
Method Composition through Operator Pattern Identification

Maurı́cio Cecı́lio Magnaguagno, Felipe Meneguzzi
School of Informatics (FACIN)

Pontifical Catholic University of Rio Grande do Sul (PUCRS)
Porto Alegre - RS, Brazil

mauricio.magnaguagno@acad.pucrs.br
felipe.meneguzzi@pucrs.br

Abstract

Classical planning is a computationally expensive task, espe-
cially when tackling real world problems. To overcome such
limitations, most realistic applications of planning rely on do-
main knowledge configured by a domain expert, such as the
hierarchy of tasks and methods used by Hierarchical Task
Network (HTN) planning. Thus, the efficiency of HTN ap-
proaches relies heavily on human-driven domain design. In
this paper, we aim to address this limitation by developing an
approach to generate useful methods based on classical do-
mains. Our work does not require annotations in the classical
planning operators or training examples, and instead, relies
solely on operator descriptions to identify task patterns and
the sub-problems related to each pattern. We propose the use
of methods that solve common sub-problems to obtain HTN
methods automatically.

1 Introduction
Finding a sequence of actions to reach a desired state may
be considered a trivial problem for a human, but when faced
with many possible actions, the task of finding such se-
quence become a complex problem. Classical planners have
no global view of which actions should be prioritized in or-
der to efficiently decide which actions to be explored during
search. This domain knowledge may appear as macros (se-
quences of actions) (Botea et al. 2005) or hierarchical con-
structions that require decomposition to obtain a plan (Nau
et al. 1999). Hierarchical planners often rely completely
on domain knowledge to be able to solve problems orders
of magnitude faster than classical planners. Such domain
knowledge does not come for free and must be carefully
built by a domain expert to consider all possible decompo-
sitions that may be used to obtain a solution, or risk hav-
ing a planner failure, sub-optimal or invalid plan for some
scenarios. This knowledge requires a domain expert to con-
sider generalized solutions that solve common sub-problems
within the domain, often involving recursive decomposition.
As a consequence, describing a domain and its possible de-
compositions is time consuming, especially when a domain
expert needs to test the general solution in order to avoid
infinite recursions and ensure that the planner eventually re-
turns a solution when one exists for all valid scenarios.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

By analysing a number of existing Hierarchical Task Net-
work (HTN) domains, we notice that similar domains rely
on similar methods to solve analogous sub-problems, such
as recursively moving until a certain destination is reached.
While some descriptions, such as the Action Notation Mod-
eling Language (ANML), allow a debugger to describe such
dependency mechanisms (Smith, Frank, and Cushing 2008)
to make domain knowledge explicit, we aim to generate
domain knowledge using only the information available in
a classic domain description. Descriptions of different do-
mains may use different predicates, but share the same con-
struction patterns to solve common sub-problems. General-
izing such construction patterns that appear in the domain
operators make it possible to automate the process and ob-
tain task descriptions to solve each sub-problem without
brute-forcing operators using a recursive method. By au-
tomating the process of task description based on the classi-
cal domain description we can save development time while
taking advantage of hierarchical planners potential speed-
up. In this paper, we address the need for domain knowl-
edge for HTN planners using an approach that automatically
generates HTN methods from a classical planning domain.
The methods generated by our approach not only improve
the efficiency of the resulting HTN planner compared to a
brute-force conversion from PDDL (Erol, Nau, and Subrah-
manian 1995), but are also readable by a human, allowing
adjustments to further improve the efficiency of the gener-
ated HTN domain knowledge. The resulting approach can
then be applied to both allow HTN planners to be used ef-
ficiently to solve classical planning domains with minimal
or no expert-reliant knowledge, or enhance hybrid planners
such as GoDel (Shivashankar et al. 2013) and obviate the
need for human-designed domain knowledge in order to
achieve solution speed ups.

2 Background
2.1 Classical Planning
Automated planning is concerned with finding a set of ac-
tions that reaches a goal from a initial configuration of the
world. In classical planning the goal is represented by a
state. States encode properties of the objects in the world
at a particular time. In order to achieve the goal state the op-
erators defined in the domain are used as rules to determine

which plans are valid based on their preconditions and ef-
fects. Preconditions and effects use predicates and free vari-
ables that, when unified with objects, enumerate the possi-
ble actions to be performed. During the planning process
the preconditions of actions are used to test which actions
are applicable at each state. If applicable, the action effects
can be applied, creating a new state. Preconditions are sat-
isfied when a formula (usually a conjunction of predicates)
is valid at the state the action is being applied. The effects
contain positive and negative sets that add or remove object
properties from the state, respectively. Once we reach a state
that satisfies the goal, the sequence of actions taken, starting
at the initial state, is the plan or solution (Nebel 2000). The
Planning Domain Definition Language (PDDL) was created
in 1998 with the goal of becoming a standard input for plan-
ners (McDermott et al. 1998), in order to allow direct com-
parisons of efficiency between planning algorithms.

2.2 Hierarchical planning
Hierarchical planning shifts the focus from goal states to
tasks to be solved in order to exploit human knowledge
about problem decomposition using an hierarchy of meth-
ods and operators as the planning domain. This hierarchy
is created by non-primitive tasks, which uses methods with
preconditions and sub-tasks to decompose according to con-
text. The sub-tasks are also decomposed until only primitive-
tasks mapping to operators remain, which results in the plan
itself. The goal is implicitly achieved by the plan obtained
from the decomposition process. If no decomposition is pos-
sible the task is considered unachievable. Unlike classical
planning, hierarchical planning only considers what appears
during the decomposition process to solve the problem. With
domain knowledge the domain description is more com-
plex than the classical planning description, as recursive
loops can be described. Recursive loops occur when a non-
primitive task is decomposed by a method that contains itself
in the sub-tasks, this may be the desired behavior when we
need to apply the same set of operators several times until a
stop condition is met, for example, to walk until a destina-
tion is reached.

Each task is represented by a name, a set of parame-
ters, a set of preconditions, and a set of sub-tasks. Once a
non-primitive task is decomposed, the sub-tasks generated
replace the current task in the task network. Some tasks
may have an empty set of sub-tasks, representing no fur-
ther decomposition. Backtracking is required for flexibility,
as branches may fail during decomposition. Backtracking
is costly, but in some cases can be avoided by look-ahead
preconditions that check an entire branch of the domain.
In some domains it is possible to guide the search directly
to a solution or failure. This planning formalism is capable
of describing the same domains as STRIPS with a built-in
heuristic function tailored to the domain and expert prefer-
ences (Lekavỳ and Návrat 2007), with all the methods re-
quired beforehand, which consumes project time to consider
every single case.

SHOP (Nau et al. 1999) is one of the best known imple-
mentations of HTN planning algorithms. The successors of
SHOP, SHOP2 and JSHOP2 (Ilghami and Nau 2003), share

most of their algorithm using a more complex decision about
which task to decompose at any step in order to support
interleaved tasks. Since no standard description exists for
HTN, we opted to use the same description used by SHOP2
and JSHOP2. SHOP2 (Nau et al. 2001), for example, sup-
ports unordered task decomposition, a feature that separates
this planner from its predecessor, SHOP (Nau et al. 1999).
JSHOP2 description follows a simplified version of the LISP
style adopted by PDDL, without labels for every part of the
operator or method. The operator represents the same as the
classical operator, an action that can take place in this do-
main. The operators have a name, a set of parameters and
three sets. The first set represents the preconditions, the sec-
ond set the negative-effects with what is going to be false
in the next state, while the final set represents the positive-
effects with what is going to be true at the next state. The
methods have a name, a set of parameters, a set of precon-
ditions, and instead of effects they have a set of sub-tasks to
be performed. Methods can also be decomposed in different
ways and have an optional label for each case. The problem
contains two sets, the first represents the initial state and the
second a list of tasks to be performed. Instead of interpret-
ing the domain and problem, the description is compiled to
achieve better results with static structures.

3 Identifying operator patterns

To generate HTN methods based on classical planning de-
scriptions, one must first identify common patterns of oper-
ator usage in order to obtain generic methods that could be
used in planning domains. Such common patterns are based
on how predicates are used by operators. The use of predi-
cates as source of information has already been explored by
Pattison and Long (Pattison and Long 2010) in goal recog-
nition, the predicates were partitioned into groups to help
differentiate which predicates are more likely to be a goal.
Since their focus was on the goal recognition process they
made no attempt to see a relation among the operators based
on the predicates used, just the likelihood of each predicate
being a goal.

Instead of the partitions defined by Pattison and Long, we
partition predicates based on their mutability, as shown in
Algorithm 1. Predicates that appear only in the initial state
are considered irrelevant, they make no difference in the ac-
tion application. However predicates that appear in any ac-
tion precondition but never as an effect define constant rela-
tions of the domain. Predicates that appear in the effects of
any action represent what is possible to change, the muta-
ble relations of the domain. Knowing which predicates are
constant helps to prune impossible values for the variables
at any state, while mutable predicates can indicate which ac-
tions can take place once (adding or removing a feature from
the current state) or several times in the same plan. Based on
the previous observation of how actions with certain pred-
icate types are used we defined a set operator patterns that
once matched against an action can relate to a method that
solves its related sub-problem. The following subsections
explore such operator patterns.

Algorithm 1 Classification of predicates into irrelevant,
constant or mutable

1: function CLASSIFY PREDICATES(predicates, operators)
2: ptypes← Table
3: pre← PRECONDITIONS(operators)
4: eff← EFFECTS(operators)
5: for each p ∈ predicates do
6: if p ∈ eff
7: ptypes[p]← mutable
8: else if p ∈ pre
9: ptypes[p]← constant

10: else
11: ptypes[p]← irrelevant
12: return ptypes� �
(:action move :parameters (

?bot - robot
?source ?destination - hallway)

:precondition (and
(at ?bot ?source)
(not (at ?bot ?destination))
(connected ?source ?destination))

:effect (and
(not (at ?bot ?source))
(at ?bot ?destination)))� �

Listing 1: Move operator with swap pattern in PDDL.

3.1 Swap pattern
Some planning instances require the application of an ac-
tion several times consecutively, the only difference being
the values of the parameters. Such actions usually revolve
around swapping the truth value of two instances of the same
predicate, such as moving from one place to another affects
the predicate at in the example action from Listing 1. Once
the swaps achieve the predicate required by another action
precondition or goal predicate the process can stop. This
pattern commonly appears in discretized scenarios where an
agent swaps its current position among adjacent and free co-
ordinates in an N-dimensional space, where N is the arity of
the position predicate. The position is the predicate that is
going to be swapped, while the adjacency is a constraint that
implies this operator may be executed several times in order
to traverse a discretized space.

This operator pattern is related to the pathfinding sub-
problem and was already identified and exploited by other
planners to speed up search. Hybrid STAN (Fox and Long
2001) is one such planner; it uses a path planner and a
resource manager to solve sub-problems with specialized
solvers. The operators are classified as swap using Algo-
rithm 2. Swap operators contain a constraint in the precondi-
tions, otherwise the swap would have no restrictions requir-
ing only one operator to solve the sub-problem, and a pred-
icate that is modified from the preconditions to the effects
using the same parameters as in the constraint. Since sev-
eral operators may include the swap pattern over the same
predicate, they can be merged into a single method with dif-

ferent constraints, such as a climb operator that changes the
agent position like a move operator, but only if there is a wall
nearby the current position. Swap identification can also be
used to infer that an agent or object will never be at two dif-
ferent configurations in the same state, proving that no plan
exists for such goal state. Listing 1 shows the move operator
with the swap pattern in PDDL, in which a robot moves from
source to destination when source and destination are con-
nected. Listing 2 shows two decompositions for the generic
swap predicate. The first decomposition acts as the base of
the recursion, with the predicate with goal values. The sec-
ond decomposition applies one more step, marks the current
position as visited to avoid loops, recursively decomposes
swap predicate and unvisits the previously visited positions
to be able to reuse such positions later if needed. Visit and
unvisit are internal operations done by bookkeeping opera-
tors, prefixed by !! in JSHOP.

Algorithm 2 Classification of swap operators

1: function CLASSIFY SWAP(operators, ptypes)
2: swaps← Table
3: for each op ∈ operators do
4: constraints← CONST POS PRECOND(op, ptypes)
5: pre+ ← MUTABLE POS PRECOND(op, ptypes)
6: pre− ← MUTABLE NEG PRECOND(op, ptypes)
7: eff+ ← ADD EFFECTS(op)
8: eff− ← DEL EFFECTS(op)
9: for each pre ∈ (pre+ ∩ eff−) do

10: pre2← NAME(pre) ∈ eff+
11: if pre2
12: cparam← PARAM(pre)4 PARAM(pre2)
13: for c ∈ constraints do
14: if c ⊆ cparam
15: swaps[op]← 〈pre, constraint〉
16: break
17: return swaps

3.2 Dependency pattern
In the same way some planning instances require the effects
of an action to make another action applicable, fulfilling the
preconditions. Such precondition turns the first action ef-
fects into a dependency for the second action preconditions
to be satisfied and the action applied. The operators are clas-
sified as dependency using Algorithm 3. Each two operators
are compared to find a match between effects and precon-
ditions of operators that have not already been classified as
swap operators. Listing 3 shows the report operator with the
dependency pattern in PDDL, which requires a robot to be at
the same location of a beacon to report its status. To achieve
the at precondition there is a dependency with the operator
move.

Three cases appear in this pattern. In the first case the goal
predicate is already satisfied and no action takes place. In
the second case the preconditions of the second action are
already fulfilled and the action can be applied immediately.
In the third case the precondition of the second action re-
quire the first action applied before the second action. This

� �
(:method (swap_predicate ?object ?goal)

base
((predicate ?object ?goal))
()
using_operator
(
(constraint ?current ?intermed)
(swap_predicate ?object ?current)
(not (predicate ?object ?goal))
(not (visited_predicate ?object

?intermed))
)
(
(!operator ?object ?current ?intermed)
(!!visit_predicate ?object ?current)
(swap_predicate ?object ?goal)
(!!unvisit_predicate ?object ?current)

))� �
Listing 2: Methods for swap operator pattern using JSHOP
description.

� �
(:action report :parameters (

?bot - robot
?location - hallway
?beacon - beacon)

:precondition (and
(at ?bot ?location)
(in ?beacon ?location)
(not (reported ?bot ?beacon)))

:effect (reported ?bot ?beacon))� �
Listing 3: Report operator with dependency pattern with
move in PDDL.

operator pattern commonly appears, as several distinct ac-
tions may be required to fulfill a sequence of preconditions
to achieve a goal predicate. Actions that already matched
the swap pattern are not even tested against the dependency
pattern, otherwise such actions would be classified with a
dependency of themselves. Listing 4 shows the three cases
defined for the operator dependency pattern using JSHOP
description.

3.3 Free-variable pattern
Some predicates that appear in the goal state may not spec-
ify enough information to map to a task, like a position that
must be occupied, which requires an agent, but no agent is
mentioned to bound this variable. Methods can propagate
bound variables to be used by operators or other method
as tasks are decomposed. Before propagated, free-variables
must be bound. In order to unify variables such as the agent
we create a new method with the single purpose of unifi-
cation according to the constant preconditions of the related
operator, acting as typed parameters of PDDL. Therefore we
add a new level to the hierarchy with a method that simply
unifies and propagates to the next level with all variables
bound. Listing 5 shows a possible scenario where op1 re-

Algorithm 3 Classification of dependency operators

1: function CLASSIFY DEPENDENCY(operators, ptypes,
swaps)

2: dependencies← Table
3: for each op ∈ operators do
4: pre+ ← POS PRECOND(op, ptypes, mutable)
5: pre− ← NEG PRECOND(op, ptypes, mutable)
6: eff+ ← ADD EFFECTS(op)
7: eff− ← DEL EFFECTS(op)
8: for each op2 ∈ operators do
9: swap op← swaps[op]

10: swap op2← swaps[op2]
11: if swap op 6= ∅ and swap op2 6= ∅ and

NAME(swap op) = NAME(swap op2)
12: continue
13: pre2+ ← POS PRECOND(op2)
14: pre2−← NEG PRECOND(op2)
15: if op = op2 or (pre2+ ⊆ eff+ and pre2− ⊆ eff−)
16: continue
17: eff2+ ← ADD EFFECTS(op2)
18: for each pre ∈ pre+ do
19: if not NAME(pre) ∈ eff2+
20: continue
21: if dependencies[op] = ∅
22: dependencies[op]← Set
23: APPEND(dependencies[op], 〈op2, pre〉)
24: return dependencies� �
(:method (dependency_first_before_second

?param)
goal_satisfied
((goal_predicate))
())

(:method (dependency_first_before_second
?param)

satisfied
((predicate ?param))
((!second ?param)))

(:method (dependency_first_before_second
?param)

unsatisfied
((not (predicate ?param)))
((!first ?param) (!second ?param)))� �

Listing 4: Methods for dependency operator pattern using
JSHOP description.

quires 3 terms to be applied. Terms t1 and t2 are known
based on information from goal state, while t3 is left to be
decided at run-time. It is possible to apply directly the origi-
nal method in cases where the three terms are known. We do
not merge both methods in one method to explicitly say that
we are looking for the value of t3.

4 Composing methods and tasks
With the predicates classified and each operator related to
the operator patterns previously defined we need to relate

� �
(:method (three_terms ?t1 ?t2 ?t3)

apply_op_with_three_terms
((precond1 ?t1 ?t2) (precond2 ?t2 ?t3))
((!op1 ?t1 ?t2 ?t3)))

(:method (unify_three_terms ?t1 ?t2)
unify_term_t3
((precond2 ?t2 ?t3))
((three_terms ?t1 ?t2 ?t3)))� �

Listing 5: Methods for free-variable operator pattern using
JSHOP description.

the goal state with a set of tasks that achieves each part of
the goal using the methods obtained from each pattern. In
order to know which method to apply we select the opera-
tors that are more closely related to goals, the ones with a
goal predicate in their effect list. We can use such goal oper-
ators to identify which sub-problems we are trying to solve.
If the goal operator matches the dependency pattern, we use
methods for each case. When the goal is already satisfied the
method decomposes to an empty set of subtasks. When the
precondition is already satisfied it only decomposes to the
operator that achieves the goal predicate, otherwise it de-
composes to the dependency operator and the goal operator.
If the goal operator matches the swap pattern, we create a
specific swap method for the predicate being swapped con-
taining all operators that match the swap pattern with this
predicate. Some methods may depend on other methods, to
solve this we decompose the other methods first. This hap-
pens when the first operator of a dependency also requires
a dependency or an operator used in a dependency is also
classified as a swap. A new level in the hierarchy is created
as such operators are replaced by their respective methods.
With the methods we only need to add tasks with the cor-
responding objects taken from the goal predicates. If such
information is not available in the goal predicates some vari-
ables remain free to be unified at run-time. To avoid repeat-
ing costly unifications, we use the free-variable pattern to
unify a variable as high in the hierarchy as possible to doing
repetitive unifications during the search. At the end of the
process we have the original set of operators incremented
with some bookkeeping operators, the set of generated meth-
ods, and the set of tasks replacing the goal predicates. Al-
gorithm 4 shows such steps to convert a classical descrip-
tion to an HTN description using our approach. The oper-
ator patterns identified generate methods that are currently
added independently of usage, as some methods may hint to
the domain expert about the relation among operators even
when a method is not connected to the rest of the hierarchy.

5 Use case: Rescue Robot domain
In order to illustrate how our operator patterns can be applied
to a concrete domain, we use the rescue robot domain 1 as a
use case, as several patterns are identified in the operator set.
This domain has a small operator set and can be represented

1The rescue robot domain was created by Kartik Talamadupula
and Subbarao Kambhampati.

Algorithm 4 Convert goals to tasks

1: function GOALS TO TASKS(domain, problem)
2: op← OPERATORS(domain)
3: pred← PREDICATES(domain)
4: goals← GOALS(problem)
5: tasks← Set
6: met← Set
7: ptypes← CLASSIFY PREDICATES(op, pred)
8: swaps← CLASSIFY SWAP(op, ptypes)
9: dependencies ← CLASSIFY DEPENDENCY(op,

ptypes, swaps)
10: goal op← Array
11: for each o ∈ op do
12: for each goal ∈ goals do
13: if goal ∈ EFFECTS(o)
14: APPEND(goal op, 〈goal, o〉)
15: ADD SWAP METHODS(swaps, op, met, ptypes)
16: ADD DEPEND METHODS(swaps, dependencies, op,

met, ptypes)
17: goal tasks← Array
18: for each m ∈ met do
19: for each d ∈ DECOMPOSITION(m) do
20: for each 〈goal, o〉 ∈ goal op do
21: if o ∈ SUBTASKS(d)
22: met2← UNIFY VARIABLES(m, o)
23: APPEND(goal tasks, 〈goal, met2〉)
24: INJECT METHOD DEPENDENCIES(swaps, met)
25: for each 〈goal, met2〉 ∈ goal tasks do
26: if free-variable ∈ met2
27: APPEND(tasks, UNIFY METHOD(met2))
28: else
29: APPEND(tasks, met2)
30: return 〈op, met, tasks〉

by a 2D map, which means we can explore it deeply without
complex constructions. The map contains rooms and hall-
ways as locations where the rescue robot and beacons may
be located. The robot must be in the same hallway or room
of a beacon to report the status. The set of operators include:

• Enter a room connected to the current hallway.

• Exit the current room to a connected hallway.

• Move from the current hallway to a connect hallway.

• Report status of beacon in the current room or hallway.

We use our operator patterns to infer how such operators
are related to the problem. The operators Enter, Exit and
Move swap the predicate at. They all require source and des-
tination to be connected locations, which matches our con-
straint requirement. Move creates a dependency for Enter,
as Enter creates a dependency for Exit, but since they are al-
ready considered swap operators we can prioritize swap over
dependency patterns. Swap at method may be needed zero
or more times to match the destination at, which behaves
as shown in Figure 1, without the invisible visit/unvisit op-
erators to control which source and intermediate positions
where visited.

at source at destination

source = destination

operator enter

operator exit

operator move

at intermediate

Figure 1: Source, intermediate and destinations are reach-
able locations the robot may visit using move, enter or exit
operations.

Only one operator remains unclassified in this domain,
Report, which has a precondition at. Instead of creating a
dependency for each swap operator we can inject the depen-
dency between such methods and make clear that Report
have a dependency with the swap at method previously cre-
ated, generating a new method. Now this higher level task
can be used to report each beacon in the problem, the possi-
ble branches the dependency method may take are shown in
Figure 2.

at destination operator report
(dependent)

dependency satisfied

at destinationnot at destination method swap at
(dependency)

reported beaconreported beacon goal satisfied

Figure 2: The destination must be reached by the swap at
method before any non-reported beacon is reported.

6 Implementation and Experiments
We implemented a domain converter in Ruby, which oper-
ates in an intermediate representation after a PDDL domain
and problem are parsed. Pattern identification and method
composition only have access to the intermediate represen-
tation, therefore maintaining the system independent of lan-
guage and style choices, as special features from the lan-
guage are downgraded to common supported features. This
is the case for PDDL type support, typed objects are added
as propositions to the initial state and typed parameters be-
come preconditions. After the goals to tasks process the in-
termediate representation contains the generated methods
and tasks, and we can select either JSHOP or Ruby output.

The JSHOP output is useful to a domain expert to extend
and/or use with JSHOP. The Ruby output is used by our own
implementation of the SHOP algorithm (Nau et al. 1999).

Since some domains require very specific methods we add
redundant tasks that use brute-force search for HTN (Erol,
Nau, and Subrahmanian 1995) as fallback. To avoid infinite
loops in the brute-force mechanism we mark visited actions
as they are applied during the recursion, only to unvisit them
to release their usage by other tasks. Currently we are lim-
iting actions to be applied at most once by each task. Since
our current approach does not verify task interference and
order we permute the generated tasks until the original goal
state is satisfied. Such behavior can be emulated by other
planners using order constraints.

We have tested our approach with multiple domains to
discover variations of the operator patterns identified. Our
approach took 0.1s or less to generate HTN domain knowl-
edge using the patterns in this paper, and thus it is very effi-
cient in terms of the overall time it can save during search.
We performed our experiments using the Windows operat-
ing system running on an Intel E5500 2.8GHz CPU with
2GB of RAM. The classical planner (CP) used in the com-
parison was also developed in Ruby and is doing Breadth-
first search with a bitset state representation. In a small set
of problems for the Rescue Robot domain, Table 1, we can
see that the patterns found were enough to greatly speed up
plan search when compared with the pure Brute-Force (BF)
approach. Consider the Goldminers domain at Table 2, in
which two problems with 10x10 grids contain agents that
must move to pick gold and deposit at certain positions.
State-space planners suffer with more positions, gold and
agents available, while an HTN can focus its search and
solve such problems much faster. The sequences of move-
ment actions is where HTN can focus its search in the ex-
periments. More complex domains, such as the ones from
ICAPS, still require human intervention to either complete
or correct the domain with knowledge that was not inferred
from the provided PDDL. Such as the Floortile domain in
which an agent can move to the four cardinal directions and
paint either to its north or south position, our approach fails
to see that both actions are required to color the top and
bottom rows of the grid, which returns failures for solvable
problems. Other domains such as the Grid, requires an agent
to collect keys to open doors in a labyrinth scenario to reach
a goal position, which requires several journeys to move to-
wards key, door and goal. Our solution only generates meth-
ods to fulfill a single journey, making problems with several
doors unsolvable.

Table 1: Rescue Robot tested with diverse planners using
100s as time-out.

Problem CP HTN BF HTN Patterns + BF
pb1 0.001 0.044 0.067
pb2 0.002 11.190 0.255
pb3 0.009 Time-out 0.072
pb4 0.004 20.353 0.197
pb5 0.001 96.979 0.218
pb6 0.001 Time-out 0.132

Table 2: Goldminers tested with diverse planners using 100s
as time-out.

Problem CP HTN BF HTN Patterns + BF
pb1 Time-out Time-out 6.270
pb2 Time-out Time-out 3.668

7 Conclusions and Future Work
In this paper we have developed an approach to automati-
cally generate HTN domain knowledge using a PDDL spec-
ification. Our approach relies exclusively on a number of
patterns of state changes we identified as common in most
planning domains, therefore obviating the need for example
plans.

Existing work has investigated techniques to bridge the
gap between classical planning and HTN in multiple ways,
however, most such work either require a dataset com-
prised of a number of solution plans or generated methods
that are not competitive with a fast classical planner. The
first approach comparable to ours is the brute-force conver-
sion (Erol, Nau, and Subrahmanian 1995). Although this ap-
proach translates any PDDL problem into an HTN one that
generates equivalent plans, the resulting domain knowledge
is not competitive with current classical planners. Indeed,
the translation proposed by Erol et al. (with some modifi-
cations) is our fallback approach when neither of the pat-
terns we found apply. The approach from Lotinac and Jon-
sson (Lotinac and Jonsson 2016) is the most comparable to
ours and generates HTNs from invariance analysis (Lotinac
and Jonsson 2016). Finally, the GoDeL (Shivashankar et
al. 2013) planner is an hybrid approach that uses methods
with sub-goals and landmarks to guide search. Here, instead
of trying to decompose a task, methods generate plans to
achieve parts of a state-based goal, and uses a classical plan-
ner as a fallback option when methods fail or are insufficient.
GoDeL’s approach is able to perform better if a domain ex-
pert supplies more domain knowledge while performing as
a classical planner if only classical operators are supplied.

Empirical evaluation has shown that our approach is capa-
ble of not only generating valid HTN methods for domains
that relate with our operator patterns, it also generates effi-
cient HTN method libraries that can greatly speed-up search.
Nevertheless, the HTN knowledge generated for many do-
mains does not allow an HTN planner using blind search
to surpass a fast classical planner. Domains in which most
of our patterns apply tended to result in better performance,
whereas domains that relied on a brute force translation of
a PDDL task into HTN methods did worst. Thus, as future
work, we aim to investigate mechanisms to further improve
the efficiency of the resulting HTN domain knowledge and
its interaction with more advanced HTN planners. First, we
aim to search for new patterns that could be applicable to
the remaining domains. Second, we will evaluate the perfor-
mance of the methods we generate with HTN planners that
selectively choose methods for decompositions rather than
performing blind search.

We acknowledge the support given by CAPES/Pro-
Alertas (88887.115590/2015-01) and CNPQ.

References
[Botea et al. 2005] Botea, A.; Enzenberger, M.; Müller, M.;

and Schaeffer, J. 2005. Macro-FF: Improving AI planning
with automatically learned macro-operators. Journal of Ar-
tificial Intelligence Research 24:581–621.

[Erol, Nau, and Subrahmanian 1995] Erol, K.; Nau, D. S.;
and Subrahmanian, V. S. 1995. Complexity, decidability
and undecidability results for domain-independent planning.
Artificial Intelligence 76(1-2):75–88.

[Fox and Long 2001] Fox, M., and Long, D. 2001. Hybrid
STAN: Identifying and managing combinatorial optimisa-
tion sub-problems in planning. In Proceedings of Interna-
tional Joint Conference on Artificial Intelligence, 445–452.
Morgan Kaufmann.

[Ilghami and Nau 2003] Ilghami, O., and Nau, D. S. 2003.
A general approach to synthesize problem-specific planners.
Technical report, DTIC Document.

[Lekavỳ and Návrat 2007] Lekavỳ, M., and Návrat, P. 2007.
Expressivity of strips-like and htn-like planning. In Agent
and Multi-Agent Systems: Technologies and Applications.
Springer. 121–130.

[Lotinac and Jonsson 2016] Lotinac, D., and Jonsson, A.
2016. Constructing hierarchical task models using invari-
ance analysis. In Proceedings of the 22nd European Confer-
ence on Artificial Intelligence (ECAI-16).

[McDermott et al. 1998] McDermott, D.; Ghallab, M.;
Howe, A.; Knoblock, C.; Ram, A.; Veloso, M.; Weld, D.;
and Wilkins, D. 1998. PDDL − The Planning Domain
Definition Language. In Proceedings of the Fourth Inter-
national Conference on Artificial Intelligence Planning
Systems 1998 (AIPS’98).

[Nau et al. 1999] Nau, D.; Cao, Y.; Lotem, A.; and Muñoz-
Avila, H. 1999. SHOP: Simple hierarchical ordered plan-
ner. In Proceedings of the 16th international joint confer-
ence on Artificial intelligence-Volume 2, 968–973. Morgan
Kaufmann Publishers Inc.

[Nau et al. 2001] Nau, D.; Munoz-Avila, H.; Cao, Y.; Lotem,
A.; and Mitchell, S. 2001. Total-order planning with par-
tially ordered subtasks. In Proceedings of International Joint
Conference on Artificial Intelligence, volume 1, 425–430.

[Nebel 2000] Nebel, B. 2000. On the compilability and ex-
pressive power of propositional planning formalisms. Jour-
nal of Artificial Intelligence Research 12:271–315.

[Pattison and Long 2010] Pattison, D., and Long, D. 2010.
Domain Independent Goal Recognition. In Ågotnes, T., ed.,
STAIRS, volume 222 of Frontiers in Artificial Intelligence
and Applications, 238–250. IOS Press.

[Shivashankar et al. 2013] Shivashankar, V.; Alford, R.;
Kuter, U.; and Nau, D. 2013. The GoDeL planning
system: a more perfect union of domain-independent and
hierarchical planning. In Proceedings of the Twenty-Third
international joint conference on Artificial Intelligence,
2380–2386. AAAI Press.

[Smith, Frank, and Cushing 2008] Smith, D. E.; Frank, J.;
and Cushing, W. 2008. The ANML language. In The

ICAPS-08 Workshop on Knowledge Engineering for Plan-
ning and Scheduling.

	Introduction
	Background
	Classical Planning
	Hierarchical planning

	Identifying operator patterns
	Swap pattern
	Dependency pattern
	Free-variable pattern

	Composing methods and tasks
	Use case: Rescue Robot domain
	Implementation and Experiments
	Conclusions and Future Work

