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Abstract—Goal recognition is the task of identifying the goal an
observed agent is pursuing. The quality of its results depends on
the quality of the observed information. In most goal recognition
approaches, the accuracy significantly decreases in settings with
missing observations. To mitigate this issue, we develop a learning
model based on LSTMs, leveraging attention mechanisms, to
enhance observed traces by predicting missing observations in
goal recognition problems. We experiment using a dataset of
goal recognition problems and apply the model to enhance the
observation traces where missing. We evaluate the technique
using a state-of-the-art goal recognizer in four different domains
to compare the accuracy between the standard and the enhanced
observation traces. Experimental evaluation shows that recurrent
neural networks with self-attention mechanisms improve the
accuracy metrics of state-of-the-art goal recognition techniques
by an average of 60%.

I. INTRODUCTION

Goal recognition is the task of discerning the intended goal
of an agent by observing its interactions in an environment.
Initial approaches to goal and plan recognition are based on
plan-libraries, which require a substantial amount of domain
knowledge to represent the agents’ behavior [1]–[3]. Subse-
quent approaches have gradually relaxed such requirements by
using planning domain models [4]–[6]. However, the accuracy
of most recognition approaches is directly related to the
amount of observations (e.g., sequences of states) available in
order to recognize correctly the intended goal [7]–[10]. Such
limitation appears in most goal recognition techniques, includ-
ing the state-of-the-art in goal recognition as planning [11],
yielding poor results in some domain models when dealing
with fewer observations.

To overcome this issue, we introduce a novel method for en-
hancing the observations in goal recognition problems. To do
so, we use a learning model using Recurrent Neural Networks
(RNNs) and attention mechanisms to predict missing states
in between the observations provided in the goal recognition
problem, which we describe in Section III. We train four
models, one to each of the domains we experiment, and
apply the models to a dataset of goal recognition problems.
In Section V we evaluate the method in two types of goal
recognition problems: (1) classical goal recognition problems,
where domains are formalized in Planning Domain Defini-
tion Language (PDDL) [12], a well-known domain language
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used in AI Planning; (2) goal recognition problems in latent
space, where the domains are learned using convolutional
neural networks and autoencoders [13]. For the classical goal
recognition problems, we train two domain-specific models
based on two Artificial Intelligence Planning System (AIPS)
domains, i.e., blocks-world and logistics [14], two well known
classical domain models in the planning literature. For the
goal recognition problems in latent space, which uses domains
with features extracted in latent space [13], [15], we train
two domain-specific models for two domains: the MNIST
8-puzzle, where the puzzle tiles are images extracted from
the MNIST dataset; and the Lights-Out (LO Digital) game.
Experiments and evaluation show that our novel method is
able to improve the accuracy of state-of-the-art techniques in
goal recognition as planning [11] by approximately 60%.

II. BACKGROUND

We now detail the necessary background required for this
paper. First, we explain the problem of goal recognition
in planning. Second, we describe long short-term memory
(LSTMs) networks. Third, we detail attention mechanisms
in neural networks, and how they can improve such models.
Finally, we briefly summarize recent work in goal recognition
in latent space, to clarify some of our later experiments.

A. Goal Recognition

Goal recognition is the task of recognizing the goal being
pursued by a rational (software or human) agent from ob-
servations of its acting in the environment. The observations
collected from the environment can be either a sequence of
actions performed by the agent, or the consequences thereof
— such sequences can be either seen in full or a partial
sequence of the actions performed by the agent. Goal recogni-
tion in real-world data assume an underlying processing step
that translates raw sensor data into some kind of symbolic
representation [16], as well as a model of the observed
agent’s behavior generation mechanism, often using STRIPS-
style [17] descriptions.

Most goal recognition approaches [2], [18], [19] employ
plan libraries to represent agent behavior (i.e., a library that
describes all plans for achieving goals), and plan recognition
techniques which use such libraries are analogous to parsing.
While most approaches of this kind have serious scalability



issues, recent work on plan recognition as planning have
solved this issue [10] by using landmark-based heuristics [20]
to efficiently process observations without the need to call a
planner multiple times.

We describe goal recognition problems following a
STRIPS [17] model. Formally, we model planning domains
of the agents being observed as D = 〈R,O〉, where: R is
a set of predicates with typed variables. Such predicates can
be associated to objects in a concrete problem (i.e. grounded)
representing binary facts. The set F of positive facts induces
the state-space of a planning problem, which consists of
the power set P(F) of such facts, and the representation
of individual states S ∈ P(F). O is a set of operators
op = 〈pre(op), eff (op)〉, where eff (op) can be divided into
positive effects eff +(op) (the add list) and negative effects
eff −(op) (the delete list). An operator op with all variables
bound is called an action and the collection of all actions
instantiated for a specific problem induces a state transition
function γ(S, a) 7→ P(F) that generates a new state from
the application of an action to the current state. An action
a instantiated from an operator op is applicable to a state
S if S |= pre(a) and results in a new state S′ such that
S′ ← (S ∪ eff +(a))/eff −(a).

We define a planning problem within D and a set of
typed objects Z as P = 〈F ,A, I, G〉, where: F is a set
of facts (instantiated predicates from R and Z); A is a set
of instantiated actions from O and Z; I is the initial state
(I ⊆ F); and G is a partially specified goal state, which
represents a desired state to be achieved. A plan π for a
planning problem P is a sequence of actions 〈a1, a2, ..., an〉
that modifies the initial state I into a state S |= G in which the
goal state G holds by the successive execution of actions in a
plan π. Modern planners use the Planning Domain Definition
Language (PDDL) as a standardized domain and problem
representation [21] encoding this formalism.

Bringing this all together, a goal recognition problem is a
tuple PGR = 〈D, I,G, O〉, where D is a planning domain
including the facts F ; I is an initial state; G is the set
of possible goals, which include a correct hidden goal G∗

(i.e., G∗ ∈ G); and O = 〈o1, o2, ..., on〉 is an observation
sequence of executed actions, with each observation oi ∈ A,
and the corresponding action being part of a valid plan π
that sequentially transforms I into G∗. The solution for a
goal recognition problem is the correct hidden goal G ∈ G
that the observation sequence O of a plan execution achieves.
An observation sequence O contains actions that represent an
optimal or sub-optimal plan that achieves a correct hidden
goal, and this observation sequence can be full or partial.

B. Long Short-Term Memory Networks

A Recurrent Neural Network (RNN) is a type of network
that attempts to model a sequence of dependent events oc-
curring through time, e.g., a financial time series [22], or
language modeling [23]. The recurrence is performed by
feeding the input layer of the network at time t+ 1 with the
output of the network layer at time t, keeping a “memory”

of the past events. Unfortunately, RNNs suffer with the well-
known vanishing gradient problem [24], i.e., the gradients that
are backpropagated through the network during the training
phase tend to decay or grow exponentially. Therefore, as
dependencies in RNNs get longer, the gradient calculation
becomes unstable, limiting the network to learn long-range
dependencies.

In order to eliminate the vanishing gradient problem, [25]
propose an RNN architecture called Long Short-Term Memory
(LSTM) network that modifies the original recurrent cell such
that vanishing and exploding gradients are avoided, whereas
the training algorithm is left unchanged. An LSTM cell
contains mainly four components: the cell state, the forget
gate, the input gate and the output gate. The cell state (C)
is responsible for passing the information through the cell
to the next LSTM cell, while being changed by the gates.
The forget gate decides what information should be forgotten
from the previous cell state. This gate contains a sigmoid (σ)
layer that outputs a number between 0 and 1, where 1 means
“keep all information” and 0 means “forget this information”.
The input gate computes what information should be stored
in the cell state by applying a sigmoid layer to decide what
information to keep and a hyperbolic tangent (tanh) layer
to select new candidates to the cell state, performing an
update to the cell state. Finally, the output gate computes what
information should be propagated forward by performing a
pointwise multiplication of a sigmoid layer, which computes
what part of the input is forwarded, and a the cell state
filtered by a tanh operation. Figure 1 illustrates an LSTM
cell with its respective gates, where yellow boxes represent
layers, elements in green represent pointwise operations (⊗
pointwise multiplication, ⊕ pointwise addition and tanh point-
wise hyperbolic tangent function), merging arrows represent
the concatenation of elements and forking arrows represent
the copy of the content to multiple points.

C. Self-Attention networks

Despite its advantages, LSTM networks still present lim-
itations due to its fixed-length internal representations. Such
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Fig. 1: Internal structure of the LSTM cell.



limitation creates issues for the processing of longer sequences
of data. Attention mechanisms [26] have become an essential
component of modern sequence processing models. Atten-
tion was initially employed in Neural Machine Translation
(NMT) tasks, which consist of two RNNs serving as encoder
and decoder. A context vector attributes different weights
to the elements of the whole input sequence, and mediates
information exchange between both networks. Thus, it allows
the decoder to focus on the most relevant input elements
independently of their position in the sequence. Self-attention
[27], also called intra-attention, is a mechanism that encodes
relationships among elements in different positions of the same
sequence, allowing the representation of its composition.

An alternative attention layer for regular LSTMs is proposed
in [28], where an attention matrix A is used to capture
similarities among input elements. The relationship between
elements xt and xt′ of hidden states ht and ht′ at steps t and
t′ is stored in the similarity element at,t′ ∈ A. Similarity is
computed by applying a hyperbolic tangent layer to the weight
matrices associated with hidden states ht and ht′ followed by a
sigmoid layer, both with added bias. The weighted summation
of ht′ elements and their similarities at,t′ to elements of
ht compose the attention hidden state lt, which contains
information on the relevance of a given element at any step
in proportion to other elements in its sequence.

D. Goal recognition in Latent Space

Planning algorithms are based on the factored transition
function that represents states as discrete facts. This transition
function is traditionally encoded manually by a domain expert,
and virtually all existing plan recognition approaches require
varying degrees of domain knowledge in order to recognize
observations. Automatically generating such domain knowl-
edge involves at least two processes: converting real-world
data into a factored representation (i.e., predicates for the
planning process); and generating a transition function (i.e., the
set of possible actions in the planning domain) from traces of
the factored representation. A recent approach from Asai and
Fukunaga [13] uses an auto-encoder [29] neural network to
automatically generate domain models from images of simple
games and problems. The neural network uses an encoder to
convert an input image into a discretized representation.

The encoder receives 42x42 black and white images and
outputs a 6x6 latent representation activated by Gumbel-
Softmax [30]. The decoder reconstructs the input image from
the discretized representation. Leveraging from such auto-
encoder, in [15] the authors developed an approach (LatRec)
to recognize goals in latent space. By comparing images of
sequential states, the authors are able to infer an approximated
PDDL domain. Thus, LatRec is able to recognize goals in real-
world data, by combining unsupervised learning and state-of-
the-art goal recognition techniques.

III. APPROACH

State-of-the-art goal recognition techniques compare their
approaches with varying degrees of observability, to proper
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Fig. 2: Predicting missing observations.

measure the efficiency of these techniques in different situa-
tions. As the degree of observability decreases, which means
that less observations are given to the recognizer, it becomes
harder to recognize goals, so the accuracy decreases and the
spread increases. To improve goal recognition approaches, we
propose a learning model capable of predicting missing obser-
vations, enhancing the information used in the goal recognition
process. The model takes in incomplete observation traces as
input and predicts the most likely next step. Observation traces
are sequences of states that are given to the trained model, thus
the model returns a prediction of the next state.

A key assumption of this work is that we either know the
domain model, or have access to a learned approximation,
via a black box transition function. Thus, we are given a full
goal recognition problem with the tuple PGR = 〈D, I,G, O〉.
Using the domain model, we check if a sequence of states in
the set of observations O is impossible by evaluating whether
a transition between two states is valid, starting from the initial
state I and the first observation. If the sequence of states is
impossible, we conclude that an observation is missing at the
point of the invalid transition of the observation trace. Hence,
the problem of predicting missing observations is given by
predicting n observations Ô that fit the set of observations O.
Figure 2 illustrates this process, where P − Sn is a possible
observation that can fit the set of observations O.

We show the developed architecture for enhancing observa-
tions in goal recognition problems in Figure 3. The Grounding
element in the diagram generates the set of all possible actions
for a given domain instance. The Observation Predictor ele-
ment takes as input the traces of a goal recognition problem
and uses the ground actions to verify whether transitions
between observations are valid. If a transition is not valid, it
feeds the traces to the Learned Model element, a trained self-
attention LSTM, which outputs a prediction for the missing
observation. For each prediction, we select the most likely
state following the given input observations, and test if it is a
possible consecutive state. Then, the predicted observation is
fed back to the Observation Predictor, and, if it constitutes a
valid transition, it is appended to the sequence of observations.
If the predicted state is impossible to apply in the given
observations, we iterate the top-3 outputs of the network layer
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and evaluate whether one of them is a valid transition. If
none of the top-3 selected predictions are valid transitions,
we do not add any observations. If the predicted state is
included in the set of candidate goals G, we stop predicting
observations further from that state. Finally, when the model
can no longer predict valid transitions to the current sequence
of observations, the enhanced observation traces are sent to
the Off-the-shelf Goal Recognizer element.

Our model architecture consists of 5 layers. The first layer is
an embedding in which we tokenize the input. The second is an
LSTM with 1024 hidden neurons, which is connected to a self-
attention layer with softmax activation. A flatten layer takes
this output and feeds into a fully connected layer activated with
softmax. The final activated output is a vector with the size
of unique tokens (vocabulary), where each token represents
an observation. Figure 4 illustrates the model architecture,
where max-len is the maximum length of an input sequence of
observations in the dataset and vocab is the number of unique
tokens of the problem (all possible states that the model can
predict). We train the network with an Adam optimizer and a
Categorical Cross-Entropy loss function.

IV. DATASETS AND TRAINING

In this section we detail how we built the datasets for
training and testing the models. First, we detail the datasets
used to train models for the the classical AIPS domains. Then,
we detail the datasets created to train the model for domains
in latent space. Finally, we detail how we train our models
and test their performance.

A. Classical domains dataset

To train our models for classical problems, we use two
classical PDDL domains from AIPS, i.e., blocks-world and
logistics. These are well known planning domains used in
classical goal recognition approaches in the literature. We

build one dataset to each domain and model, where we use
100 planning problems for each domain. We then solve these
problems using a standard PDDL planner called PyperPlan1,
which computes an optimal plan to solve each problem in-
stance. This plan is a sequence of states, the solution from the
initial state to the goal state. After computing a plan for each
problem, we separate the data into a training set, containing
80 plan instances, and a test set with 20 plan instances. We
augment the data used in training by generating subsets of the
training instances as new data instances. For example, if we
have the train instance x1 = [s1, s2, s3, s4, s5], where sn is a
state, and y1 = [s6] is the label to this training instance, we
create new training instances, such as x1a = [s1, s2, s3, s4]
using y1a = [s5] as label. The subsets maintain the contiguity
of states, and are generated until the minimum lenght of three
states. After augmentation, plan instances have on average a
sequence of 7 states on these domains.

B. Latent space datasets

To test our approach in real-world data, we generated
a number of image-based datasets based on existing goal
recognition problems [15], [31], [32]. These datasets were first
introduced in [13], using images to compose puzzle domains
and employing a variational autoencoder to extract latent space
features from each domain. We select two domains from [13],
the MNIST 8-puzzle and the Lights-Out domain. The MNIST
8-puzzle, illustrated in Figure 5a, uses handwritten digits from
the MNIST dataset as tiles of the puzzle, with the number 0
representing the blank space. Every image of the dataset uses
the same handwritten digit for every repeating number. The
Lights-Out puzzle game [33] consists of a 4 by 4 grid of
lights that can be turned on and off, thus named Lights-Out
Digital (LO Digital). LO Digital starts with a random number
of lights initially on—toggling any of the lights also toggles
every adjacent light—and the objective is to turn every light
off. The LO Digital domain uses crosses to represent when a
light is on, as illustrated in Figure 5b.

To generate the training dataset, we create 100 planning
problems for each latent space domain. After creating the
problems, we use LatPlan [32] to solve them and create
a plan trace (sequence of states). Latent space states are
represented as binary vectors extracted from the autoencoder
latent features. We then split these plan instances, using 80
of them for training, and 20 for testing. We augment the
training dataset for the latent space domains following the
same procedure used for the classical domains, in order to
increase the dataset size. After augmentation, plan instances
have on average a sequence of 5 states on these domains.

C. Training and Testing

After building the training and test datasets, we train 4
distinct models, one for each domain, using the architecture
described in Figure 3. In each sequence of traces, the final
trace is extracted and used as a label to the remainder of the

1https://bitbucket.org/malte/pyperplan
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sequence. Since LSTM models expect inputs with equal size,
we identify the longest sequence of traces and apply a zero
left-padding to all instances shorter than it, so that all inputs
have the same length. During training, our model receives a
trace sequence as input, and outputs a prediction, which is the
probability of each state being the correct next state. Training
is interrupted when there is no improvement in validation loss
after 10 epochs straight (early stop).

In Table I, we show the results of our training model
in each dataset, where Vocab. Size represents the number
of distinct states the model can predict, Max. Length the
maximum sequence length that can be fed to the network, Top-
1 Acc the standard accuracy of the model when predicting the
correct missing observation, and Top-3 Acc the accuracy when
considering the 3 higher probability states.

V. EXPERIMENTS

To run experiments in goal recognition problems and per-
form the prediction of missing observations using the trained
model, we use the 20 planning problems of each domain’s
test dataset to generate observation traces. Goal recognition
techniques use different rations of observability in order to test
their efficiency. We remove observations from the test plans
following ratios of 30, 50, and 70 percent of observability. This
means that we randomly cut a percentage of observations out
of a plan, resulting in traces as illustrated in Figure 2. We
refer to the resulting dataset with no predictions from our
model as the Standard dataset. We generate a new dataset
by feeding the observations to our model and try to fill gaps
of missing observations, resulting the dataset we refer to
as Enhanced dataset. Finally, we generate goal recognition
problems using the traces of each domain in the datasets

TABLE I: Model metrics for each domain.

Domain Vocab. Size Max. Length Top-1 Acc Top-3 Acc
Blocks-world 473 16 0.78 0.84
Logistics 1021 22 0.85 0.86
MNIST 566 10 0.83 0.91
LO Digital 709 8 0.85 0.88

for each observability ratio, resulting in 60 goal recognition
problems for each domain.

Both the Standard dataset (no predictions from the model)
and the Enhanced dataset are used as input to a state-of-the-
art goal recognizer proposed in [10]. The recognizer uses a
landmark-based approach [10] for recognizing actual goals
from a set of candidate goals, given a trace of observa-
tions. The recognizer uses the Uniqueness Landmark-based
Heuristic, which uses the concept of a landmark’s uniqueness
value, representing the information value of the landmark for
a particular candidate goal when compared to landmarks for
all candidate goals. The estimates provided by this heuristic
is the ratio between the sum of the uniqueness value of the
achieved landmarks and the sum of the uniqueness value of
all landmarks of a candidate goal. The more landmarks an
observation trace contains with regard to a candidate goal, the
higher the score for that goal being the correct goal pursued by
the agent. Thus, enhancing observations traces that are correct
with regard to the plan an agent is pursuing will most likely
increase the chances of recognizing the agent’s actual goal.

In Figure 6, we show the result metrics of the goal
recognizer after applying our technique in the 4 proposed
domains. To each observability ratio, we show the accuracy
and precision metrics of the goal recognizer, in blue for the
Standard dataset, and in red for the Enhanced dataset. Results
show that our approach is capable of improving the accuracy of
the state-of-the-art goal recognition algorithm, both in classical
and in latent space domains. In the classical domains (Blocks-
world Fig. 6a, and Logistics 6b), the accuracy gain is over 60%
across all degrees of observability. In the Logistics domain,
with 50% of observability, the accuracy triples, highlighting
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Fig. 6: Goal recognition accuracy in each domain.

the ability of our method to improve observation traces. In
latent space domains, the observation traces in the LO Digital
domain improve significantly (Fig. 6d), while improvements
in the MNIST 8-puzzle are slight in accuracy (Fig. 6c),
with a slight decrease in precision for 30 and 50 percent
of observability. This occurs because the accuracy in the
MNIST 8-puzzle domain is already high, leaving small room
for improvement and a higher chance of noise being added.

In Table II we report in detail the result metrics of the
Standard and Enhanced datasets using the state-of-the-art
goal recognizer. As the data shows, our approach consistently
improves the results across all metrics. In Avg. # Obs, we
show the average number of observation traces given to
the recognizer, and in Recog. Goals, the average number
of identified goals returned by the goal recognizer (spread).
Our approach is able to consistently add many observations
across all domains, and in some cases triples the amount of
observations. The improvements are significantly higher in the
classical goal recognition problems, but our technique is still
able to improve the results using latent space domains.

VI. RELATED WORK

In [34], Min et. al. proposes a deep LSTM network approach
to recognize goals of a player in an educational game scenario.
The dataset used for training the deep LSTM is a player
behavior corpus consisting of distinctive player actions. The
challenge comes from recognizing goals when handling uncer-
tainty from noise input and non-optimal player behavior. The
LSTM is able to do standard metric-based goal recognition
and online goal recognition, as information is fed. Although
this work is very similar to ours, the main difference is that
we only predict missing observations, without the compromise
of finding one of the candidate goals. This is a significant
difference, because our approach can still provide results when
dealing with goals that are not contained in the training dataset
(referenced in Table I as Vocab). Thus, our approach focuses
in improving state-of-the-art goal recognition approaches, and
it is applicable to future goal recognition approaches.

Sohrabi et al. [35] develops a probabilistic approach for
recognizing goals and plans that deals explicitly with un-
reliable and spurious observations (i.e., missing and noisy
observations). To do so, Sohrabi et al. modify the domain
model by introducing costs in the action descriptions according



TABLE II: Results for Goal Recognition problems

Domain Observability Dataset Accuracy Precision Recall F1-score Avg. # Obs. Recog. Goals

Blocks World

30% Standard 0.20 0.20 0.20 0.20 4.15 1.00
Enhanced 0.50 0.45 0.50 0.48 13.60 1.10

50% Standard 0.40 0.35 0.40 0.37 6.85 1.15
Enhanced 0.80 0.70 0.80 0.74 16.80 1.15

70% Standard 0.55 0.48 0.55 0.51 9.85 1.15
Enhanced 0.95 0.79 0.95 0.86 16.00 1.20

Logistics

30% Standard 0.30 0.29 0.30 0.29 5.50 1.05
Enhanced 0.80 0.37 0.80 0.51 19.30 2.15

50% Standard 0.20 0.20 0.20 0.20 8.65 1.00
Enhanced 0.80 0.40 0.80 0.53 19.15 2.00

70% Standard 0.40 0.29 0.40 0.33 12.40 1.40
Enhanced 0.80 0.37 0.80 0.51 19.85 2.15

MNIST 8-Puzzle

30% Standard 0.85 0.46 0.85 0.60 2.75 1.85
Enhanced 0.95 0.44 0.95 0.60 8.10 2.15

50% Standard 0.95 0.43 0.95 0.59 3.95 2.20
Enhanced 1.00 0.44 1.00 0.62 8.80 2.25

70% Standard 1.00 0.43 1.00 0.60 5.50 2.35
Enhanced 1.00 0.40 1.00 0.57 9.85 2.50

LO Digital

30% Standard 0.35 0.32 0.35 0.33 2.70 1.10
Enhanced 0.65 0.38 0.65 0.48 4.35 1.70

50% Standard 0.60 0.46 0.60 0.52 3.70 1.30
Enhanced 0.80 0.44 0.80 0.57 5.25 1.80

70% Standard 0.45 0.33 0.45 0.38 5.00 1.35
Enhanced 0.70 0.41 0.70 0.52 6.65 1.70

to an interpretation about what is missing or noisy observation.
We note that their approach does not aim to enhance the
information in the observation sequence by inferring what is
missing between the observations, whereas our approach does.
Moreover, our approach can be used along with theirs during
the recognition process to infer missing states.

Granada et al. [36] develops a hybrid approach that com-
bines activity and plan recognition for video streams. This
approach uses deep learning to analyze video data (frames) in
order to identify individual actions in a scene, and based on
this set of identified actions, a plan recognition algorithm then
uses a plan library describing possible overarching activities
for recognizing the ultimate goal of the subject in a video.
Unlike our work, they rely on plan libraries, a different domain
formalization for goal recognition, which requires a handmade
structure, defining a set of plans to achieve the goals.

In [13], Asai et. al. developed a planning architecture
capable of planning using only pairs of images (representing,
respectively, the initial and goal states) from the domain by
converting the images into a latent space representation. Their
architecture consists of a variational autoencoder (VAE) fol-
lowed by an off-the-shelf planning algorithm. The architecture
convert images into discrete latent vectors using the VAE, and
uses the information in such latent vectors to plan over the
images and find a sequence of actions that transforms the
state into one matching the goal image. In this work, we
demonstrated that our approach is able to improve results for
goal recognition in latent space domains.

VII. DISCUSSION AND FUTURE WORK

We developed an approach for predicting missing observa-
tion in goal recognition problems and tested it in four distinct
domains, including domains based on real world data. Results
show that our approach is capable of enhancing traces with
missing observations for all domains, significantly improving
accuracy across varying degrees of observability. As shown in
the results, in some cases our approach more than doubles the
accuracy of the recognizer, with minimal increase of spread as
drawback. Thus, our main contribution is a novel technique to
aid state-of-the-art goal recognition techniques, in classical and
real-world data domains, without performing goal recognition
in itself. Hence, our approach can be used in future state-of-
the-art goal recognition approaches.

For future work, we propose two main improvements:

1) extend the idea of this work to continuous domains,
instead of using only discrete domains;

2) apply this approach in online goal recognition and plan
recognition.

A different model would be needed in order to apply our
technique in continuous domains. However, there is much
research about learning approaches capable of approximating
continuous domains, some of which applied to goal recogni-
tion [37]–[39]. Our approach could easily improve online goal
recognition, predicting the next possible observation as we
observe acting agents. By solving such problem, our approach
can extend goal recognition into plan recognition (a superset
of goal recognition problems) predicting the entire plan as we
observe an acting agent.
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