf CNN architec-
tures are available [15], [2], in this work we make use
of three pre-trained networks. We choose an architecture
based on inception modules [12] due to its reasonable perfor-
mance and reduced number of trainable parameters, hereafter
called GoogLeNet[off-the-shelf] and GoogLeNet[Fine-tuned]. The
other two architectures are based on AlexNet [4] (hereafter
called AlexNet[Fine-tuned]) and SqueezeNet [13] (herafter called
SqueezeNet[Fine-tuned]), due to their reduced number of lay-
ers and parameters. AlexNet[Fine-tuned], GoogLeNet[off-the-shelf],
GoogLeNet[Fine-tuned], and SqueezeNet[Fine-tuned] were pre
trained on the 1.3-million-image ILSVRC 2012 ImageNet
dataset [11]. Despite the fact that the AlexNet model pro-
vided in Caffe Zoo reposity has some small differences from
the original AlexNet by Krizhevsky et al. [4], we do not
believe our results would significantly change due to small
architectural and optimization modifications. Similarly to the
fully-trained networks, after a Softmax layer each network
outputs a vector with the probability of the input image for
each class. The difference between GoogLeNet[off-the-shelf] and
GoogLeNet[Fine-tuned] relies on the fact that in the former we
adjust the last layer to the number of classes of our dataset
and “freeze” the remaining layers during training, i.e., we
do not update weights of any layer but the last. In fine-
tuned networks (AlexNet[Fine-tuned], GoogLeNet[Fine-tuned], and
SqueezeNet[Fine-tuned]), we update all pre-trained layers with
different learning rates, allowing the network to learn features



more specific to the target dataset, while starting from a
consistent set of weights.

The idea behind our architecture is that distinct networks
may capture different data patterns. In addition, different views
from the same data may also help in classifying frames into
actions. Thus, the same network processes data with different
representations (RGB and OFL), and three different networks
(AlexNet, GoogLeNet and SqueezeNet) process the same data
(RGB).

C. Fusion Methods

Since the output of each CNN is a vector containing
the probability scores for each class, our model architec-
ture allows for the application of distinct fusion meth-
ods for providing the ultimate classification. The fusion
methods intend to merge these vectors in order to in-
crease the accuracy for the action recognition task. Be-
fore fusing probabilities, we merge the output of the pre-
trained networks GoogLeNet[RGB] and GoogLeNet[OFL], gen-
erating the GoogLeNet[RGB+OFL] vector. We employ a sim-
ilar strategy to the fully-trained networks AlexNet[Fine-tuned],
GoogLeNet[Fine-tuned], and SqueezeNet[Fine-tuned], by generating
the 3CNNs vector. The new merged vectors are used as input
to the fusion methods in order to generate predictions for each
class. Figure 1 shows our four different approaches: i) a neural
network (NN) that weights the contribution of the probability
vectors, ii) the standard arithmetic mean, i.e., weight 0.5 for
both vectors (Mean), iii) a multi-class linear Support Vector
Machine (SVM) [9], and iv) a special case of recurrent neural
network called long short-term memory (LSTM) [10].

The NN fusion contains a single-layer neural network to
optimize the weights of the probabilities derived from the
output of the CNNs. Figure 2 illustrates the structure of such
network when using RGB and OFL data, where w1 and w2 are
learned weights, [A] is the vector containing the probabilities
from the output of the CNN that processes the OFL images,
[B] is the vector containing the probabilities for each class
generated by the output of the CNN that processes the RGB
images, and [C] is the vector containing the weighted mean
for each class. The idea behind this neural network is that
its weights (w1 and w2) can be learned automatically by
minimizing a loss function and backpropagating the gradients.
During test time, this fusion method employs the learned
parameters to properly weight the contribution of each merged
vector. The Mean fusion receives the output vector from both
RBG and OFL CNNs and calculates the arithmetic mean for
each class (equal weights), assigning to the image the class
with the highest score. The SVM fusion is based on a multi-
class linear Support Vector Machine trained with the output
of the CNNs when using the validation data.At test time, the
SVM predicts the class with the largest score. The LSTM
fusion contains a recurrent neural network in the form of a
chain of repeating modules of weights that intends to learn
long-term dependencies. These long-term dependencies are
represented in the form of previous information connected
to the present image, e.g., the class of the current image is

Fig. 2. Single-layer neural network developed to compute the optimal
weighted average from the outputs of the convolutional neural networks.

represented not only by the information of the current frame,
but also by the information extracted from previous frames.
LSTM units have hidden state augmented with nonlinear
mechanisms to allow states to propagate without modification,
be updated, or be reset using simple learned gating functions
[16].

D. Post processing

Since the process of identifying actions occurs frame by
frame instead of the entire video, sometimes the misclassifi-
cation of a small number of frames of an action may occur.
Since an activity does not occur in a single frame or in a
very small number of frames, we believe that a frame in the
middle of a sequence of 20 frames that contains a different
class probably suggests that the frame was misclassified. For
example, the misclassification of 5 frames of the Baking action
in the middle of ≈ 200 frames of the None action. Following
the work of Bansal et al. [7], we apply a smoothing process
on the output sequence of classes in order to identify and fix
frames that are probably incorrectly-classified. This smoothing
process consists of sliding a window of fixed-size through
the temporally sorted predicted classes assigning to the target
frame (the frame in the center of the window) the majority
voting of all frames within the window.

III. EXPERIMENTAL ANALYSIS

In this section, we describe the dataset used in our experi-
ments for indoor fixed-camera action recognition, the imple-
mentation details regarding the CNNs and fusion methods, and
the results that were achieved by our approach in comparison
with the current state-of-the-art.

A. KSCGR Dataset

The Kitchen Scene Context based Gesture Recognition
dataset2 (KSCGR)[6] is a fine-grained kitchen action dataset
released as a challenge in ICPR 20123. The dataset contains
scenes captured by a kinect sensor fixed on the top of the
kitchen, providing synchronized color and depth image se-
quences. Each video is 5 to 10 minutes long, containing 9,000

2http://www.murase.m.is.nagoya-u.ac.jp/KSCGR/
3http://www.icpr2012.org/



Fig. 3. Example of the frame/action sequence for the “ham and egg” menu.

to 18,000 frames. The organizers of the dataset assigned labels
to each frame indicating the type of gesture performed by the
actors. There are 8 cooking gestures in the dataset: breaking,
mixing, baking, turning, cutting, boiling, seasoning, peeling,
and none, where none means that there is no action being
performed in the current frame. These gestures are performed
in five different menus for cooking eggs in Japan: ham and
eggs, omelet, scrambled egg, boiled egg, and kinshi-tamago.
A total of 7 different subjects perform each menu. The ground
truth data contains the frame id and the action being performed
within the frame.

We divided the dataset into training, validation, and test sets.
The training set contains 4 subjects, each of them performing
5 recipes, i.e., 20 videos and 139,196 frames in total. We
use the validation set to obtain the model configuration that
performs best, i.e., the configuration with the highest accuracy.
This set contains 1 subject performing 5 recipes with 32,897
frames in total. We use the test set to assess the accuracy
of the selected model in unseen data. This set contains 2
subjects, each performing 5 recipes, i.e., 10 videos with 55,781
frames in total. Figure 3 shows the sequence of frames and
actions when performing the menu Ham and Egg, where the
colored bar represents the timeline of appearance of frames
and actions, and the images illustrate examples of each action
performed in the video.

B. Implementation

Fully-trained CNNs architecture: in order to perform the
action recognition task we use an inception-based CNN archi-
tecture [12] trained from scratch in RGB and OFL separately.
The training phase uses mini-batch stochastic gradient with
momentum (0.9). For each iteration, the network forwards a
mini-batch of 128 samples. We apply data augmentation with
random crops, i.e., a different crop in a randomly selected part
of the image is selected, as well as a probabilistic horizontal
flip, generating a sub-image of 224 × 224. All images have
their pixels subtracted by the mean pixel values of all training
images. All convolutions, including those within the inception
modules, use rectified linear activation units (ReLU). Regard-
ing weight initialization, we employ the Xavier algorithm that
automatically determines the value of initialization based on
the number of input neurons. To minimize the chances of
overfitting, we apply dropout on the fully-connected layers

with a probability of 70%. The learning rate is set to 10−3

and we drop it by a factor of 50 every epoch, stopping the
training after 43.5k iterations (30 epochs).

Pre-trained CNNs architectures: all networks of this
group were pre-trained over the ILSVRC 2012 ImageNet
dataset [11]. For the training phase, we kept almost the same
configuration for all networks, using a mini-batch of 128 sam-
ples with a random crop of 224× 224 as well as random hor-
izontal flip. Each image has its pixels subtracted by the mean
value of pixels of each channel. During training, we freeze
all but the last layer of GoogLeNet[off-the-shelf], performing the
weights and bias updates only for the last fully-connected layer
for 10 epochs, increasing the learning rate of the layer by 10
(setting learning rate of the weights to 10 and learning rate
of the bias to 20). For fine-tuned models (AlexNet[Fine-tuned],
GoogLeNet[Fine-tuned], and SqueezeNet[Fine-tuned]), we update all
weights but with a different learning rate for the last layer. We
increase the learning rate of the weights in the last layer from
1 to 10 and the bias from 2 to 20, and decrease the global
learning rate by 100. This configuration allows all layers to
learn, though giving the final layer the capability to learn faster
than the remaining layers.

NN: this fusion approach contains a neural network trained
with data from the validation set for 10 epochs with weights
w1 and w2 initialized with 0.5. We use the mean squared
error loss function and optimize it through Adam [17] with
a learning rate set to 10−3.

SVM: we train the multi-class Support Vector Machine
using the off-the-shelf implementation by Crammer and Singer
[9] from scikit-learn4 toolbox. Similarly to the neural network
fusion, we train the SVM using the validation set. We use the
linear kernel and default scikit-learn regularization parameter
C = 1 with the square of the hinge loss as loss function.

LSTM: we implemented the long short-term memory using
the Keras5 neural networks library. Our configuration follows
the implementation proposed by Donahue et al. [16] that
connects a CNN with a LSTM, calling this model Long-
term Recurrent Convolutional Network (LRCN). We explore
various hyper-parameters using both training and validation
sets, selecting the best architecture that contains 1024 hidden
units with a dropout of 0.7 in order to avoid overfitting. We
train and test the LSTM network in a sequence of 32 frames,
and during training the stride is of 16 frames. We also apply
the Adam [17] algorithm using a learning rate of 10−3. We
run the training phase for 30 epochs.

Post processing: the post processing consists of sliding a
window of fixed-size through the predicted classes assigning
to the target frame the majority voting of all frames within the
window. In order to decide the size of the window, we used the
predicted classes from the validation dataset. We performed
several smoothing tests, varying the window-size from 10 to
50 increasing the step in 10 frames each time. Finally, we

4http://scikit-learn.org
5https://keras.io



TABLE I
PER-ACTIVITY ACCURACY IN THE KSCGR DATASET FOR ALL BASELINES AND FUSION METHODS.

Method None Breaking Mixing Baking Turning Cutting Boiling Seasoning Peeling Overall

GoogLeNet[RGB] 0.644 0.275 0.289 0.671 0.346 0.588 0.287 0.363 0.117 0.689
GoogLeNet[OFL] 0.519 0.341 0.314 0.600 0.194 0.545 0.128 0.382 0.449 0.631
GoogLeNet[RGB+OFL] + Mean 0.634 0.327 0.340 0.684 0.174 0.620 0.169 0.403 0.347 0.692
GoogLeNet[RGB+OFL] + SVM 0.679 0.357 0.432 0.689 0.000 0.526 0.444 0.601 0.455 0.721
GoogLeNet[RGB+OFL] + NN 0.690 0.354 0.452 0.693 0.012 0.516 0.505 0.651 0.382 0.726
GoogLeNet[Off-the-shelf] 0.545 0.004 0.198 0.666 0.009 0.182 0.340 0.055 0.007 0.609
AlexNet[Fine-tuned] 0.688 0.555 0.445 0.752 0.211 0.636 0.369 0.661 0.400 0.751
GoogLeNet[Fine-tuned] 0.579 0.224 0.374 0.711 0.136 0.438 0.030 0.174 0.000 0.645
SqueezeNet[Fine-tuned] 0.611 0.325 0.422 0.688 0.117 0.313 0.078 0.300 0.184 0.660
AlexNet[Fine-tuned] + SVM 0.636 0.570 0.395 0.741 0.173 0.447 0.303 0.520 0.335 0.717
GoogLeNet[Fine-tuned] + SVM 0.676 0.323 0.466 0.708 0.100 0.449 0.381 0.351 0.202 0.712
SqueezeNet[Fine-tuned] + SVM 0.538 0.211 0.240 0.593 0.028 0.010 0.078 0.113 0.013 0.587
3CNNs + SVM 0.604 0.363 0.449 0.678 0.105 0.269 0.165 0.236 0.042 0.667
3CNNs + NN 0.687 0.598 0.434 0.757 0.209 0.623 0.348 0.663 0.509 0.752
3CNNs + NN + PP 0.696 0.621 0.452 0.753 0.206 0.575 0.333 0.725 0.509 0.755
3CNNs + LSTM 0.737 0.508 0.536 0.739 0.191 0.571 0.458 0.416 0.738 0.775
3CNNs + LSTM + PP 0.754 0.504 0.564 0.749 0.190 0.560 0.469 0.384 0.773 0.785

chose the window size of 20 frames since it achieved the best
accuracy results on validation data.

C. Results

In order to evaluate our approach, we compare the output
of each fusion method in the test set. We use the classification
generated by each individual CNN as baseline, and hence
we can see whether the fusion method improves over each
individual CNN. Table I shows the accuracy values for each
class individually (None, Breaking, Mixing, Baking, Turning,
Cutting, Boiling, Seasoning, Peeling), as well as the overall
accuracy (Overall) that considers all classes at once.

We generate values of accuracy for the fully-
trained models: GoogLeNet trained with RGB
(GoogLeNet[RGB]) and OFL (GoogLeNet[OFL]) data, a
merging of both networks GoogLeNet[RGB+OFL] with
either the Mean (GoogLeNet[RGB+OFL]+Mean), the SVM
(GoogLeNet[RGB+OFL]+SVM) or the neural network
(GoogLeNet[RGB+OFL]+NN) as the fusion method. For
pre-trained models, we generate values of accuracy for an
off-the-shelf network (GoogLeNet[Off-the-shelf]), and for fine-
tuned networks (AlexNet[Fine-tuned], GoogLeNet[Fine-tuned], and
SqueezeNet[Fine-tuned]). We test the fine-tuned models changing
the output to a support vector machine classifier, generating
AlexNet[Fine-tuned]+SVM, GoogLeNet[Fine-tuned]+SVM and
SqueezeNet[Fine-tuned]+SVM. The merging of the pre-trained
networks (3CNNs) is also used as input to the fusion methods
generating 3CNNs+SVM, 3CNNs+NN, and 3CNNs+LSTM.
Finally the post processing (PP) is applied on the output
of the neural network generating 3CNNs+NN+PP and
3CNNs+LSTM+PP.

1) Overall Performance: As we can observe in Table I,
the fusion of 3 pre-trained convolutional neural networks
with a long short-term memory network and with the post
processing strategy (3CNNs+LSTM+PP) achieves the best
global accuracy (All) of 78.5%. The achieved results confirm
our belief that different networks may identify different aspects
(features) and their combination tends to improve results, as

largely expected due to the ensemble effect. When comparing
the merging of the 3 networks with single networks, 3CNN
achieves the best results for 6 (None, Breaking, Mixing, Bak-
ing, Seasoning, and Peeling) out of 9 actions. For Cutting and
Boiling, our architecture using 3 networks achieves the second-
best result. Our architecture did not perform well for the
Turning action, and a possible reason for the low performance
of the fusion methods for classifying Turning might be a
mixture of the limited number of frames for this activity and
the training phase using vector probabilities generated based
on the validation set. Considering that our fusion methods are
trained with predicted probabilities from validation data, any
misclassification may lead to errors during the test phase.

2) Off-the-shelf vs. fully-trained vs. fine-tuned: In general,
the GoogLeNet[Off-the-shelf] architecture is outperformed by its
fully-trained version on the RGB data GoogLeNet[RGB] and
by its fine-tuned version GoogLeNet[Fine-tuned]. This result
indicates that it is better to train the network from scratch
when a large dataset is available or fine-tune the network
allowing all layers to learn instead of simply learning the last
layer. Comparing the network trained from scratch with the
fine-tuned network, it seems better to train the network from
scratch than to load pre-trained weights in ImageNet. These
results may be explained by the fact that KSCGR’s images are
very different from ImageNet’s.

3) Single vs. Merged vs. Merged/Fused : The merging
of networks using different datasets (GoogLeNet[RGB+OFL])
with a fusion method (Mean, SVM or NN) tends to
improve results, achieving the maximum accuracy of
≈ 73% when combining the network with a neu-
ral network fusion (GoogLeNet[RGB+OFL]+NN). The use of
trainable fusion methods (GoogLeNet[RGB+OFL]+SVM and
GoogLeNet[RGB+OFL]+NN) decrease the accuracy of the Turn-
ing action probably because the validation data contains very
few frames from this action. When comparing the fine-
tuned networks with their versions with the SVM fusion,
we can see that the original fine-tuned network achieves
better results. GoogLeNet[Fine-tuned] + SVM is the only network



that achieves better results (7 out of 9 classes) when using
a fusion algorithm. Virtually every result of the original
fine-tuned versions of AlexNet and SqueezeNet are better
than their versions using SVM. Comparing the three fine-
tuned networks (AlexNet[Fine-tuned], GoogLeNet[Fine-tuned] and
SqueezeNet[Fine-tuned]), AlexNet[Fine-tuned] achieves the best re-
sults for 7 out of 9 classes and the best overall class score.
These results indicate that a small network is capable of good
performance probably because they properly avoid overfitting.
Observing the 3 fusion methods, the SVM fusion achieves
the worst results for most cases. NN and LSTM obtain sim-
ilar results for most categories, and 3CNNs+LSTM achieves
the best overall classification with 77% of accuracy for all
classes. Even though post processing may eliminate classes
that contain a small number of frames, it seems its usage
is quite beneficial since it consistently improves the obtained
results. The post-processed versions achieve the best accuracy
scores for 5 out of 9 classes when compared with all models,
providing the best overall accuracy of 78.5%.

4) Unbalanced classes: Since classification accuracy takes
into account only the proportion of correct results that a
classifier achieves, it is not suitable for unbalanced datasets
because it is biased towards classes with larger number of
examples. Although other factors may change results, classes
with a larger number of examples tend to achieve better results
since the network has more examples to learn the variability
of the features. By analyzing the KSCGR dataset, we note that
it is indeed unbalanced, i.e., classes are not equally distributed
over frames. Figure 4 shows the distribution of accuracy scores
over the classes for the GoogLeNet[RGB] network (left) and
the distribution of these classes within the dataset. We can
see that the dataset is unbalanced since the None action has
the largest number of frames (≈ 30% of the total) followed
by Baking (≈ 25% of the total), whereas Breaking contains
only ≈ 3% of the frames. By checking the accuracy scores,
we see that the GoogLeNet[RGB] achieves 28% of accuracy for
the Breaking class and 67% of accuracy for the Baking class,
meaning that the features that map to Breaking are not as
evident as the features of Baking. The probable reason for this
difference relies on the small number of training examples of
the Breaking class that is passed to the network. Baking, on the
other hand, is much more present within the dataset, improving
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Fig. 4. Per-class accuracy and class distribution within the KSCGR dataset.

the training experience and making the neural architecture
generalize better for frames that belong to that class. For
dealing with the unbalanced nature of the KSCGR dataset,
we measure the performance of the fusion methods based
on precision (P ), recall (R), and F-Measure (F ). Table II
shows the values of precision, recall, F-measure, and accuracy
achieved by the baselines (GoogLeNet [RGB] and GoogLeNet
[OFL]), pre-trained, and fully trained networks. In order
to compare with the current state-of-the-art on the KSCGR
dataset, in Table II we present the performance achieved by
Bansal et al. [7], which uses hand-crafted features (HCF) to
identify activities, as well as their results after undergoing
a similar post-processing step (HCF+PP). A large precision
value means that the respective model can adjust very well
to the features for identifying the class, whereas low values
indicate that it cannot extract relevant features to identify the
correct class among the remaining classes.

5) Our approach vs State-of-the-art: As we can observe
in Table II, virtually all networks achieve similar values of
precision, recall, and F-Measure. It is important to note that
the combination of the 3 CNNs using the LSTM as fusion
method and post processing (3CNNs+LSTM+PP) achieves the
best scores for all measures. When compared with the hand-
crafted features proposed by Bansal et al. [7], it is clear that
our architecture provides better results. Only the network that
was pre-trained on ImageNet and had all but the last layer
frozen (GoogLeNet[Off-the-shelf]) is outperformed by the (former)
state-of-the-art.

6) Confusion Matrix: We also analyze the confusion matrix
of the network that achieves the best performance without
post processing since it is also important to see which classes
that are commonly mistaken. The normalized confusion ma-
trix depicted in Figure 5 shows the performance of the
3CNNs+LSTM network, where rows represent the true classes

TABLE II
PRECISION, RECALL, F-MEASURE, AND ACCURACY FOR ALL BASELINES,

FUSION METHODS AND THE (FORMER) STATE-OF-THE-ART APPROACH
FOR THE KSCGR DATASET.

Approach Precision Recall F-measure Accuracy

HCF [7] 0.62 0.63 0.61 0.64
HCF + PP [7] 0.68 0.68 0.68 0.72

GoogLeNet[RGB] 0.69 0.68 0.69 0.69
GoogLeNet[OFL] 0.64 0.63 0.63 0.63
GoogLeNet[Off-the-shelf] 0.61 0.61 0.61 0.61
GoogLeNet[RGB+OFL] + Mean 0.71 0.69 0.70 0.69
GoogLeNet[RGB+OFL] + SVM 0.67 0.72 0.70 0.72
GoogLeNet[RGB+OFL] + NN 0.72 0.73 0.72 0.73
AlexNet[Fine-tuned] 0.77 0.75 0.76 0.75
GoogLeNet[Fine-tuned] 0.73 0.71 0.72 0.71
SqueezeNet[Fine-tuned] 0.70 0.66 0.68 0.66
AlexNet[Fine-tuned] + SVM 0.76 0.72 0.74 0.72
GoogLeNet[Fine-tuned] + SVM 0.72 0.71 0.68 0.71
SqueezeNet[Fine-tuned] + SVM 0.64 0.59 0.61 0.59
3 CNNs + SVM 0.73 0.67 0.70 0.67
3 CNNs + NN 0.77 0.75 0.76 0.75
3 CNNs + NN + PP 0.77 0.76 0.75 0.76
3 CNNs + LSTM 0.78 0.78 0.78 0.78
3 CNNs + LSTM + PP 0.80 0.78 0.79 0.79
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Fig. 5. Normalized confusion matrix for the 3CNNs+LSTM network.

and columns the predicted classes. Shades of blue represent
the value in each cell, going chromatically from a darker
blue for higher values to a lighter blue for lower values.
The confusion matrix shows normalized values, i.e., predicted
values are divided by the total number of true values for each
cell. By analyzing the results for the Baking class, we can
see that the system incorrectly predicts it as Turning. Such
misclassification makes sense since both activities occur in the
same region of the frame, using the same objects (e.g., in both
activities the subject is working in the middle of the scene and
whereas in Baking the subject puts the broken egg onto the
pan and lets it bake, in Turning the subject turns the baked egg
on the pan. Even though both None, Mixing, and Baking have
higher values in the main diagonal of the confusion matrix,
their precision scores are reduced by the misclassification of
other classes. Similarly to the misclassification of Baking, the
Mixing and Turning activities occur in the same region of the
scene and with the same objects.

Unlike Baking that does not have many changes through
frames (e.g., the egg baking inside the pan), the None activity
is labeled as anything that happens but the other 8 activities,
encompassing frames in which the subject is preparing the
kitchen utensils, moving pans, and inter-activity frames such as
removing the egg from boiling to peeling. The large accuracy
(73%) for classifying Baking may be explained due to this
standard behavior of low-variability in regions of the scene
and the larger number of available training frames. Despite the
unbalanced nature of the dataset, the values of accuracy follow
the F-Measure scores, where the lowest value is achieved for
Turning and the largest value for Baking.

7) Post processing effect: Since the post processing strategy
seems to be successful, it is interesting to visualize the exact
effect of smoothing predictions. Figure 6 presents the temporal
representation of the class distribution in the frame sequence
for a single video of the test set. Classes are represented by

Fig. 6. Temporal representation of classes for the frame sequence of a single
video in which true labels are compared with labels predicted by our approach
(with and without post processing.

colored vertical lines in a temporal sequence for both the origi-
nal output (true labels), the output provided by 3CNNs+LSTM,
and the output provided by (3CNNs+LSTM+PP). By ana-
lyzing the output of 3CNNs+LSTM, we can see that some
frames are misclassified such as a single Mixing action in
the middle of the Baking class or a small sequence of the
Cutting action in the middle of a Seasoning action. After
performing the post-processing smoothing step, these noisy
predictions disappear. On the other hand, small sequence of
frames that were correctly classified (Mixing in the middle of a
Baking class) also disappear. Despite the increase in accuracy
(from 86% to 90% for the example presented in Figure 6), the
smoothed output completely ignored the existence of some
activities, which can be an important issue according to the
application at hand.

IV. RELATED WORK

Before the rise of CNN and neural networks in general,
the approaches for action recognition were based on complex
hand-crafted features extracted from video sequences [7]. Con-
volutional neural networks on the other hand, learn automati-
cally a hierarchy of features automating the process of feature
construction. Thus, many authors apply CNNs to recognize
actions in videos using methods such as Long-term Recurrent
Convolutional Network (LRCN) [16], 3D convolutions (3D
CNNs) [18], or a mix of hand-crafted features and CNNs (two-
stream CNNs) [15]. Despite the fact that these approaches are
suitable for recognizing activities in general, they were applied
in other datasets and are not directly comparable to our work.

Traditional approaches for activity recognition rely on hand-
crafted features and domain-specific image processing algo-
rithms and often result in limited accuracy [7], [19]. Bansal et
al. [7] perform daily life cooking activity recognition based
on hand-crafted features for hand movements and objects
use in KSCGR dataset [6]. Their method first detects hand
regions through color segmentation and skin identification.
Since some objects can have the same color of the skin,



they perform background subtraction, eliminating still objects
with skin color. Also, considering that objects may give hints
of the activity (e.g., the use of the knife may indicate the
cutting activity), objects are identified as “Not in use” and “In
use”. A dynamic Support Vector Machine (SVM) and Hidden
Markov Model (HMM) hybrid model combines the structural
and temporal information to jointly infer the activity, achieving
64% of overall accuracy. In order to improve the performance
of the system, they perform a post-processing step, removing
noisy frames, i.e., frames that are incorrectly classified among
a cluster of correctly classified frames. Since some activities
are temporally dependent of others, e.g., Peeling only occurs
after Boiling, they create a context grammar to select the the
most likely guess for misclassified frames. Using the post
processing step, Bansal et al. increased accuracy in ≈ 7% for
the activity recognition, achieving a final accuracy of 72%.

Ni et al. [20] propose an adaptive motion feature pooling
scheme that utilizes human poses as side information. They ex-
tract hand-crafted features from the images, such as histogram
of oriented gradient, motion boundary histogram, histogram
of optical flow, and trajectory shape in order to obtain more
relevant features. The principal component analysis (PCA) al-
gorithm reduces the dimension of the large amount of extracted
features. Improved Fisher vectors encode the resulting features
and a second PCA algorithm reduces their dimensionality.
Finally, they train a Linear SVM in order to classify video
segments. They perform experiments using two datasets, the
KSCGR dataset [6] and the MPII kitchen activity dataset [21].
Since their work have focused on object detection and tracking
movements, they do not present results for activity recognition,
not allowing us to make a fair comparison.

V. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a novel neural architecture for in-
door fixed-camera kitchen activity recognition based on static
and temporal data and different fusion methods. The pipeline
of the architecture includes the training of deep convolutional
neural networks to extract features from images and classify
unseen frames. Using optical flow and RGB frames from the
kitchen scene dataset (KSCGR), we performed experiments
showing that the convolutional networks can indeed learn
high-level relevant features for the activity recognition task at
hand. Experiments show that our approach that employs fusion
methods achieve better results when compared with the current
state-of-the-art work that employs only hand-crafted features
[7] or when compared with deep approaches that make use of
RGB/OFL images alone. As future work, we intend to explore
other approaches such as temporal pooling and employ other
deep learning architectures such as 3D CNNs [18] considering
that they are also capable of encoding temporal features in
order to perform action recognition in videos.
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Indústria e Comércio de Equipamentos Eletrônicos LTDA.
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