
Prognostic agent assistance for norm-compliant
coalition planning

Jean Oh1, Felipe Meneguzzi1, Katia Sycara1, and Timothy J. Norman2

1 Robotics Institute, Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213, USA

{jeanoh,meneguzz,katia}@cs.cmu.edu
2 Dept. of Computing Science, University of Aberdeen

Aberdeen, UK
t.j.norman@abdn.ac.uk

Abstract. In this paper we describe a software assistant agent that can
proactively assist human users situated in a time-constrained environ-
ment. We specifically aim at assisting the user’s normative reasoning–
reasoning about prohibitions and obligations–so that the user can focus
on her planning objectives. In order to provide proactive assistance, the
agent must be able to 1) recognize the user’s planned activities, 2) reason
about potential needs of assistance associated with those predicted ac-
tivities, and 3) plan to provide appropriate assistance suitable for newly
identified user needs. To address these specific requirements, we develop
an agent architecture that integrates user intention recognition, norma-
tive reasoning over a user’s intention, and planning, execution and re-
planning for assistive actions. This paper presents the agent architecture
and discusses practical applications of this approach.

1 Introduction

Human planners dealing with multiple objectives in a complex environment are
subjected to a high level of cognitive workload, which can severely impair the
quality of the plans created. For example, military planners during peacekeep-
ing operations must plan to achieve their own unit’s objectives while following
standing policies (or norms) that regulate how interaction and collaboration
with Non-Governmental Organizations (NGOs) must take place. As the plan-
ners are cognitively overloaded with mission-specific objectives, such normative
stipulations hinder their ability to plan to both accomplish goals and abide by
the norms. We develop an assistant agent that takes a proactive stance in as-
sisting cognitively overloaded human users by providing prognostic reasoning
support. In this paper, we specifically aim to assist the user’s normative reason-
ing–reasoning about prohibitions and obligations.

In order to provide a user with a timely support, it is crucial that the agent
recognizes the user’s needs in advance so that the agent can work in parallel
with the user to ensure the assistance is ready by the time the user actually
needs it. This desideratum imposes several technical challenges to: 1) recognize

the user’s planned activities, 2) reason about potential needs of assistance for
those predicted activities to comply with norms as much as possible, and 3) plan
to provide appropriate assistance suitable for newly identified user needs.

Our approach to tackle these challenges is realized in a proactive planning
agent framework. As opposed to planning for a given goal state, the key challenge
we address here is to identify a new set of goal states for the agent–i.e., a set
of tasks for which the user will need assistance. After identifying new goals,
the agent plans, executes, and replans a series of actions to accomplish them.
Specifically, we employ a probabilistic plan recognition technique to predict a
user’s plan for her future activities. The agent then evaluates the predicted
user plan to detect any potential norm violations, generating a set of new goals
(or tasks) for the agent to prevent those norm violations from happening. As
the user’s environment changes the agent’s prediction is continuously updated,
and thus agent’s plan to accomplish its goals must be frequently revised during
execution. To enable a full cycle of autonomy, we present an agent architecture
that seamlessly integrates techniques for plan recognition; normative reasoning
over a user’s plan; and planning, execution and replanning for assistive actions.

The main contributions of this paper are the following. We present a princi-
pled agent architecture for prognostic reasoning assistance by integrating proba-
bilistic plan recognition with reasoning about norm compliance. We develop the
notion of prognostic norm reasoning to predict the user’s likely normative viola-
tions, allowing the agent to plan and take remedial actions before the violations
actually occur. To the best of our knowledge, our approach is the first that man-
ages norms in a proactive and autonomous manner. Our framework supports
interleaved planning and execution for the assistant agent to adaptively revise
its plans during execution, taking time constraints into consideration to ensure
timely support to prevent violations. For a proof of concept experiment, our
approach has been fully implemented in the context of a military peacekeeping
scenario.

The rest of this paper is organized as follows. After reviewing related work
in Section 2, we describe a high-level architecture of our agent system in Section
3. The three main components are described in detail in the following sections:
Section 4 describes the agent’s plan recognition algorithm for predicting the
user’s future plan; Section 5 describes how the agent evaluates the norm rules
to maintain a normative state and to detect potential violations; and Section
6 presents how the agent plans and executes actions to accomplish identified
goals. We present a fully implemented system in a peacekeeping problem domain,
followed by other potential applications of this work in Section 7, and conclude
the paper in Section 8.

2 Related work

This paper builds on previous work on assisting the user with information man-
agement [Oh et al., 2011] where the main discussion was on the algorithms for
plan recognition and information management. In this paper, we specifically aim

at assisting the user with normative reasoning and autonomous planning and ex-
ecution. Our paper is related to work in the literature on: 1) plan recognition,
2) assistant agents, 3) normative reasoning, and 4) norm monitoring.

2.1 Plan Recognition

Plan recognition refers to the task of identifying the user’s high-level goals (or
intentions) by observing the user’s current activities. The majority of existing
work in plan recognition relies on a plan library that represents a set of alterna-
tive ways to solve a domain-specific problem, and aims to find a plan in the li-
brary that best explains the observed behavior [Armentano and Amandi, 2007].
In order to avoid the cumbersome process of constructing elaborate plan li-
braries of all possible plan alternatives, recent work proposed the idea of for-
mulating plan recognition as a planning problem using either classical planners
[Ramı́rez and Geffner, 2009] or decision-theoretic planners [Baker et al., 2009].
The plan recognition algorithm used in our approach is based on a decision-
theoretic planner, namely a Markov Decision Process (MDP) [Bellman, 1957].

2.2 Assistant Agents

An assistant agent is commonly modeled as a planning agent in literature.
For example, Partially Observable Markov Decision Process (POMDP) mod-
els have been used to develop a hand-washing assistant for dementia patients
[Boger et al., 2005] or a doorman assistant that helps a user navigate a maze by
opening the doors [Fern et al., 2007]. These models are not suitable for a prog-
nostic agent that must provide proactive assistance by predicting a user’s future
actions in advance due to the following reason. In these approaches, the states of
a POMDP are defined in terms of the variables describing both a user’s state and
the agent’s state. Such models, however, do not include user actions (i.e., the
actions defined in a POMDP are agent actions). Since the user actions are not
represented in the models, it is not possible to predict future user actions. More-
over, as the number of states of a (PO)MDP grows exponentially in the number
of state variables, this approach suffers from the curse of dimensionality.

In contrast, we take a modularized approach. While an agent’s planning
problem is defined using only those variables that the agent is entitled, a plan
recognition module keeps track of a user’s current and future activities to identify
new tasks for the agent to prepare assistance. By separating the plan prediction
from the agent’s action selection, our approach not only achieves an exponential
reduction in the size of state space, but also enables the agent to simultane-
ously assist the user with multiple tasks because each new task is handled in an
independent thread.

2.3 Normative Reasoning

In order to ensure that certain global properties of a society or organization
are maintained, rules (or norms) that express permissions, prohibitions and

obligations have been developed [Jones, 1990]. Mathematical study of norms
has been carried out in the context of deontic logic [von Wright, 1968], while
computational treatment of these stipulations has been studied recently by
the agents community as normative systems. These efforts led to the devel-
opment of various formal models of norms [Vázquez-Salceda et al., 2005], as
well as practical approaches to reasoning about norms within individual agents
[Lopez y Lopez and Luck, 2003] and in a society [Garćıa-Camino et al., 2009].
The formalisms that allow modeling of norms for agent systems can also be used
for the specification of the rules that humans must follow. Since this work is
concerned with assisting a user to mitigate the cognitive load of planning under
environmental norms, we leverage the formalisms to create an internal represen-
tation of the norms that the assistant must consider when providing assistance.

2.4 Norm Monitoring

In order for norms to be enforced in a norm-regulated system, various mecha-
nisms were devised to monitor norm compliance within a system. The state of
compliance of a set of norms within a system is known as the normative state
[Farrell et al., 2005] and describes which agents are complying (or violating)
which norms. Although various approaches to norm monitoring have been pro-
posed [Farrell et al., 2005,Modgil et al., 2009,Hübner et al., 2010], they all rely
on a deterministic logic view of the normative state. Without a probabilistic
model of agent behavior, a norm monitoring mechanism can only assert whether
a norm is definitely violated or not, lacking a gradual notion of how likely an
agent is to violate a norm or when an agent is about to violate a norm. Thus,
an assistant aiming to warn a user of potential violations can either constantly
remind the user of all the norms in the system (which can potentially be vi-
olated), or inform the user after a violation has occurred that some remedial
action should be taken. Whereas these approaches fail to address an important
issue of prevention, our probabilistic normative reasoning approach allows the
agent to detect probable norm violations in advance, preventing the user from
violating norms.

3 Agent architecture

Figure 1 provides a high-level overview of our agent system for proactive yet
unobtrusive assistance. The observer module monitors the user’s current activ-
ities in the environment to identify new observations that might indicate any
changes in the user’s current and future plan. Given a new observation, the plan
recognizer module uses a probabilistic algorithm to update its prediction for the
user’s plans. From the predicted user plan, the norm reasoner module evaluates
each plan step (actually the state resulting from these steps) to detect any po-
tential norm violations. For each state in which norms are violated, the reasoner
generates a new assistant task for the agent to carry out. The agent planner

Plan
recognizer

Norm
reasoner

Agent
planner

Agent plan
executorPresenter

Observer

Agent plan
executorAgent plan

executor

Observations:
Keyboard activities

Predicted
user plan

Goals:
user needs

Plans
Assistance

Fig. 1. An autonomous assistant system

module receives the new planning task that is to find a series of actions to pre-
vent potential norm violations. When a prognostic plan is generated, the agent
executes the plan until either the goal is reached or the goal becomes irrelevant
to the user’s planning context. The effects of the successful plan execution can
be presented to the user, e.g., notifying which actions the agent has taken to
resolve a certain violation.

Design assumptions: A user’s planning state space is defined in terms of a
set of variables and their domains of valid values, where a variable describes an
environment and the progress status of certain activities. The variables are also
used to specify regulating rules in the norm representation, e.g., a norm rule may
define a relationship among a subset of variables. In general, such norm rules
introduce additional variables to consider, adding extra dimensions into the rea-
soning process. As seen in a recent study [Sycara et al., 2010], when planning
involves complex reasoning as in military environments, human users tend to
lose track of policies (or norm rules), resulting in plans with significant norm vi-
olations. By developing an assistant agent that manages norm-related variables,
our approach aims to relieve the user from having to deal with both task-specific
variables and norm-related variables. We make a specific assumption that task-
specific user variables and norm-specific agent variables are independent and
thus changing an agent variable does not affect the values of user variables. For
representation, let ((user-variables), (agent-variables)) denote a state composed
of user variables and agent variables.

Example scenario: We use a simple example of peacekeeping scenario to
illustrate the approach throughout the paper. We develop an assistant agent for
a humanitarian NGO teamed with a military coalition partner. Consider a norm
rule that an NGO must have an armed escort when operating in conflict areas.
An escort can be arranged through a well-defined communication protocol, e.g.,
sending an escort request to and receiving a confirmation from a military party.
Here, a state space can be defined in terms of two variables: area specifying the
user’s geographic coordinates and escort indicating the status of an armed escort
in each region. In our approach, a user can focus on reasoning about variable
area only since the agent manages variable escort to assure that the user plan
complies with norms. Note that variable escort is a simplified representation as

it is defined for each value of variable area, i.e., it is a function escort(area) to
be precise.

In the following sections, technical details will be described for three main
components: namely, plan recognizer, norm reasoner, and agent planner and
executor. Due to space limitation, we omit the description for the observer and
presenter modules that are responsible for interacting with the user.

4 Probabilistic plan recognition

Our plan recognition algorithm is leveraged from previous work [Oh et al., 2011].
We assume that a user’s planning problem is given as an MDP. Based on the
assumption that a human user generally reasons about consequences and makes
decisions to maximize her long-term rewards, we utilize an optimal stochastic
policy of the MDP to predict a user’s future activities.

We compute an optimal stochastic policy as follows. Let G denote a set of
possible goal states. For each potential goal g ∈ G, we compute policy πg to
achieve goal g using a dynamic programming algorithm known as value iteration
[Bellman, 1957]. Instead of a deterministic policy that specifies only the optimal
action, we compute a stochastic policy such that probability p(a|s, g) of taking
action a given state s when pursuing goal g is proportional to its long-term
expected value v(s, a, g) such that:

p(a|s, g) ∝ β v(s, a, g),

where β is a normalizing constant. The intuition for using a stochastic policy is
to allow the agent to explore multiple likely plan paths in parallel, relaxing the
assumption that a human user always acts to maximize her expected reward.

The plan recognition algorithm is a two-step process. In the first step, the
algorithm estimates a probability distribution over a set of possible goals. We
use a Bayesian approach that assigns a probability mass to each goal according
to how well a series of observed user actions is matched with the optimal plan
toward the goal. We assume that the agent can observe a user’s current state
and action. This assumption can be relaxed such that a sequence of user states
and actions can be derived from primitive observations, but the detail is omitted
here. Let Ot = s1, a1, s2, a2, ..., st, at denote a sequence of observed states and
actions from time steps 1 through t where st and at denote the user state and
action, respectively, at time step t.

When a new observation is made, the assistant agent updates, for each goal
g in G, the conditional probability p(g|Ot) that the user is pursuing goal g
given the sequence of observations Ot. The conditional probability p(g|Ot) can
be rewritten using Bayes’ rule as:

p(g|Ot) =
p(s1, a1, ..., st, at|g)p(g)∑

g′∈G p(s1, a1, ..., st, at|g′)p(g′)
. (1)

By applying the chain rule, we can write the conditional probability of observing
the sequence of states and actions given a goal as:

p(s1, a1, ..., st, at|g) = p(s1|g)p(a1|s1, g)p(s2|s1, a1, g)

... p(st|st−1, at−1, ..., g).

We replace the probability p(a|s, g) with the user’s stochastic policy πg(s, a) for
selecting action a from state s given goal g. By the MDP problem definition,
the state transition probability is independent of the goals. Due to the Markov
assumption, the state transition probability depends only on the current state,
and the user’s action selection on the current state and the specific goal. By
using these conditional independence relationships, we get:

p(s1, a1, ..., st, at|g) = p(s1)πg(s1, a1)p(s2|s1, a1)

... p(st|st−1, at−1), (2)

By combining Equations 1 and 2, the conditional probability of a goal given a
series of observations can be obtained.

In the second step, we sample likely user actions in the current state accord-
ing to a stochastic policy of each goal weighted by the conditional probability
from the previous step. Subsequently, the next states after taking each action
are sampled using the MDP’s state transition function. From the sampled next
states, user actions are recursively sampled, generating a tree of user actions
known here as a plan-tree. The algorithm prunes the nodes with probabilities
below some threshold. A node in a plan-tree can be represented in a tuple 〈t, s, l〉
representing the depth of node (i.e., the number of time steps away from the
current state), a predicted user state, and an estimated probability of the state
visited by the user, respectively. Example 1 shows a segment of plan-tree indi-
cating that the user is likely be in area 16 with probability .8 or in area 15 with
probability .17 at time step t1.

Example 1. 〈〈t1, (area = 16), .8〉, 〈t1, (area = 15), .17〉〉

5 Norm reasoner

In this section we specify the agent component responsible for evaluating pre-
dicted user plan to generate new goals for the agents. For this purpose, we utilize
normative reasoning. Norms generally define constraints that should be followed
by the members in a society at particular points in time in order for them to be
compliant with societal regulations. We specify our norm representation format,
followed by two algorithms for 1) predicting violations and 2) finding the nearest
complying state towards which we can steer the user.

5.1 Norm representation

Inspired by the representation in [Garćıa-Camino et al., 2009], we define a norm
in terms of its deontic modality, a formula specifying when the norm is relevant

to a state (which we call the context condition), and a formula specifying the
constraints imposed on an agent when the norm is relevant (which we call the
normative condition). We restrict the deontic modalities to those of obligations
(denoted O) and prohibitions (denoted F); and use these modalities to specify,
respectively, whether the normative condition must be true or false in a relevant
state. The conditions used in a norm are specified in terms of state variables and
their relationships such as an equality constraint. Formally,

Definition 1 (Norm). A norm is a tuple 〈ν, α, µ〉 where ν is the deontic modal-
ity, α is the context condition and µ is the normative condition.

Example 2. In the peacekeeping operations scenario, suppose that an intelligence
message notifies that regions 3, 16 and 21 are risky areas. The norm, denoted
by ιescort, that an NGO is obliged to have an armed escort can be expressed as:

ιescort = 〈O, area ∈ {3, 16, 21}, escort = granted〉.

Definition 2 (Satisfiability). A context condition α (alternatively a norma-
tive condition µ) is satisfiable in state s (so that s |= α) if, for each variable ϕ
in state s, the current value assignment vs(ϕ) of variable ϕ in state s is within
the valid domain dϕ,α of variable ϕ specified in condition α, where the default
domain is open if unspecified; such that ∀ϕ ∈ s, vs(ϕ) ∈ dϕ,α.

5.2 Detecting violations

We say that a state is relevant to a norm if the norm’s context condition is
satisfied in the state. When a state is relevant to a norm, a normative condition
is evaluated to determine the state’s compliance, which depends on the deontic
modality of the norm. Specifically, an obligation norm is violated if the normative
condition µ is not supported by state s; i.e., s 6|= µ. Conversely, as prohibitions
specify properties that should not be realized, a prohibition is violated if the
normative condition is supported by state s such that s |= µ. Formally,

Definition 3 (Violating State). Given state s and norm ι = 〈ν, α, µ〉, a func-
tion determining the violation of norm ι in state s is defined as:

violating(s, ι) =

1 if (s |= α) ∧ (s 6|= µ) ∧ (ν = O)

1 if (s |= α) ∧ (s |= µ) ∧ (ν = F)

0 otherwise.

For instance, considering norm ιescort in Example 2, given state s = {(area =
16), (escort = init)} the violation detection function violation(s, ιescort) would
return 1, denoting that norm ιescort is violated in state s.

Given a predicted user plan in a plan-tree, the norm reasoner traverses each
node in the plan-tree and evaluates the associated user state for any norm viola-
tions. Recall from Section 4 that each node in a predicted plan-tree is associated
with a user state and an estimated probability of the user visiting the node in
the future. Using the estimated probability, the agent selects a set of high-risk
norm violations to manage them proactively.

5.3 Finding the nearest compliant state

Our assistant agent aims at not only alerting the user of active violations but
also proactively steering the user away from those violations that are likely to
happen in the future. In order to accomplish this, for each state that violates a
norm the agent needs to find a state that is compliant with all norms. That is,
for each state s that violates any norm (i.e., violating(s, ·) = 1), the agent is to
find the nearest state g that satisfies all norms (i.e., violating(g, ∗) = 0), where
‘·’ and ‘∗’ are regular expressions denoting any and all, respectively . Here, the
distance between two states is measured by the number of variables whose values
are different.

Since norm violations occur as the result of certain variables in the state space
being in particular configurations, finding compliant states can be intuitively
described as a search process for alternative value assignments for the variables
in the normative condition such that norms are no longer violated, which is
analogous to search in constraint satisfaction problems.

When a norm-violating state is detected, the norm reasoner searches the
nearby state space by trying out different value assignment combinations for the
agent-variables. For each altered state, the norm reasoner evaluates the state for
norm compliance. The current algorithm is not exhaustive, and only continues
the search until a certain number of compliant states, say m, are found.

When compliant state g is found for violating state s, state g becomes a new
goal state for the agent, generating a planning problem for the agent such that
the agent needs to find a series of actions to move from initial state s to goal state
g. The goals that fully comply with norms are assigned with compliance level 1.
When a search for compliant states fails, the agent must proactively decide on
remedial actions aimed at either preventing the user from going to a violating
state, or mitigating the effects of a violation. In the norm literature these are
called contrary-to-duty obligations [Prakken and Sergot, 1996]. For instance, a
contrary-to-duty obligation in the escort scenario can be defined such that if a
user is about to enter a conflict area without an escort, the agent must alert
the user of the escort requirement. For such partial compliance cases, we assign
compliance level 2.

A planning problem can be expressed as a pair of an initial state s and
a set of goal states gi annotated with their compliance levels ci, such that
〈s, {(g1, c1)..., (gm, cm)}〉.

Example 3 (Norm Reasoning). Given a predicted plan-tree in Example 1, if
variable escort for area 16 has value init indicating an escort has not been
arranged, the agent detects a norm violation and thus searches for a compli-
ant state as follows. Let us define the domain of agent-variable escort to be:
{init , requested , granted , denied , alerted}. By alternating values, we get the fol-
lowing two compliant states:

{(granted , 1), (alerted , 2)},

where state granted is fully compliant while state alerted is partially compliant
from the agent’s perspective, as it complies with the contrary-to-duty obligation

to warn the user. As a result, a newly generated planning problem is passed to
the planner module as follows:

〈init , {(granted , 1), (alerted , 2)}〉.

6 Planner and executor

As opposed to precomputing a policy for every possible case, we propose a scal-
able model where the assistant agent dynamically plans and executes a series of
actions as new problems arise. Note that the issues regarding adjustable auton-
omy are outside the scope of this paper. Instead, we use a cost-based autonomy
model where the agent is allowed to execute those actions that do not incur any
cost, but is required to get the user’s permission to execute costly (or critical)
actions.

6.1 Planning

The agent has a set of executable actions. In the peacekeeping scenario, for
instance, the agent has the following actions: {send-request, receive-reply,

alert-user}. Given a planning problem–an initial and goal states–from the
norm reasoner, the planner module is responsible for finding a series of actions
to accomplish the specified goal. In Example 3, two goal (or absorbing) states
have been assigned by the norm reasoner: an escort is granted or the user is
alerted of the need for an escort. Thus, the agent needs to find a way to change
the value of escort variable from init to either granted or alerted .

Since our representation of planning problems is generic, one may use classical
planners in the implementation. Instead, we use an MDP to develop a planner
in order to respect uncertainty involved in agent actions, e.g., sending a request
may fail due to a communication network failure.

Recall that a predicted user plan from the plan recognizer imposes deadline
constraints (specified as the depth of node) to the agent’s planning. Specifically,
if the user is likely to commit a violation at a certain time step ahead, the agent
must take actions to resolve the violation before the time step. In the planner, a
deadline constraint is utilized to determine the horizon for an MDP plan solver,
such that the agent planner needs to find an optimal policy given the time that
the agent has until the predicted violation time.

In Example 3, when the violation is predicted far in advance, an optimal
policy prescribes the agent to always request an escort from the other party,
except if an escort request has been denied by the other party then the agent
should alert the user of the denied request. Note that an optimal policy can
change as time elapses, i.e., as the future horizon shortens, the expected values
of states change. For instance, the user is better off by being warned when there is
not enough time left for the agent to arrange an escort. We compare the number
of sequential actions in a plan with the depth of node (or the goal’s deadline) to
determine the plan’s feasibility.

The planning problem formulated by the reasoner may not always be solvable;
that is, a compliant state can only be accomplished by modifying those variables
that the agent does not have access to, or none of the agent’s actions has effects
that results in the specified goal state. In this case, the agent notifies the user
immediately so that the user can take appropriate actions on her own. Otherwise,
the agent starts executing its actions according to the optimal policy until it
reaches a goal state.

6.2 Execution

Execution of an agent action may change one or more variables. For each newly
generated plan (or a policy) from the planner module, an executor is created
as a new thread. An executor waits on a signal from the variable observer that
monitors the changes in the environment variables to determine the agent’s cur-
rent state. When a new state is observed the variable observer notifies the plan
executor to wake up. The plan executor then selects an optimal action in the
current state according to the policy and executes the action. After taking an
action, the plan executor is resumed to wait on a new signal from the variable
observer. If the observed state is an absorbing state, then the plan execution is
terminated, otherwise an optimal action is executed from the new state.

In order to handle unexpected exceptions during execution time, an exe-
cutable action has a timeout such that when the execution of an action reaches
its timeout the plan is aborted. When a plan is aborted the specific goals of the
plan have generally not been achieved. If the goals are still relevant to the user’s
current plan (according to a newly predicted user plan), then the norm reasoner
will generate them as new goals for the agent to accomplish.

The agent’s plan can be updated during execution as more recent assess-
ment of rewards arrives from the norm reasoner, forcing the agent to replan.
For instance, after the agent requested an escort from the other party, the other
party may not reply immediately causing the agent to wait on the request. In
the meantime, the user can proceed to make steps towards the unsafe region,
imposing a tighter deadline constraint. When the new deadline constraint is
propagated to the planner, an optimal policy is updated for the executor, trig-
gering a new action, e.g., to alert the user of the potential violation (instead of
trying to arrange an escort).

When alerted by the agent, the user may take certain actions to resolve the
violation for herself, or alter her current plan to avoid the violation. In the worst
case, the user may still proceed with the current plan and violate the norm. The
agent is not penalized for such cases when we evaluate the agent’s performance.

7 Applications

Through this research, we aim to make not only scientific contributions but
also practical impact on realistic applications. The autonomous assistant agent
framework that has been presented can be applied to various problem domains.
Here, we include some examples of potential applications.

• Time step T1
•User at area 6.
• Norm violation at area 16 in predicted plan.
• Agent arranges an escort: Escort Granted.

User’s real plan
Predicted user plan

Escort Granted

• Time step T2
• User at area 16.
• Norm violation at area 21 still active;

Party Bravo has not responded.
• Agent alerts the user: Escort Required!

Escort Required!

6

16

21

Fig. 2. An annotated screenshot of a humanitarian party’s planning interface

7.1 Military escort planning in peacekeeping

As a proof of concept prototype, our approach has been implemented in the
context of planning for peacekeeping operations, in a scenario inspired by the
work in [Sycara et al., 2010], where two coalition partners (a humanitarian party
Alpha and a military party Bravo) plan to operate in the same region according
to each party’s individual objectives and a set of regulation rules.

Figure 2 shows a planning interface of a humanitarian party (Alpha). The fig-
ure is annotated with labels for illustration. At time step T1, the agent identifies
a norm violation at area 16 in the predicted user plan, for which the agent sends
an escort request to Bravo. When the agent receives a reply from Bravo granting
a permission the escort status is displayed in the interface. Similarly, the agent
sends an escort request for area 21 for another norm violation, but Bravo does
not respond. At time step T2, an updated policy prescribes the agent to alert
the user, and a warning is displayed in the interface.

We have used a simplified military escort planning scenario throughout this
paper to illustrate our approach. In practice, the planning and scheduling of
escort services in military peacekeeping operations involve complex norm rea-
soning due to diverse stakeholders. Through a series of collaborations with the
military and various NGO groups, we have identified a significant amount of
interest in developing software assistant for this problem domain, and we are
currently working on scaling up the system to deal with more realistic settings.

7.2 Assistive living applications

It is important to note that the goal of this research is not to guide the user
in finding optimal planning solutions, but instead, the agent aims to support
the user’s plan by identifying and making amends for the plan’s weaknesses.
As opposed to directing the user to make optimal decisions with respect to
a certain objective (as in decision-support systems), we aim to design an agent
that can maximize the support to help the user in making decisions based on her
own criteria and judgement. From the user’s perspective, independent decision
making is crucial in many problem domains such as assistive living technologies
for the disabled and the elderly.

In this domain, the norm rules can be defined to specify a set of prohibition
rules for unsafe activities. When the agent predicts any potential dangers, the
agent’s new goal becomes restoring a safe state. For instance, if the safe state
can be accomplished by taking the agent’s available actions, e.g., moving certain
objects on the floor, the agent can resolve the issue. When the agent cannot
accomplish the goal using its own capabilities, the agent can instead alert the
human assistant before an accident happens.

Similarly with the assistive living applications, our approach can also be
applied to other care-giving applications.

8 Conclusion and Future Work

In this paper, we presented an assistant agent approach to provide prognos-
tic reasoning support for cognitively overloaded human users. We designed the
proactive agent architecture by seamlessly integrating several intelligent agent
technologies: probabilistic plan recognition, prognostic normative reasoning, and
planning and execution techniques. Our approach presents a generic assistant
agent framework with which various applications can be built as discussed in
Section 7. As a proof of concept application, we implemented a coalition plan-
ning assistant agent in a peacekeeping problem domain.

Our approach has several advantages over existing assistant agent approaches.
When compared to other decision-theoretic models, our approach is significantly
more scalable because of exponential state space reduction discussed in Section
2. As opposed to assistant agent models where an agent takes turns with the
user, our agent has more flexibility in its decision making because the agent can
execute multiple plans asynchronously. More importantly, our agent is proac-
tive in that the agent plans ahead of time to satisfy the user’s forthcoming needs
without a delay. Such proactive assistance is especially an important requirement
in time-constrained real-life environments.

We made a specific assumption that agent variables are independent from
user variables. We will investigate approaches to relax this assumption. Also,
we will refine the algorithm for determining a plan’s feasibility in Section 6.1
by estimating expected time required for each action. Furthermore, we plan to
extend our approach to work in a multi-user, multi-agent setting where resolving

a norm violation may involve multi-party negotiations. In addition, when there
are more than one assistant agents, newly generated goals can be shared or
traded among the agents. We will address these special issues raised in multi-
agent settings in our future work.

Acknowledgments

This research was sponsored by the U.S. Army Research Laboratory and the
U.K. Ministry of Defence and was accomplished under Agreement Number W911NF-
09-2-0053. The views and conclusions contained in this document are those of
the author(s) and should not be interpreted as representing the official policies,
either expressed or implied, of the U.S. Army Research Laboratory, the U.S.
Government, the U.K. Ministry of Defence or the U.K. Government. The U.S.
and U.K. Governments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation hereon.

References

[Armentano and Amandi, 2007] Armentano, M. G. and Amandi, A. (2007). Plan
recognition for interface agents. Artif. Intell. Rev., 28(2):131–162.

[Baker et al., 2009] Baker, C., Saxe, R., and Tenenbaum, J. (2009). Action under-
standing as inverse planning. Cognition, 31:329–349.

[Bellman, 1957] Bellman, R. (1957). A markov decision process. Journal of Mathe-
matical Mechanics, 6:679–684.

[Boger et al., 2005] Boger, J., Poupart, P., Hoey, J., Boutilier, C., Fernie, G., and Mi-
hailidis, A. (2005). A decision-theoretic approach to task assistance for persons with
dementia. In Proc. IJCAI, pages 1293–1299.

[Farrell et al., 2005] Farrell, A. D. H., Sergot, M. J., Sallé, M., and Bartolini, C. (2005).
Using the event calculus for tracking the normative state of contracts. Int. J. Coop-
erative Inf. Syst., 14(2-3):99–129.

[Fern et al., 2007] Fern, A., Natarajan, S., Judah, K., and Tadepalli, P. (2007). A
decision-theoretic model of assistance. In Proc. of AAAI.

[Garćıa-Camino et al., 2009] Garćıa-Camino, A., Rodŕıguez-Aguilar, J.-A., Sierra, C.,
and Vasconcelos, W. W. (2009). Constraint Rule-Based Programming of Norms
for Electronic Institutions. Journal of Autonomous Agents & Multiagent Systems,
18(1):186–217.

[Hübner et al., 2010] Hübner, J., Boissier, O., Kitio, R., and Ricci, A. (2010). In-
strumenting multi-agent organisations with organisational artifacts and agents. Au-
tonomous Agents and Multi-Agent Systems, 20(3):369–400.

[Jones, 1990] Jones, A. J. I. (1990). Deontic logic and legal knowledge representation.
Ratio Juris, 3(2):237–244.

[Lopez y Lopez and Luck, 2003] Lopez y Lopez, F. and Luck, M. (2003). Modelling
norms for autonomous agents. In Proceedings of the Fourth Mexican International
Conference on Computer Science, pages 238–245.

[Modgil et al., 2009] Modgil, S., Faci, N., Meneguzzi, F., Oren, N., Miles, S., and Luck,
M. (2009). A framework for monitoring agent-based normative systems. In Proc. of
AAMAS, pages 153–160.

[Oh et al., 2011] Oh, J., Meneguzzi, F., and Sycara, K. (2011). Probabilistic plan
recognition for intelligent information agents. In Proc. ICAART.

[Prakken and Sergot, 1996] Prakken, H. and Sergot, M. J. (1996). Contrary-to-duty
obligations. Studia Logica, 57(1):91–115.

[Ramı́rez and Geffner, 2009] Ramı́rez, M. and Geffner, H. (2009). Plan recognition as
planning. In Proc. IJCAI, pages 1778–1783.

[Sycara et al., 2010] Sycara, K., Norman, T., Giampapa, J., Kollingbaum, M., Burnett,
C., Masato, D., McCallum, M., and Strub, M. (2010). Agent support for policy-driven
collaborative mission planning. The Computer Journal, 53(5):528–540.

[Vázquez-Salceda et al., 2005] Vázquez-Salceda, J., Aldewereld, H., and Dignum, F.
(2005). Norms in multiagent systems: from theory to practice. International Journal
of Computer Systems Science & Engineering, 20(4):225–236.

[von Wright, 1968] von Wright, G. H. (1968). An Essay in Deontic Logic and the
General Theory of Action. North-Holland Publishing Company.

