

GOAL RECOGNITION IN LATENT SPACE

Leonardo Amado, Ramon Fraga Pereira, **João Paulo Aires**, Mauricio Magnaguagno, Roger Granada and Felipe Meneguzzi July 2018

PUCRS

INTRODUCTION

- Goal recognition is the task of inferring the intended goal of an agent by observing the actions of such agent.
- Current approaches of goal recognition assume that there is a domain expert capable of building complete and correct domain knowledge.

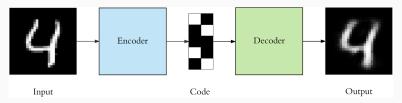
- $\cdot\,$ This is too strong for most real-world applications.
- To overcome these limitations, we combine goal recognition techniques from automated planning and deep autoencoders to automatic generate PDDL domains and use them to perform goal recognition

BACKGROUND

A goal recognition problem is a tuple $\mathcal{P}_{GR} = \langle \mathcal{D}, \mathcal{F}, \mathcal{I}, \mathcal{G}, O \rangle$, where:

- $\cdot \ \mathcal{D}$ is a planning domain;
- $\cdot ~ \mathcal{F}$ is the set of facts;
- · $\mathcal{I} \subseteq \mathcal{F}$ is an initial state;
- · \mathcal{G} is the set of possible goals, which include a correct hidden goal G^* $(G^* \in \mathcal{G})$;
- and $O = \langle o_1, o_2, ..., o_n \rangle$ is an observation sequence of executed actions, with each observation $o_i \in A$, and the corresponding action being part of a valid plan π that sequentially transforms \mathcal{I} into G^* .

- Using autoencoders it is possible to encode an image to a binary representation (equiv. to logic fluents)
- To perform the encoding of complex images , a complex autoencoder can be used, using the **Gumbel Softmax**.
- · The encoded representation is called *latent space*.



Source: https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

PLANNING IN LATENT SPACE

- Taking advantage of such autoencoders, LatPlan [Asai and Fukunaga, 2017] generates plans using only images of the initial and goal states.
- The initial state image and goal images are encoded in a binary representation.
- · LatPlan uses traditional planning algorithms to plan using only the *latent-space*
 - $\cdot\,$ LatPlan shows that many classical heuristics remain valid and effective even in latent space

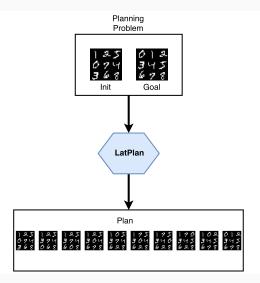
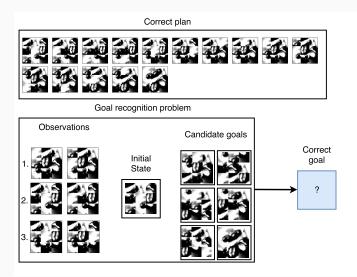


Figure: Latplanner.

GOAL RECOGNITION IN LATENT SPACE

- We propose an approach capable of recognizing goals in image based domains.
- We use the same tuple as planning goal recognition, but our states are now images.

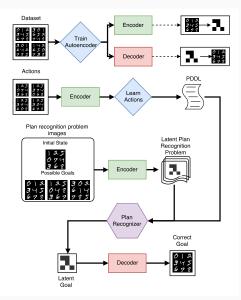


To recognize goals in image based domains, there are 4 milestones we must achieve.

- 1. First, we must train an autoencoder capable of creating a latent representation to a state of such image domain.
- 2. Second, we derive a PDDL domain, by extracting the transitions of such domain when encoded in latent space, obtaining a domain \mathcal{D} .
- 3. Third, we must convert to a latent representation a set of images representing, the initial state \mathcal{I} , the set of facts \mathcal{F} and a set of possible goals \mathcal{G} , where the hidden goal G^* is included.
- Finally, we can apply goal recognition techniques using the computed tuple ⟨D, F, I, G, O⟩

GOAL RECOGNITION IN LATENT SPACE

- Use a dataset with
 20000 states to train the autoencoder.
- Use a dataset with all the state transitions to extract a PDDL.
- Convert the GR problem to latent space using the autoencoder.
- With the domain PDDL and the encoded PR problem, recognize a plan in latent space.



We use the autoencoder with the following structure, using 36 bits for the latent representation:

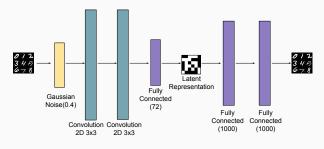


Figure: Autoencoder structure.

To derive a domain PDDL from raw data, we use the following method.

- 1. We encode every single transition using the autoencoder.
- 2. We then group up transitions that have the same effect.
- 3. We then derive a precondition by comparing which bits do not change between each transition of each group of effects.
- 4. Having both a precondition and an effect, we derive a PDDL action.

EXPERIMENTS

To test our approach, we use 6 domains from 3 distinct games.

(a) MNIST (b) Mandrill (c) Spider (d) LO Digital (e) LO Twist (f) Hanoi

Figure: Sample state for each domain.

First, we analyze the quality of the PDDL domain and the accuracy of the autoencoder.

Table: PDDL generation performance for each domain.

Domain	Total Transitions	Encoded Transitions	SAE Accuracy %	Computed Actions	Ground Actions	PDDL Redundancy
MNIST	967680	963795	99.6%	4946	192	25.76
Mandrill	967680	967680	100.0%	495	192	2.578
Spider	967680	967680	100.0%	763	192	3.974
LO Digital	1048576	1048576	100.0%	5940	1392	4.267
LO Twisted	1048576	1048576	100.0%	12669	1392	9.101
Hanoi	237	237	100.0%	211	38	5.552

Second, we show the results obtained by goal recognition techniques using hand-made PDDL domains.

- $\cdot\,$ We consider different levels of observability: 10, 30, 50, 70, and 100%
- $\cdot\,$ We evaluate Time, Accuracy, and Spread over the three games
- $\cdot\,$ We use three different standard Goal Recognizers

Sample of the obtained results

			POM (h _{uniq})			RG			
Domain	$ \mathcal{G} $	(%) Obs	0	Time (s) θ (0 / 10)	Accuracy % θ (0 / 10)	Spread in G θ (0 / 10)	Time (s)	Accuracy %	Spread in $\mathcal G$
8-Puzzle	6.0	10 30 50 70 100	1.0 3.0 4.0 5.3 7.3	0.074 / 0.080 0.079 / 0.085 0.088 / 0.091 0.092 / 0.100 0.108 / 0.110	33.3% / 33.3% 83.3% / 83.3% 100.0% / 100.0% 100.0% / 100.0% 100.0% / 100.0%	2.6 / 2.6 1.0 / 2.5 1.1 / 1.6 1.0 / 1.0 1.0 / 1.0	0.179 0.188 0.191 0.210 0.246	100.0% 100.0% 100.0% 100.0% 83.3%	4.8 1.3 1.3 1.0 1.1

Comparing hand-made and automatic generated PDDL domains.

				POM (h _{uniq})			RG		
Domain	$ \mathcal{G} $	(%) Obs	0	Time (s) θ (0 / 10)	Accuracy % θ (0 / 10)	Spread in G θ (0 / 10)	Time (s)	Accuracy %	Spread in ${\mathcal G}$
		10	1.0	0.074 / 0.080	33.3% / 33.3%	2.6 / 2.6	0.179	100.0%	4.8
		30	3.0	0.079 / 0.085	83.3% / 83.3%	1.0 / 2.5	0.188	100.0%	1.3
8-Puzzle	6.0	50	4.0	0.088 / 0.091	100.0% / 100.0%	1.1 / 1.6	0.191	100.0%	1.3
		70	5.3	0.092 / 0.100	100.0% / 100.0%	1.0 / 1.0	0.210	100.0%	1.0
		100	7.3	0.108 / 0.110	100.0% / 100.0%	1.0 / 1.0	0.246	83.3%	1.1
		10	1.2	0.555 / 0.562	40.0% / 60.0%	1.6 / 3.2	21.25	100.0%	6.0
MNIST	6.0	30	3.0	0.587 / 0.599	20.0% / 80.0%	1.4 / 3.0	22.26	100.0%	4.8
		50	4.0	0.609 / 0.628	60.0% / 80.0%	2.2 / 2.8	22.48	100.0%	4.8
		70	5.8	0.631 / 0.654	60.0% / 100.0%	2.4 / 3.6	23.53	100.0%	3.2
		100	7.8	0.676 / 0.681	80.0% / 100.0%	2.4 / 3.0	26.34	100.0%	3.4

CONCLUSION AND FUTURE WORK

- We developed an approach for goal recognition capable of obviating the need for human engineering to create a task for goal recognition.
- Empirical results shows that our approach comes close to standard goal recognition techniques.
- Regardless, our approach allows breakthroughs in goal recognition techniques.
- $\cdot\,$ Our current approach has two main limitations:
 - $\cdot\,$ we need all possible transitions of the domain;
 - $\cdot\,$ we currently use relatively small images as input.

- For future work we aim to improve pruning of redundant actions in the domain inference process.
- Furthermore, we would like to develop plan recognition algorithms for incomplete domain models.
- Finally, we aim to develop an approach that applies goal recognition over video streams.

Thank you!

leonardo.amado@acad.pucrs.br joao.aires.001@acad.pucrs.br