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Abstract—The task of measure semantic redundancy between
sentences demands a thorough interpretation from the reader
because phrase meaning may be ambiguous. Detecting semantic
similarity is a difficult problem because natural language, besides
ambiguity, offers almost infinite possibilities to express the same
idea. This paper adapts a siamese neural network architecture
trained to measure the semantic similarity between two sentences
through metric learning. The resulting solution should help in
writing more efficient and informative text.

Index Terms—Neural networks, word embedding, recurrent
neural network, GRU, metric learning, siamese neural networks,
semantic analysis

I. INTRODUCTION

Semantic similarity is a quantitative measure that shows
closeness of meaning given different pieces of text, regardless
of how they are written. The key challenge in comparing the
semantic content of natural language lies in the very large
number of different ways of expressing the same information,
especially when reasoning about the context surrounding the
text [1]. Computing semantic similarity allows us to objec-
tively assess text passages in the same document for redun-
dancy, helping writers convey the same information using less
repetition.

Text redundancy occurs when the same document contains
multiple passages of information with a high semantic similar-
ity, expound the same idea in different areas of a text. Although
redundancy can be used to emphasize some conclusion, it may
generate unnecessary textual volume which results in a vague
and uninteresting text.

We provide two contributions in this paper. First, we show
that semantic similarity can be measured through learning a
metric using a Siamese GRU (Gated Recurrent Unit) network
architecture (Section III), which is trained using a labeled
dataset (Section IV). Second, given a representation that
encodes semantic and syntactic information about the words,
we show that our approach to measure semantic similarity does
not depend on linguistic information of the sentences.

II. BACKGROUND

Neural network is a computational model used for machine
learning purposes described as a direct acyclic graph [2],
which is organized in multiple layers. Each intermediate layer,
also known as hidden layer, can learn different representations

given a input data. Recently, natural language process systems
are applying neural networks to learn text representations, us-
ing techniques such as Word Embedding to create a word vec-
tor which reflects semantic syntactic properties of words. [3].

Taking into a sentence level, a classical feed forward neural
network is limited to process each word of sentence as a
single feature [2], ignoring their order of occurrence. Recurrent
neural network is a neural network type for sequential data
process, making possible learn information from the context of
words considering their previous information in the sentence.
Although the weights is shared accross the sequence using
the same updating rule, training a recurrent neural network
is difficult because gradients may become small over long
sequences, being susceptible to vanishing/exploding gradient
problem [4].

GRU [5] (Gated Recurrent Units) is a recurrent network
architecture proposed to deal with long sequences, using
a gating mechanism to create a memory control of values
processed over time. A GRU cell consists of two gates that
controls flow data through states. Gate rt controls updates
on internal memory, which is not propagated to next state.
Gate zt controls how much of internal memory should be
considered on next state. Equations 1, 2 and 3 represents
operations realized by gates rt and zt in order to results ,
and equation 3 shows how next hidden state is computed in a
GRU unit [2].

rt = σ(Wrht−1 + Urxt + br) (1)

zt = σ(Wzht−1 + Uzxt + bz) (2)

ht = zt⊗ht−1⊕ (1−z)⊗ tanh(Whxt+Uh(rt⊗ht−1)+bh))
(3)

In order to measure similarities, metric learning is an
alternative to learn a distance function in a supervised manner,
which considers changes in the data [6]. Siamese neural
network is a architecture composed by two neural networks
that is used to do metric learning between the output of each
network. Chopra, Hadsell, and LeCun proposed [7] a Siamese
neural network architecture to learn a distance function for
face verification, which uses two symmetric convolutional net-
works. Mueller and Thyagarajan work [8] shows that learning
a simple Manhattan Distance function over semantic encoding



of sentences can efficiently measure semantic similarity. We
propose a similar way to measure semantic similarity, using a
Siamese neural network architecture using two GRU (Gating
Recurrent Units), which is a simpler architecture than a Long-
Short Term Memory network used in Mueller and Thyagarajan
work [8].

III. MODEL ARCHITECTURE

In this section, we describe in two steps the architecture of
our neural network used to obtain the semantic similarity be-
tween two sentences. First, we describe the data pre-processing
in order to create a numerical representation to the words in
sentences. Second, we detail the architecture of our neural
network specifying the layers and explaining their roles and
motivations of each selected approach.

A. Data Pre-processing

Since the input data of a neural network must be numeric
values, the pre-processing step consists of creating a numerical
representation to a sentence by converting each word into
an integer number. For such conversion, we create a word
dictionary of the corpus vocabulary and associate a unique
numerical index for each word seen in the dataset. Thus,
the dataset is entirely read before creating the numerical
representation to sentences, in order to recognize all the words
contained in the dataset.

The idea behind the word dictionary is to create a vector of
integers for each sentence, being composed of word indexes.
We maintain word order from sentences in the resulting vector,
preserving the original context and meaning of the sentence
semantics. Thus, our model can distinguish sentences which
have same words in different position such sentence pair “a
big dog in a small house” and “a small dog in a big house”.

In order to prevent the same terms being associated with
different indexes, we convert abbreviations contained in the
dataset before inserting into the dictionary. For example,
“what’s” is converted to “what is” resulting on the use of
index of the words “what” and “is”, which may already seen in
different contexts. This conversion allows us to reuse indexes
already seen, reducing the size of the dictionary structure.

B. Siamese GRU Model

We use a Siamese architecture based on Mueller et al [8]
due to its notable results on predicting the semantic similarity
between sentences. Our modified Siamese neural network uses
two symmetric recurrent neural networks with shared weights
to learn semantic differences between sentences.

The input layer of our architecture converts each vector
of indexes received from data pre-processing into a word
distributed representation. Due to its capability on capture
semantic and syntactic properties of the words in the result
representation [3], we use Word2Vec Skip-Gram model pre-
trained on an external corpus. Thus, our approach does not
depend on a manual feature extraction process to represent
input words with efficiently.

Word Embeddings Word Embeddings

GRU UnitsGRU Units

Distance Function

Predicted Similarity

Fig. 1. Diagram ilustrating our siamese neural network defined, combining
two recurrent neural network. The siamese network receives a sequence of
word embeddings of the words contained in the input sentences, encodes into
a sentence vector and learns a distance function to measure similarity.

In order to generate a sentence representation based on
the word embedding, we make use of recurrent network
architecture to process the word embedding sequences. Repre-
sented by a sequence of word vectors, we pass each sentence
to recurrent units that update the hidden unit ht of each
state and learn to encode the entire sentence. To address the
vanishing gradient problem [9], which a recurrent network is
subjected when processing long sequences, we use the GRU
architecture to control the gradient updates in the training
process. Figure 2 shows the process of encoding the sequence
of word embedding receives from previous layer.

The Siamese recurrent network in Mueller et al relies on an
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Fig. 2. Diagram ilustrating our defined recurrent neural network to encode
sentences. The word vectors of sentence “a young man” is encoded to a 50-
dimensional vector.



LSTM architecture [10] to create a sequence encoder mapping
for each sentence. In order to overcome the limited size of the
labeled datasets available to us we use a GRU architecture
since GRU units have fewer parameters than LSTM units. To
the best of our knowledge, GRU is less explored than LSTM
on the context of semantic representation, even it has not been
proved a general superiority of LSTM [11].

The output layer of the siamese network learns a distance
function which results in a similarity metric between two
encoded sentences. Our distance function used for the metric
learning follows the work proposed by Mueller et al that uses
the Manhattan Distance function to calculate the difference
between the encoded sentences. Equation 4 shows the distance
function used to measure the similarity in the output layer,
where ha and hb represent the outputs of each recurrent
network.

exp(−||ha − hb||1) (4)

The Equation 4 is based on measure similarity between
two representation, applying the exponential function on the
negative value of distance measured by Manhattan Distance
function. Due to the use of exponential function on negative
numbers, the siamese network predicted value is a float
number yt ∈ [0, 1]. Thus, the error propagated during training
underlies only the similarity predicted and the label value of
the pair of sentence.

IV. IMPLEMENTATION AND TRAINING THE MODEL

In this section, we detail about the implementation and
execution of the neural network. First, we describe the data
set used and its motivations to train the model. Second,
we describe the parameters used for the training executions,
initialization of weights and number of units for each layer.

A. SICK Dataset

The SICK data set (Sentences Involving Compositional
Knowledge) [1] is provided by SemEval-20141 for predicting
the degree of relatedness between sentences and detecting
the entailment relation between them. The data set contains
10000 English sentence pairs extracted from the ImageFlick
dataset2 and SemEval-2012 semantic textual similarity video
description data set. The use of SICK data set is motivated
by the fact of possibility to train our model in a supervised
manner, besides this dataset is used in related works, being
suitable for comparisons.

The relatedness value annotated for each sentence pair is
a numeric value between 1 and 5, representing the degree of
semantic similarity between the two sentences. In this work,
we do not use the entailment annotation available to this task
since it is not our goal. This dataset is divided into three parts:
5000 sentence pairs as training set, 500 as validation set, and
4500 as test set.

1http://alt.qcri.org/semeval2014/
2http://nlp.cs.illinois.edu/HockenmaierGroup/data.html
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Fig. 3. Diagram ilustrating weight structure W shared between two networks,
predicting y through a metric learning given two inputs xa and xb, which is
applied a Gw function.

B. Implementation

We implemented the architecture using Keras3, a Python
library that allows us to develop machine and deep learning
models in an easy and fast way. The input layer contains a
lookup matrix composed by the word dictionary index and its
relative word embedding vector in order to convert the word
indexes received from pre-processing. The word embedding
vectors are extracted from a file with 300 dimensional vectors
of 3 billion words4.

The GRU layers of each network receives the sequence of
word embeddings and encodes the input sentence into a 50-
dimension vector. Recurrent weights are initialized using a
random orthogonal matrix [12] and the internal weights of
the GRU cells are initialized using Xavier algorithm [13] due
to its capacity to define initial weights based on input and
output units. This method of weights initialization follows the
recommended parameters defined on the Keras library.

The weight structure W implemented for the recurrent
neural networks is shared, shown in Figure 3, preserving the
symmetry of the distance function [7]. The linear mapping
Gw [6], shown in Figure 3, is applied over the inputs xa and
xb, which relies on the shared weights W . Thus, both recurrent
neural networks from the siamese architecture receive the same
updates from the backpropagation algorithm.

C. Training Details

We apply Adadelta [14] algorithm for weights optimization
during training since Adadelta can automatically decrease
learning rate. Based on empirical tests, we set 0.5 to the initial
learning rate for Adadelta. Furthermore, we employ gradient

3https://keras.io/
4https://code.google.com/archive/p/word2vec/
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Fig. 4. Learning curves for training and validation sets, comparing perfor-
mance in use of GRU and LSTM. This training execution uses parameter
values defined in Section IV.

clipping strategy [4] with a threshold value of 1.5 in order to
deal with vanishing and exploding gradients.

Since our siamese network have shared weights, both recur-
rent networks receive the same update from backpropagation,
which is measured using the Mean Square Error loss function
using only the predicted number and annotation of sentence
pair. For each execution, network processes a mini-batch of 32
sentence pairs and full training is executed using 300 epochs.
All these parameter values were defined based on empirical
tests.

V. EXPERIMENTS AND RESULTS

In this section, we describe the experiments and test sce-
narios executed over the SICK dataset, detailing the results
using SemEval metrics. We use the SemEval metrics (Pear-
son/Spearman correlation and mean square error) to compare
with other proposed methods for the same SemEval Task,
which uses the same dataset.

A. Recurrent Layer Architectures

We compare two recurrent neural network architectures
(LSTM and GRU) that address the vanishing/exploding gra-
dient problem using gated structure on the SICK dataset.
The motivation to make this comparison relies on Chung
et al [11] work, which demonstrates that both architectures
have equivalent performances in sequence modeling task,
although GRU have less parameters than LSTM. Furthermore,
this comparison is motivated by Mueller et al work [8],
which surpassed state of the art using LSTM as a recurrent
architecture to encode sentences in a siamese architecture.
For such test case, we implemented one siamese network
using GRU units and another one using LSTM units. Both
implementations follow definitions described in Section IV.

In our tests, we noted that using the GRU architecture
in the siamese network outperforms LSTM in all SemEval

TABLE I
COMPARISON OF RESULTS USING DIFFERENT RECURRENT

ARCHITECTURE, USING SEMEVAL METRICS TO DETERMINE WHICH
ARCHITECTURE GENERALIZES BETTER ON SICK TEST SET.

Architecture Pearson Spearman Mean Square Error
LSTM 0.7983 0.7492 0.3779
GRU 0.8448 0.7902 0.3032

TABLE II
RESULTS OF METHODS APPLIED IN SEMANTIC TEXTUAL SIMILARITY

TASK OVER SICK TEST SET. TABLE IS DIVIDED IN THREE GROUPS: FIRST
IS TOP SEMEVAL-2014 SUBMISSIONS, SECOND IS LATER WORKS AND

THIRD IS THE WORK THAT REACHES STATE OF THE ART.

Method Pearson Spearman MSE
Illinois-LH
(Lai et alw - 2014) [15] 0.7993 0.7538 0.3692

UNAL-NLP
(Jimenez et al. - 2014) [16] 0.8070 0.7489 0.3550

Meaning Factory
(Bjerva et al. - 2014) [17] 0.8268 0.7721 0.3224

ECNU
(Zhao et al - 2014) [18] 0.8279 0.7689 0.3250

MaLSTM
(Mueller et al - 2016) 0.8222 - -

Siamese GRU Model
(Ichida et al - 2017) 0.8448 0.7902 0.3032

Dependency Tree-LSTM
(Taiet al - 2015) [19] 0.8686 0.8047 0.2606

MaLSTM
+Syn Augmentation
+Transfer Learning
(Mueller et al - 2016)

0.8822 0.8345 0.2286

comparison metrics, as shown in Table I. Moreover, learning
curves shown in Figure 4, evidence that GRU can deal better
with unseen data due to a smaller loss in the execution over
validation set than LSTM. These results motivate the use of
GRU architecture on the final version of our work since it
generalizes well using a small number of training sentence
pairs.

B. Comparative with SemEval Published Methods

We compare our work with the best works submitted to
SemEval-2014 and others notable works. In Table II, we show
that our approach outperforms all the best works submitted
in SemEval-2014. Our work does not achieve state of the
art when compared to the approaches from Mueller and Tai.
Although our work is based on Mueller et al method, we
do not use synonym augmentation techniques and transfer
learning described in their work. However, Table II shows that
our results surpasses MaLSTM method considering only the
use of siamese neural network architecture without any extra
techniques such as synonym augmentation.

We analyze individual results in determined sentence pairs,
comparing a sentence to others contained in the SICK test
set. Table III contains sentences and results of MaLSTM
and Dependency Tree-LSTM extracted from Mueller et al.
work [8], composed by Column S representing predicted
values of our implementation of Siamese-GRU model, Column
M representing predicted value of Mueller work using all of



TABLE III
COMPARISON AND RESULTS OF OUR SIAMESE GRU METHOD AGAINST

APPROACHES OF MUELLER [8] AND TAI [19] USING SENTENCES
CONTAINED IN SICK TEST SET. WE COMPARE SENTENCE IN BOLD WITH

EACH SENTENCE CONTAINED IN TABLE GROUP.

Sentence S M T
a woman is slicing potatoes
- a woman is cutting potatoes 4.79 4.87 4.82
- potatoes are being slices by a woman 4.41 4.38 4.70
- tofu is being sliced by a woman 2.71 3.51 4.39
two men are playing guitar
- the man is singing and playing the guitar 3.15 3.53 4.08
- the man is opening the guitar for donations
and plays with the case 2.91 2.30 4.01

- two men are dancing and singing in front
of a crowd 2.56 2.33 4.00

techniques described in his work and column T representing
results from Tree-LSTM.

In this comparison, we noted that our model predicts values
close to the results of state of the art [8], even though pearson
correlation between our results and ground truth values is
lower than Dependency Tree-LSTM method. Additionally,
we noted that our approach can deal better at detecting the
subject of sentences than Tree-LSTM approach, shown in
the predicted similarity of the sentences “a woman is slicing
potatoes” and “tofu is being sliced by a woman”.

This comparison shows that our approach results in distance
function that measures similarity values close to the best
approaches in SICK test set. Although our results do not
outperforms the state of the art method, comparing some
individual predicted values to their work shows that our
siamese neural network approach can efficiently results the
semantic similarity, surpassing submitted methods of SemEval
2014 edition.

C. Verbal Voice Forms

In this test scenario, we explore the variation of verbal
voice in a sentence, analyzing predicted similarity given a
sentence in active voice with his respective passive voice form.
Changing verbal voice does not imply in a change in sentence
context, thus is expected that our approach results in high
values in this scenario. We use sentence pairs that are not
in SICK dataset due to verify how our method generalizes
in unseen sentences during training execution. Moreover, we
select different verb tenses and types in order to verify the
results and how our approach react with these modifications.

Table IV shows the predicted semantic similarity of our
siamese network implementation over sentences with different
verb tenses and types. We note that our network are not
sensitive in cases where main verb is altered due to voice
form variation, resulting in a similarity below expected. For
example, in sentence “Someone is painting the building wall.”
when we alter to his passive voice form, the verb “painting”
changes to “painted”. A simple way to resolve these limitations
is generate enough training sentence pairs that varies the verbal
voices of a individual sentence based on verbal tenses that
resulted low values.

D. Paraphrase Sentences

Due to fact that a paraphrase is characterized by rewrit-
ing of a sentence using different words but maintaining the
meaning, we empirically evaluate our siamese neural network
using sentences with paraphrase relationship using Microsoft
Research Paraphrase Corpus dataset [20]. This analysis shows
that some sentences pairs classified as paraphrase resulted in a
low similarity semantic value due to some sentences have extra
pieces of information that the paired sentences does not. For
example, in Table V, sentence “The DVD CCA then appealed
to the state Supreme Court.” does not inform if supreme court
is US Supreme court, resulting a low predicted similarity.

This test scenario shows that our model have a limitation
regarding context due to execute the training using individual
sentences without information about preceding and follow-
ing information. To deal with this limitation, we need to
combine other reasonable alternatives such as Skip-Thought
Vectors [21], which is a recurrent neural network that encodes
a sentence into a vector trained reconstructing the immediately
preceding and following sentences.

VI. RELATED WORK

Mueller and Thyagarajan [8] proposes predict the semantic
similarity through learning a metric, which relies on a siamese
neural network architecture. First, using word embeddings
to represent words contained in input sentences, their work
use a recurrent neural network to learn a sentence encoding
through a distance function between two inputs. Second, their
work uses a synonym augmentation technique to expand the
SICK dataset, generating 10,022 additional training examples
replacing random words of original sentence with one of their
synonyms extracted from Wordnet [22]. Although is similar to
Mueller and Thyagarajan’s approach, our works is differs by
the fact of use of GRU as gating recurrent architecture, which
we show that can generalize better in SICK dataset than LSTM
in Section V.

Tai, Socher and Manning [19] propose a generalization of
recurrent neural network, processing sequences of words in
a tree-structured LSTM. Their work focuses on generating an
encoder to represent information of a sentence more efficiently
than a sequentially network default. Their work relies on
a dependency parser [23] to represent the input sentences
hierarchically. Our approach is simpler, using a sequentially
recurrent network that uses word vectors as input representa-
tion, which is extracted from a pre-trained word embedding
model.

Aires and Meneguzzi [24] propose an algorithm to measure
the semantic similarity between sentences using the Wu-
Palmer Distance of words. They use such measure to detect
semantic similar norm actions within contract texts, mensuring
similarity using a word-level distance measure. Although their
work obtains satisfactory results, our method explores a more
complex approach to measure semantic similarity in diverse
contexts, considering more items contained in a sentence-level
than a word-level.



TABLE IV
RESULTS WITH SEMANTIC SIMILARITY PREDICTED IN SENTENCE PAIRS ASSOCIATED WITH THE RESPECTIVE VERBAL TYPE/TENSE. TABLE IS ORDERED

BY PREDICTED SIMILARITY.

Active Voice Form Passive Voice Form Verb Tense/Type Similarity Predicted
Michael Jordan bought the Bobcats team. The Bobcats team was bought by Michael Jordan. Simple Past 0.96
Alex writes a small book. A small book is written by Alex. Simple Present 0.94
John Doe had bought a Ford Fiesta. A Ford Fiesta had been bought by John Doe. Past Perfect 0.94
John could have bought this house. This house could have been bought by John. Modal 0.94
Bill would have won the fight. The fight would have being won by Bill. Modal 0.89
She can create a python program. A python program can be created by her. Modal 0.79
A woman is writing a letter. A letter is being writen by a woman. Present Continuous 0.77
Someone is painting the building wall. The building wall is being painted by someone. Present Continuous 0.76
Rita was writing a letter. A letter was being written by Rita. Past Continuous 0.73

TABLE V
TABLE WITH PAIR OF SENTENCES CONTAINED IN MICROSOFT RESEARCH PARAPHRASE CORPUS CLASSIFIED AS PARAPHRASE RELATIONSHIP.

Sentence A Sentence B Similarity Predicted

Revenue inthe first quarter of the year dropped 15 percent
from the sameperiod a year earlier.

With the scandal hanging over Stewart’s company, revenue
the first quarter of the year dropped 15 percent from the
same period a year earlier.

0.83

The DVD CCA then appealed to the state Supreme Court. The DVD CCA appealed that decision to the U.S. Supreme Court. 0.69
But he added group performance would improve in the
second half of theyear and beyond.

De Sole said in the results statement that group performance would
increase in the second half of the year and beyond. 0.77

VII. CONCLUSION AND FUTURE WORK

We have implemented a Siamese neural network architec-
ture to measure semantic similarity between two sentences
and evaluated it through different test scenarios, comparing
with results of related works. Our work achieves results
close to the state of the art leveraging a simplified neural
network architecture, which generalizes beyond few sentence
pairs. Word embedding help us to obtain an efficient input
representation, retrieving semantic and syntactic information
in a word level. Thus, our work does not require an extensive
manual feature generation due to use a existing pre-trained
model, dispensing the linguistic information of the sentences.

In this work, we realize test scenarios that reveals limitations
of our approach, which motivates following future works.
First, we intend to explore the semantic representation gener-
ated by the recurrent neural network of siamese architecture,
which can be applied a dimension reduction to create a infor-
mative visualization of learned encoding. Second, we aim to
enhance our work for considering the preceding and following
sentences following the Kiros et al work [21], capturing more
information about context of the information.

Finally, we intend to apply dataset augmentation techniques,
which deals with size-limitations of labeled datasets in Mueller
work [8]. This task contains a difficulty that lies in deciding
which words can be replaced and what synonym options are
a valid replacement, in order to maintain context of original
sentence.
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