
Modelling Fault-Tolerant Systems
using BDI Agents

Felipe Rech Meneguzzi

Pontif́ıcia Universidade Católica do Rio Grande do Sul, PPGCC
Av. Ipiranga 6681, CEP 90619-900 Porto Alegre, Brasil

felipe@cpts.pucrs.br

Abstract. A number of mechanisms for providing fault tolerance in
distributed systems have been proposed for the traditional paradigms of
system development. As Agent-Oriented Programming (AOP) becomes a
more attractive model for distributed system construction, new possibil-
ities of designing more flexible dependable systems are foreseen. There-
fore, fault-tolerant mechanisms should be defined so that dependable
multi-agent systems might be developed. In this paper we describe a way
of implementing a fault-tolerant multi-agent system, which is inspired in
some of the mechanisms proposed for distributed systems.
Key words: Multi-Agent Systems, Fault Tolerance

1 Introduction

Various mechanisms and techniques have been proposed in order to pro-
vide dependability for distributed systems developed using what now are stan-
dard programming techniques like Object Orientation (OO) [10, 13]. Meanwhile,
Agent Oriented Programming (AOP) [4] is being proposed as a new approach
to the development of distributed systems. While a consensus on the specifics of
AOP is far from being achieved, some authors have already expressed their con-
cerns on the development of fault-tolerant mechanisms for Multi-Agent Systems
(MAS) [5, 3]. While MAS are more flexible than traditional distributed systems
due to an agent’s ability to reason about unpredicted situations and more reli-
able due to the fact that agents are easily replicated, failures in the system itself
and whatever it controls are still possible. Therefore, it is important for a MAS
to have some kind of mechanism that allows a group of agents performing some
task to try to bring the system to a stable state in case of a failure, or otherwise
notify the whole system that a catastrophic failure has occurred.

In this paper we propose a way to implement agent-oriented fault tolerance
based on the Beliefs, Desires and Intentions (BDI) model of agents [1]. In partic-
ular we base our proposal on a specific type of BDI agent, namely an improved
version of the X-BDI agent model [6]. Our proposal is inspired on two mech-
anisms of fault-tolerance for distributed systems, namely Coordinated Atomic
Actions [12] and Dependable Multiparty Interactions (DMI) [13]. Our purpose
in defining such a mechanism is twofold, to provide the means for a MAS to
be fault-tolerant and to add the flexibility of BDI agents to the development



2 Felipe Meneguzzi

of dependable systems. This paper is divided into three main parts: Section 2
describes the works upon which this paper is based; in Section 3 we describe a
way to implement fault tolerance in a MAS. Finally, in Section 4 we discuss the
work presented in this paper.

2 Related Work

This section briefly describes the work that has a direct relationship with
the topics proposed in Section 3. We start by describing the BDI model and its
components in Section 2.1, as well as the specific BDI model used to underpin
our proposal in Section 2.2. Finally, we describe the main mechanism which
inspired this work in Section 2.3.

2.1 BDI Agents

In the context of multi-agent systems research, the BDI model is one of most
widely known and studied models of deliberative agents. It is characterized by
the use of Beliefs, Desires and Intentions as abstractions for the description of a
system’s behaviour and was originated by a philosophical model of human prac-
tical reasoning, later developed into a computational theory [9]. The components
that characterize the BDI model can be briefly described as follows [7]:

– Beliefs represent the agent’s expectancy regarding the current world state
or the possibility that a given course of action will lead to a given world
state;

– Desires represent a set of preferences the agent has regarding a set of world
states (this set is not necessarily consistent);

– Intentions represent the agent’s commitment regarding a given course of
action, constraining the consideration of new objectives.

2.2 The X-BDI Agent Model

The X-BDI agent model was created to allow a formal agent specification to
be directly executed [6]. That is accomplished through the use of a formalism
called Extended Logic Programming with explicit negation (ELP). An X-BDI
agent is described by three main components:

– A set of actions that essentially specify the abilities an agent has. An action
is comprised of a set of pre-conditions that states when it is possible for the
agent to execute the action and a set of effects that decribe the result of the
execution of that action;

– A set of desires that specify a set of possible goals the agent might try to
accomplish. A desire is comprised of a pre-condition that states when that
goal becomes relevant to the agent. It also has a priority value used by the
agent to resolve which goals to pursue when multiple goals become relevant
but are not consistent;



LADC03 - Thesis and Dissertation Workshop 3

– A set of initial beliefs used to initialize the knowledge of the agent in a
particular domain.

An agent receives input about the state of the world from its sensors. This
information is used by the agent to revise its beliefs so that they are both con-
sistent and reflect the state of the environment as perceived by the agent. The
deliberation process of an agent starts by selecting a set of relevant desires called
Elligible Desires comprised of all the desires whose pre-condition have been sat-
isfied. These desires are then used by the agent to construct various sets of
consistent desires ordered by their priority values. These sets are sent to an ex-
ternal planning algorithm1, and the higher priority set for which a plan can be
generated comprise the Candidate Desires. Candidate Desires become Primary
Intentions that represent the commitment of the agent to those goals. The steps
of the plan generated to fulfill the Candidate Desires become the agent’s Rela-
tive Intentions, representing the agent’s commitment to that particular course
of action. The approach used in X-BDI to perform runtime planning instead
of using the standard plan library gives X-BDI a greater flexibility in problem
solving than previous BDI agent architectures.

2.3 The DMI Fault-Tolerant Mechanism

Several diferent types of systems often involve complex concurrent activities.
In some cases, these activities may be working together, i.e. cooperating, to solve
a given problem; in other cases they can be completely independent needing to
compete for shared common resources. In practice, orthogonal types of concur-
rency may happen at the same time in complex systems, which will thus require
a supporting mechanism to cope with faults that might happen during agents
interactions.

In this paper, we use a fault-tolerant mechanism to provide means for han-
dling concurrent exceptions and synchronisation upon exit of several participants
(we can understand participants as objects, agents, processes, threads, ...) that
come together to execute a cooperating activity. After the cooperating activity
is finished, all participants leave the interaction and continue their normal (pos-
sibly independent) execution. This mechanism is called Dependable Multiparty
Interaction (DMI).

Basically a DMI has the following properties:

– Synchronisation upon entry of the interaction participants;
– Checking of a pre-condition before the participants start to execute their

activity in the interaction, hence the need for having synchronization upon
entry;

– Checking of an assertion after the interaction has finished to guarantee that
a set of post-conditions have been satisfied by interaction participants;

1 The current implementation of X-BDI uses Graphplan as the planning algorithm



4 Felipe Meneguzzi

– Atomicity of external data to guarantee that wrong, intermediate, informa-
tion is not passed to participants of other interactions before the related
interaction has finished;

– Each participant executes a different part of the interaction, i.e. the interac-
tion activities is split among the participants;

– The number of participants is variable in each different interaction.

3 An Agent-Based Fault Tolerant System

In this section we describe how a MAS might implement fault tolerance in
the process of carrying out some task required by the system. In this paper we
do not address the issues regarding dependability within the agent system itself,
though there are other works that address these issues [3, 2], rather we describe a
“communication protocol” among multiple agents that allows them to deal with
failures occuring during an agent’s interaction with the environment in which
they operate, or among themselves. All activities in the interaction respect the
DMI properties mentioned in Section 2.3.

Other authors have already described fault-tolerance mechanisms for agent
systems [5]. These works are based on BDI agents whose deliberation process
uses a plan-library in order to determine the actions an agent might execute in
order to achieve a given goal. In this paper we base our approach in a type of
agent that determines the sequence of actions that are necessary to achieve a
goal at runtime through the use of a planning algorithm (see Section 2.2), thus
providing a greater level of flexibility.

Our approach to fault tolerance in MAS is similar to the architecture of One
Manager Object and Several Role Objects described in [11], we shall call our
architecture Dependable Agent Interaction (DAI). In our approach, a group of
agents “team up” to fulfill some task designated by a Master Agent, receive
information regarding the task at hand, perform the task while trying to deal
with faults that might emerge during the execution of the task, and then leave
the group. It is important to point out that we are not trying to deal with the
issue of coalition formation in our proposal [8], though this mechanism might be
proven usefull as a protocol for the dynamic creation of DAIs.

Therefore, we define DAI as being a group of Agents whose components fulfill
two basic responsibilities: one Master and various Participant. The Master Agent
controls the entry and exit of Participant Agents in the interaction as well as
the synchronization among the agents. The Master Agent functions as a proxy
for the agents involved in the interaction, thus trying to encapsulate the current
state of processing. Participant Agents receive tasks from the Master Agent, try
to acomplish these tasks and deal with any faults that might occur, informing
the Master Agent when they fail to do so. Although the conceptual use of one
Master Agent may lead to the belief that the system is especially sensitive to
the single point of failure limitations, the seamless replication of Middle Agents
proposed by [2] is a possible solution to the problem. The “protocol” of a DAI
can be summarized as follows:



LADC03 - Thesis and Dissertation Workshop 5

– The Master Agent distributes tasks to as many agents as he has tasks for as
well as information associated with the fulfillment of these tasks;

– These tasks are actually properties or parts of a world-state the Participant
Agent has to achieve, these tasks are represented in the Participant Agent as
a Desire with a priority value higher than the priorities of all other desires,
except for fault recovery ones;

– When enough agents have joined the interaction and all the tasks have been
distributed, the Master Agent notifies every Participant Agent that he can
start to carry out their task;

– Upon notification, the involved agents start their planning process so that
they can find a course of action to fulfill their appointed tasks. At this point
two things might happen: i) all Participant Agents successfully generate a
plan to fulfill their tasks; ii) one or more agents fail to generate a plan, in
which case the Master Agent is notified that one of its tasks is not possible.
The Master Agent then notifies all Participants that a failure has occurred
and starts a global recovery task;

– If all the Participants generate a plan, they start carrying out the plans
they generated. During plan execution one of three things can happen: i)
the Agents complete their tasks successfully; ii) a fault occurs during plan
execution by an agent, but the agent successfully replans and finishes its
task; iii) A fault occurs during plan execution and the agent fails to deal
with it. In that case it will inform the Master Agent who will start a global
recovery task;

– If an agent achieves its task successfully, it notifies the Master Agent;
– When every agent has notified the Master of its success, the Master informs

whoever requested the DAI to be executed of its success;
– When a Participant fails to recover from a local error, it informs the Master

of a global failure;
– When the Master agent detects a global failure either by receiving notifica-

tion from an agent or by detecting that some agent has stopped responding,
it notifies all Participants that an error has occurred and asks them to per-
form some global recovery task, the desires related to the fulfillment of a
recovery task always have top priority;

– If in the process of global recovery another global failure occurs, a catas-
trophic failure has occurred and the Master informs whoever requested the
DAI that the mechanism itself has failed.

4 Concluding Remarks

This paper has presented some initial ideas of how fault-tolerant MAS sys-
tems can be modelled. In order to fulfill fault tolerance properties, agents’ inter-
actions emulate a special multiparty interaction mechanism called Dependable
Multiparty Interaction (DMI). The DMI provides the agents involved in the inter-
action with the capability of handling concurrent exceptions that might happen
during the interaction. The main contribution of the paper is to bring fault tol-
erance requirements into the design of multiple BDI agents, thus merging the



6 Felipe Meneguzzi

flexibility of dynamic planning BDI agents with a fault-tolerant mechanism. The
work proposed in this paper is part of a greater project involving the develop-
ment of BDI agents and one of our main goals in this work is to define a fault
tolerance mechanism for BDI agents.

Acknowledgments. We would like to thank Professors Michael Móra and Lucia Giraffa
that help in the discussion of the ideas on agents presented in this paper. Avelino
Zorzo, which supervises this work, is supported by CNPq/Brazil. Felipe Meneguzzi is
supported by HP Brazil.

References

1. Wiebe Van der Hoek and Michael Wooldridge. Towards a logic of rational agency.
Logic Journal of the IGPL, 11(2):133–157, March 2003.

2. Alan Fedoruk and Ralph Deters. Using dynamic proxy agent replicate groups to
improve fault-tolerance in multi-agent systems. In Proceedings of the second in-
ternational joint conference on Autonomous agents and multiagent systems, pages
990–991. ACM Press, 2003.

3. Z. Guessoum, J. P. Briot, S. Charpentier, O. Marin, and P. Sens. A fault-tolerant
multi-agent framework. In Proceedings of the first international joint conference
on Autonomous agents and multiagent systems, pages 672–673. ACM Press, 2002.

4. Nicholas R. Jennings. On agent-based software engineering. Artificial Intelligence,
117:277–296, 2000.

5. Sanjeev Kumar and Philip R. Cohen. Towards a fault-tolerant multi-agent system
architecture. In Proceedings of the fourth international conference on Autonomous
agents, pages 459–466. ACM Press, 2000.

6. Michael C. Móra. A Formal and Executable Model of BDI Agents. PhD thesis,
CPGCC/UFRGS, 1999. In Portuguese.

7. Jörg P. Müller. The Design of Intelligent Agents: A Layered Approach. Springer-
Verlag, Germany, 1996.

8. Mark Sims, Claudia V. Goldman, and Victor Lesser. Self-organization through
bottom-up coalition formation. In Proceedings of the second international joint
conference on Autonomous agents and multiagent systems, pages 867–874. ACM
Press, 2003.

9. Michael Wooldridge. Reasoning about Rational Agents. The MIT Press, 2000.
10. Jie Xu, Brian Randell, Alexander Romanovsky, Cecilia Rubira, Robert J. Stroud,

and Zie Wu. Fault tolerance in concurrent object-oriented software through coor-
dinated error recovery. In 25th International Symposium on Fault-Tolerant Com-
puting, pages 450–457. IEEE Computer Society Press, 1995.

11. Avelino F. Zorzo. A production cell controlled by dependable multiparty interac-
tions. Technical Report 667, University of Newcastle upon Tyne, Newcastle upon
Tyne, UK, March 1999.

12. Avelino F. Zorzo, Alexander B. Romanovsky, Jie Xu, Brian Randell, Robert J.
Stroud, and Ian Welch. Using coordinated atomic actions to design dependable
distributed object systems. Software - Practice and Experience, 29(8):677–697,
January 1999.

13. Avelino F. Zorzo and Robert J. Stroud. A distributed object-oriented framework
for dependable multiparty interactions. In Proceedings of the 1999 ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications,
pages 435–446. ACM Press, 1999.


