A Smart Home Model Using JaCaMo Framework

Rodrigo Martins and Felipe Meneguzzi

School of Computer Science - PUCRS

The future of the energy usage

- Demand outstrips production capacity
 - Energy consumption across the world is predicted to increase by 60% by 2030 (compared to 2010 levels)
- Peak Oil
- Climate change, increasing CO2 concentration
- Effects in the economy

Smart grid comes to play

 A modern electricity system that uses sensors, monitors, communication, automation and computers to improve the electricity system.

Demand-side Management

- A Smart Grid Initiative that
 - Allows end users to manage their electricity usage
 - Helps customers use electricity more efficiently

Motivation

 How to improve energy use efficiency within a single household while preparing it to attend the needs of the Smart Grid?

Smart Home

Smart Appliance

Instrumented

Interconnected

Intelligent

- Characterized under specific categories
 - Cold
 - Temperature Control
 - Cooking
 - Wet
 - Periodic Load
 - Entertainment
 - Lighting
 - **—**

Main contribution

- An agent-based smart home model whereby
 - individual autonomous agents control each household device, and
 - an agent coordinates them all by controlling the energy meter.

Our model

- Allows a smart home to become collaborative with the electric grid
- Balances energy demand
- Helps increase the resilience of the grid
- Optimizes user comfort.

Appliance

appliance(Pow; Cycles; Categ; Window[Start;End])

washing_machine(600; 4; Wet; Window[14;22])

JaCaMo – Power Consumption Control

Load Allocation Protocol

- The Smart Meter has the responsibility of:
 - monitoring appliances so they don't operate out of their operating window
 - controlling peak demand per cycle and load limit per day
 - releasing load for each appliance
- The appliances have to:
 - monitor their operating window
 - request the necessary load to the Smart Meter
 - negotiate with the Smart Meter to operate or wait until next cycle

Runs

We considered three different user profiles:

Comfort – maximize user comfort

Energy Saving – minimize energy use

Average consumption – compromise between the two profiles

Results

The first appliance that gets power operates

The user cannot prioritize

AC (314; 4; temp_controller; Window[27;34])

tv_system (215; 5; entertainment; Window[28;36])

Results

Conclusions

- Goal: develop a smart home model to strike a balance in:
 - optimizing comfort;
 - electrical efficiency; and
 - household resilience.
- Contribution: application of software agents in the smart grid, but it covers a small part within current Smart Grid initiatives.

Future Work

- Aggregate micro generation to the smart home model
- Improve the control system and the communication protocol between smart entities using an auction approach (mechanism design)
- Introduce shifts to appliance windows, using rewards and penalties

Thank you

Rodrigo Castro Martins

rodrigo.castro@ceee.com.br

Felipe Meneguzzi

felipe.meneguzzi@pucrs.br