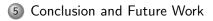
Norm Identification in Jason using a Bayesian Approach

Guilherme Krzisch Felipe Meneguzzi

School of Computer Science Pontifical Catholic University of Rio Grande do Sul Porto Alegre, Brazil

guilhermekrz@gmail.com,felipe.meneguzzi@pucrs.br


May 8, 2017

Overview

Introduction

2 Background

- 3 Norm Detecting System
- 4 Experiments and Results

- Open Multi-Agent Systems
- Normative Environments
- How to identify existing norms, in order to avoid sanctions?
 - E.g. when there are no explicit norms or if there is no trust between agents
 - Using an existing Bayesian Identification approach
- We propose a multi-agent system testbed to validate the approach

Background - Norms

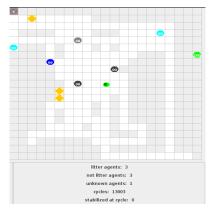
Definition 1 (Norm)

A norm exists in a given social setting to the extent that individuals usually act in a certain way and are often punished when seen not to be acting in this way.

- Regulate conflicts
- Coordinate behavior
- Central vs No central authority
- Examples:
 - Driving on the left/right side of the road
 - Dueling
 - Smoke in public

Five phases of norm development:

- ① Creation
- 2 Identification How a new agent entering the society can infer the norms created and currently being enforced in the system
- ③ Spreading
- ④ Enforcement
- 5 Emergence


- We use a Bayesian approach from Cranefield et al. [1]
- Norms are defined in a subset of Linear Temporal Logic
 - eventually(δ), never(δ), next(γ , δ), not_next(γ , δ), eventually(γ , δ) and never(γ , δ)
- Weight norm hypothesis according to a set of observations over a model of the system (state-space graph)
- Alternative interpretation of the Bayes Theorem, which uses odds against a null hypothesis:

$$O(H_1:H_2|D) = \frac{p(H_1|D)}{p(H_2|D)} = \frac{p(H_1)p(D|H_1)/p(D)}{p(H_2)p(D|H_2)/p(D)} = O(H_1:H_2)\frac{p(D|H_1)}{p(D|H_2)}$$

• We select the top norm hypothesis

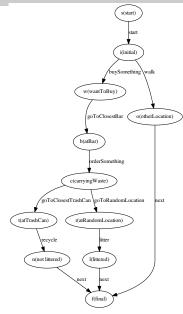
Norm Detecting System - Overview

- Jason + CArtAgO
- Park environment
- Non littering agents and littering agents, with an associated score
- There is a norm when the majority of the agents is from the same type

Norm Detecting System - State-space graph

 $images/stateSpaceGraph.pdf_tex$

Algorithm 1 Norm Inference Procedure


- 1: procedure NormInferenceProcedure(stateSpaceGraph)
- 2: *observations* \leftarrow collect a set of observations
- 3: normHypotheses ← normIdentificationAlgorithm(stateSpaceGraph, observations)
- 4: $topNormHypotheses \leftarrow$

retrieve top hypotheses from normHypotheses

- 5: *filtered* \leftarrow filter relevant topNormHypotheses
- 6: for normHypothesis in filtered do
- 7: check if normHypothesis indicates a litter or not litter norm
- 8: end for
- 9: return most probable norm based on the number of each norm indications

10: end procedure

Experiments and Results - Not Litter Example

- Observation examples: ● i.o.f ● *i*, *w*, *b*, *c* ● *i*, *w*, *b*, *c*, *t*, *n*, *f* Top norm hypothesis: ('c', 'next', 't')* ('c', 'not next', 'r')* ('c', 'eventually', 'n')* ④ ('l', 'not next', 'f') ('c', 'never', 'r')* 6 ('r', 'never', 'l') ('r', 'eventually', 'i') ('l', 'eventually', 's') ('l', 'eventually', 'n') 10 ('r', 'eventually', 'c')
- * Indicate a not litter norm

Percentage of litter agents	# of agents	Inferred norm
100% to 90%	6	litter
	50	litter
	100	litter
85% to 10%	6	none
	50	none
	100	none
5% to 0%	6	not litter
	50	not litter
	100	not litter

Table: Inferred norms for an increasingly number of agents, and the percentage of *littering* and *non littering* agents

Contributions

- Norm inference testbed that can be used for experiments of norm-identification algorithms
- Further experiments to validate the bayesian norm-identification approach by Cranefield *et al.*, confirming their positive result in a multi-agent setting
- Future Work
 - Automatically generate the state-space graph of the plan library built in Jason
 - Investigate different ways of combining the top norm hypotheses
 - Run more experiments

Cranefield, S.; Savarimuthu, T.; Meneguzzi, F.; and Oren, N. (2015) A Bayesian approach to norm identification

Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems 1743–1744.

Savarimuthu, B. T. R.; Purvis, M.; Purvis, M.; and Cranefield, S. (2008) Social norm emergence in virtual agent societies Declarative Agent Languages and Technologies VI. Springer 1828.

Norm Identification in Jason using a Bayesian Approach

Guilherme Krzisch Felipe Meneguzzi

School of Computer Science Pontifical Catholic University of Rio Grande do Sul Porto Alegre, Brazil

guilhermekrz@gmail.com,felipe.meneguzzi@pucrs.br

May 8, 2017