
A Tensor-based Markov Decision
Process Representation

Daniela Kuinchtner[0000−0002−3559−0384], Felipe Meneguzzi[0000−0003−3549−6168],
and Afonso Sales[0000−0001−6962−3706]

Pontifical Catholic University of Rio Grande do Sul (PUCRS),
Porto Alegre, RS, 90619-900, Brazil
daniela.kuinchtner@edu.pucrs.br,

{felipe.meneguzzi, afonso.sales}@pucrs.br

Abstract. A Markov Decision Process (MDP) is a sequential decision
problem for a fully observable and stochastic environment. MDPs are
widely used to model reinforcement learning problems. Researchers de-
veloped multiple solvers with increasing efficiency, each of which requir-
ing fewer computational resources to find solutions for large MDPs. How-
ever, few of these solvers leverage advances in tensor processing to further
increase solver efficiency, such as Google’s TPUs1 and TensorFlow2. In
this paper, we formalize an MDP problem in terms of Tensor Algebra, by
representing transition models of MDPs compactly using tensors as vec-
tors with fewer elements than its total size. Our method aims to facilitate
implementation of various efficient MDP solvers reducing computational
cost to generate monolithic MDPs.

Keywords: Artificial intelligence · CANDECOMP/PARAFAC decom-
position · Compact transition model · Markov decision process · Tensor
algebra · Tensor decomposition.

1 Introduction

Markov Decision Processes (MDPs) are the underlying model for optimal plan-
ning for decision theoretic agents in stochastic environments [11]. Several works
proved MDPs are useful in a variety of sequential planning applications where
uncertainty is crucial to account in the process [15], such as Autonomous Robots
[6, 4] and Machine Maintenance [1]. These concepts are essential for theory and
algorithms of modern reinforcement learning [17, Ch. 1].

Examples of extensively developed methods for solving MDPs are Linear and
Dynamic Programming algorithms [17, Chs 3 and 4]. The main problem with
these solvers is in virtually any real-life domain the state space is large enough
that solvers cannot compute policies for tabular representations of MDPs in
reasonable time. This limitation is often referred to as the curse of dimension-
ality, since the number of states grows exponentially with the number of state

1 https://cloud.google.com/tpu
2 https://www.tensorflow.org/

2 Kuinchtner et al.

variables [3]. By contrast, many large MDPs can be modeled compactly if their
structure is exploited in the representation [11]. A method to represent large
MDPs in a compact representation is called Factored Markov Decision Process
(Factored MDP). Factored MDPs allow compact representations of complex un-
certain dynamic systems [12] and often allow for an exponential reduction in
representation complexity.

In this paper we propose a compact representation of the transition model of
an MDP using tensor decomposition. Tensor decomposition aims to extract data
from arrays, allowing to represent an array with fewer elements than its total
size. Tensor decomposition is applied in several applications, such as: signal pro-
cessing, computer vision, data mining, neuroscience, etc. [13]. In our particular
method, we use a tensor decomposition called CANDECOMP/PARAFAC (CP),
which decomposes a tensor as sums of rank-one tensors. Our method is to de-
compose the MDP problem into smaller tensor components, aiming to improve
efficiency of MDP solvers.

2 Background

2.1 Markov Decision Process

Richard Bellman introduced Markov Decision Process (MDP) in 1957 [2]. An
MDP is a sequential decision problem for a fully observable and stochastic envi-
ronment. The way an agent transitions through an MDP is by sequential decision
making, i.e., choosing actions which lead from one state to another. Reinforce-
ment learning uses MDPs to model problems [16, Ch. 17, p. 647], where the
agent’s goal is to maximize the discounted expected reward over a sequence of
actions. State transitions and decision making in MDPs are characterized by:
i) a stochastic transition system, which determines probabilities to which state
the decision making agent reaches after taking an action; and ii) the Markov
property, which dictates every transition between states depends exclusively on
the last visited state, rather than the history of states before that [17, Ch. 3, p.
49].

An MDP is formally defined as a tuple M = 〈S,A,P,R, γ〉 [17, Ch. 3, p.
48-49], where i) S is the state space; ii) A is the action space; iii) P is a transition
probability function P(s′ | s, a); iv) R is a reward function; and v) γ ∈ [0..1] is
a discount factor. More specifically, at each time step t the agent interacts with
the environment by taking an action at ∈ A in state st ∈ S. As a consequence,
the agent receives a reward rt+1 (also known as r’) ∈ R and reaches a new
state st+1 (also known as s’) ∈ S with probability P(st+1 | st, at) given the
transition probability function [17, Ch. 3, p. 48]. A transition model describes
the stochastic outcome of each action in each state, denoted by P(st+1|st, at),
to determine the probability of reaching state st+1 if action a is taken in state s
[16, Ch. 17, p. 645-646].

The way an agent behaves in an environment is by following a policy, which
maps states to actions. A policy is a solution for the MDP; an optimal policy

A Tensor-based Markov Decision Process Representation 3

(π∗) maximizes the reward an agent receives over the long run. After taking an
action at a state, the environment provides feedback to the agent in terms of
an immediate reward [17, Ch. 1, p. 6]. The interaction with the environment
terminates when the agent reaches one of the terminal states.

2.2 Tensor Algebra

Leopold Kronecker [14] proposed a tensor-based operation, called Kronecker
product, represented by ⊗. The Kronecker product is used in Tensor Algebra, ex-
tension of Linear Algebra, allowing generalization of matrices where more than
two dimensions can be represented.

Aiming to improve efficiency of MDP solvers, we propose a representation
of transition models using tensor decomposition, extension of Tensor Algebra.
Our method is to decompose the problem into smaller component elements to
improve runtime of the solution.

Tensor Decomposition. The process that factorizes a tensor into sums of
individual components is called CANDECOMP (canonical decomposition) and
PARAFAC (parallel factors). This method provides a parallel proportional anal-
ysis and an idea of multiple axes for analysis [13]. We illustrate in Fig. 1 a CAN-
DECOMP/PARAFAC decomposition of a third-order tensor and define three
dimensions (i, j, k) of tensor X by xijk = aibjck. The order of a tensor is the
number of dimensions.

+ + +. . .
c

a1

b1

c1

a2

b2

c2

aN

bN

cN

Fig. 1. CANDECOMP/PARAFAC decomposition example.

As the third-order tensor example X ∈ NI∗J∗K shows, where N is a positive
integer and an ∈ NI , bn ∈ NJ , and cn ∈ NK for n = 1, ..., N ; we can express
the sum of individual components as:

X ≈
N∑

n=1

(an ⊗ bn ⊗ cn). (1)

3 Computational Cost of a Regular Method

Markov Decision Process with large state spaces arise frequently when applied to
real world problems. Optimal solutions to such problems exist, but may not be

4 Kuinchtner et al.

computationally tractable, as the required processing scales exponentially with
number of states. Related work contemplates comparisons of factored MDPs
experimental results with traditional approaches. However, in order to compare
a small example with our method, in this section we show the ineffectiveness of
a regular method, called Bellman’s Operator Method, to generate the stochastic
outcome of state transition for a 4×3 grid (Fig. 2).

+ 1

- 1
0.1

0.8

0.1

START

(a) (b)

Fig. 2. (a) A simple 4×3 environment grid and (b) an illustration of the transition
model of the environment. Adapted from [16, Ch. 17, p. 646].

In Fig. 2 the interaction with the environment terminates when the agent
reaches one of the terminal states, marked by +1 or –1 rewards. The agent’s
actions in a given state, in this example, are North, East, West and South, where
the expected outcome occurs with probability 0.8, but with probability 0.1 the
agent moves at right angles to the intended direction and with probability 0.0
the agent moves at opposite direction. A collision with a wall (the shaded square
and/or the limits of the environment) results in no movement [16, Ch. 17, p.
645-646].

In order to illustrate the disadvantage of Bellman’s operator method, we
calculate its computational cost by Equation 2 based on Fig. 2 example.

A∏
i=1

ai ×
A∏

j=1

aj ×
S∏

k=1

sk ×
S∏

l=1

sl =⇒ O(|A|2 × |S|2). (2)

In the example proposed, A = 4 and S = 12 resulting in a computational
cost of 2,304 multiplications, because all actions multiplied by all states provides
the stochastic outcome.

4 Proposed Method Formalization

We now introduce a Markov Decision Process (MDP) compact representation
using Tensor Algebra, since none of the related work leverage advances in tensor-
based computation to further increase solver efficiency. Our method is to repre-
sent an MDP using tensors to decompose the transition probability model into
smaller components, with the goal to solve MDPs leveraging advances in Ten-
sor Processing. Our formalization represents an approximate result of Bellman’s

A Tensor-based Markov Decision Process Representation 5

operator method by sums of tensors component. This proposal allows the imple-
mentation to improve runtime of the solution, solving smaller problems faster
than the original.

4.1 Definition of MDPs

We propose a Markov Decision Process formalization only for two-dimensional
grids using concepts of Tensor Algebra, as follows:

X set of states x, where X = {x1, x2, x3, ..., xX} and X = |X | is the number3

of rows x;
Y set of states y, where Y = {y1, y2, y3, ..., yY } and Y = |Y| is the number of

columns y;
S set of all states xy, where x ∈ X , y ∈ Y, S = {s1, s2, s3, ..., sS} and S = |S|

is the number of states xy;
E environment matrix of order X rows by Y columns.
M transition model matrix of order X×Y rows by X×Y columns.

Definition 1. Set of states X and Y contain |X | states x and |Y| states y,
respectively, where4 x ∈ [1..X] and y ∈ [1..Y].

Definition 2. The position (xy) is obtained through the function E(xy), where
x ∈ X and y ∈ Y.

Four subsets are also applied to formalize an MDP:

A set of actions, where A = {a1, a2, a3, ..., aA} and A = |A| is the number of
actions;

O set of obstacles, where O = {(oxy1), (oxy2), ..., (oxyO)} and O = |O| is the
number of obstacles;

T set of terminals, where T = {(txy1), (txy2), ..., (txyT)} and T = |T | is the
number of terminals;

R set of rewards, where R = {[(xy1), r1], [(xy2), r2], ..., [(xyXY), rR]} and
R = |R| is the number of rewards.

Definition 3. A tuple of rewards R [(xy), r] is composed by: i) (xy), position
xy in the environment where x ∈ X and y ∈ Y; and ii) r, respective reward of
the state.

By using a formalization with tensors, we exploit the representation in a way
MDP becomes more compact. Therefore, we solve an MDP by creating functions
that precompute wherever possible the actions, the obstacles and the terminals
of a problem, minimizing computational cost.

3 The notation adopted is |X | to define the cardinality of a set X .
4 The notation adopted is [i..j] referring to a number in range from i to j, inclusive,

belonging to set of natural numbers; and notation [i, j] refers to a number within
range i to j, including number of real numbers.

6 Kuinchtner et al.

4.2 State Transition Probability Matrix

In order to represent the stochastic outcome of actions, we formalize the state
transition probability matrix, as:

P set of state transition probabilities, where P = { [p11′(a1,a′1)], [p12′(a1, a
′
2)],

..., [p1A′(a1, a
′
A)], [p21′(a2, a

′
1)], [p22′(a2, a

′
2)], ..., [p2A′(a2, a

′
A)], ..., [pA1′(aA, a

′
1)],

[pA2′(aA, a
′
2)], ..., [pAA′(aA, a

′
A)]} and P = |P| is the number of state tran-

sition probabilities.

Definition 4. Matrix P is defined by A × A, covering transition probabilities
(p) between a current state (xy) and a target state (x′y′) of the environment
with a desired action (a) and the probability of that action happening (a′).

4.3 Limits

In order to define environment limits, we introduce two fundamental sets:

D set of dimensions of the environment matrix, where D = {d1, d2, d3, ..., dD}
and D = |D| is the number of dimensions;

L set of limits of the environment matrix, where L = {[α(d1), Ω(d1)], [α(d2),
Ω(d2)], ..., [α(dD), Ω(dD)]} and L = |2 × D| is the number of limits.

Definition 5. Set of limits L is defined by the number of dimensions |D| multi-
plied by 2. Thus, we will consider a initial limit, defined by α, and a final limit,
defined by Ω, for each dimension. We define limit states as collision with walls,
specifically environment’s limits.

4.4 Successor States

In order to pre-compute a new-reachable state (x′y′) of a current state (xy), we
define a concept of successor states by:

succa(xy) is a valid-reachable successor state x′y′, from xy and an action a.

Definition 6. Successor states for a specific set of actions A = {North, East,
West, South} and for a two-dimensional environment matrix x ∈ X and y ∈ Y,
are defined by:

7.1. if a = North, then
if x 6= α(X), then x’=x-1 and y’=y;
else x = α(X), then x’=x and y’=y

7.2. if a = East, then
if y 6= Ω(Y), then x’=x and y’=y+1;

A Tensor-based Markov Decision Process Representation 7

else y = Ω(Y), then x’=x and y’=y

7.3. if a = West, then
if y 6= α(Y), then x’=x and y’=y-1;
else y = α(Y), then x’=x and y’=y

7.4. if a = South, then
if x 6= Ω(X), then x’=x+1 and y’=y;
else x = Ω(X), then x’=x and y’=y

In Definition 6, we only deal with collision with environment’s limits, thus a
valid successor state can belong to set of obstacles (O).

5 Bellman’s Operator Method Optimizations

In this section we propose four optimizations of Bellman’s operator method
in order to reduce computational cost. The first optimization eliminates zero-
probabilities of state transition P:

Z(a) set of actions with non-zero state transition probabilities of action a, where
Z(a) = {[p11′(a1,a′1)], [p12′(a1, a

′
2)], [p13′(a1, a

′
3)], ..., [p1Z′(a1, a

′
Z)]} and Z(a) =

|Z(a)| is the number of non-zero state transition probabilities of action a.
Therefore, Z(a) ⊂ P.

The second optimization is focused on eliminating terminal states. The third
optimization eliminates obstacle states as we address in set V.

V set of valid states, where V = {v1, v2, v3, ..., vV } and V = |V| is the number
valid states. Valid states are determined by excluding obstacles and terminal
states of S. Therefore, V ⊂ S.

Finally, the fourth optimization is focused on representing transition models
of MDPs with tensor decomposition as third-order tensors.

C(a) set of tensor components of action a. The set C(a) is a third-order tensor,
where C(a) = {[xy1, x′y′1, P(a, a′)1], [xy2, x′y′2, P(a, a′)2], ..., [xyC , x′y′C ,
P(a, a′)C]} and C(a) = |V × Z(a)| is the number of tensor components of
action a.

Definition 7. Each action constitutes a third-order tensor (i.e., |D| = 3). Each
tensor component is composed by: i) xy, which is the current state; ii) x′y′, is
the intended state; and iii) P(a, a′), is the probability of state transition.

In Fig. 3 we illustrate the Definition 7 of tensor components.

8 Kuinchtner et al.

U . . .
(a)C xy1

x’y’1

P ’)(a,a 1

U U
xy2

x’y’2

P ’)(a,a 2

xyC

x’y’C

P ’)(a,a C

Fig. 3. Definition of a 3th-order tensor of action a.

6 Algorithm

In this section we propose a tensor-based algorithm to generate compact transi-
tion models, as we modeled in our formalization. Algorithm 1 consists in com-
posing the set of components C(a) at each iteration with a set of values [xy, x’y’,
P(a, a′)], where xy is the current state, x′y′ is the target state and P(a, a′) is
the probability of state transition.

Algorithm 1: Tensor-based algorithm to generate transition models of
MDPs.

1: for ∀a ∈ A do
2: for ∀x ∈ X do
3: for ∀y ∈ Y, where xy 6∈ T and xy 6∈ O do
4: for ∀a’ ∈ A | P(a, a’) 6= 0 do
5: x’y’ = succa′(xy), x’ ∈ X , y’ ∈ Y
6: if x’y’ 6∈ O then
7: C(a) ← C(a) ∪ [xy, x’y’, P(a, a′)]
8: else
9: C(a) ← C(a) ∪ [xy, xy, P(a, a′)]

10: end if
11: end for
12: end for
13: end for
14: end for

As previously mentioned, succa(xy) can return successor states (x′y′) be-
longing to set of obstacles (O). In order to address this issue, in lines 8-9 we
define target states as current ones, i.e., no movement is performed.

7 Proposed Method Computational Cost Analysis

In this section we use Fig. 2 (see Section 3) as example to explain the formal-
ization and optimizations of our proposed method. As we defined in Section 4.1,
the first properties are:

A Tensor-based Markov Decision Process Representation 9

X = {1, 2, 3} and |X | = 3 states x;
Y = {1, 2, 3, 4} and |Y| = 4 states y;
S = {11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34} and |S| = 12 states xy;
A = {N , E, W , S} and |A| = 4 actions;
O = {(22)} and |O| = 1 obstacle state;
T = {(14), (24)} and |T | = 2 terminal states;
R = {[(11),−3], [(12),−3], [(13),−3], [(14), 100], [(21),−3], [(22),−3], [(23),−3],

[(24),−100], [(31),−3], [(32),−3], [(33),−3], [(34),−3]} and |R| = 12 re-
wards.

In Section 4.2 we define the state transition probability matrix, and in Sec-
tion 4.3 we define the dimensions and the limits of an environment. Based on
Fig. 2, we formalize these properties as:

P = {[[0.8(N ,N ′)], [0.1(N ,E′)], [0.1(N ,W ′)], [0.0(N ,S′)]], [[0.1(E,N ′)], [0.8(E,E′)],
[0.0(E,W ′)], [0.1(E,S′)]], [[0.1(W ,N ′)], [0.0(W ,E′)], [0.8(W ,W ′)], [0.1(W ,S′)]],
[[0.0(S,N ′)], [0.1(S,E′)], [0.1(S,W ′)], [0.8(S,S′)]]} and |P| = 4×4 = 16 state
transition probabilities;

D = {X , Y} and |D| = 2 dimensions;
L = {[α(X), Ω(X)], [α(Y), Ω(Y)]}, where α(X) = 1, Ω(X) = 3, α(Y) = 1,

Ω(Y) = 4 and |L| = 4 limits.

Finally, we define the optimizations of Bellman’s operator method (see Sec-
tion 5), as follows:

Z(N) = {[0.8(N,N ′)], [0.1(N,E′)], [0.1(N,W ′)]} and |Z(N)| = 3 non-zero state
transition probabilities for action North (N);

Z(E) = {[0.1(E,N ′)], [0.8(E,E′)], [0.1(E,S′)]} and |Z(E)| = 3 non-zero state
transition probabilities for action East (E);

Z(W) = {[0.1(W,N ′)], [0.8(W,W ′)], [0.1(W,S′)]} and |Z(W)| = 3 non-zero state
transition probabilities for action West (W);

Z(S) = {[0.1(S,E′)], [0.1(S,W ′)], [0.8(S, S′)]} and |Z(S)| = 3 non-zero state
transition probabilities for action South (S);

V = {11, 12, 13, 21, 23, 31, 32, 33, 34} and |V| = 9 valid states.
C(N) = {[xy1, x′y′1, P(N,N ′)1], [xy2, x′y′2, P(N,E′)2], ..., [xy27, x′y′27, P(N,W ′)27]}

and |V × Z(N)| = 27 tensor components;
C(E) = {[xy1, x′y′1, P(E,N ′)1], [xy2, x′y′2, P(E,E′)2], ..., [xy27, x′y′27, P(E,S′)27]}

and |V × Z(E)| = 27 tensor components;
C(W) = {[xy1, x′y′1, P(W,N ′)1], [xy2, x′y′2, P(W,W ′)2], ..., [xy27, x′y′27, P(W,S′)27]}

and |V × Z(W)| = 27 tensor components;
C(S) = {[xy1, x′y′1, P(S,E′)1], [xy2, x′y′2, P(S,W ′)2], ..., [xy27, x′y′27, P(S, S′)27]}

and |V × Z(S)| = 27 tensor components.

In order to demonstrate the idea of tensor components generated by Algo-
rithm 1, we show the components of tensor C(N), where we express the dimen-
sions (i, j, k) of C(N) by cNijk = xyc, x

′y′c,P(N, a′)c, as follows:

10 Kuinchtner et al.

[111, 1
′1′1,P(N,N ′)1]

[112, 1
′2′2,P(N,E′)2]

[113, 1
′1′3,P(N,W ′)3]

[124, 1
′2′4,P(N,N ′)4]

[125, 1
′3′5,P(N,E′)5]

[126, 1
′1′6,P(N,W ′)6]

[137, 1
′3′7,P(N,N ′)7]

[138, 1
′4′8,P(N,E′)8]

[139, 1
′2′9,P(N,W ′)9]

[2110, 1
′1′10,P(N,N ′)10]

[2111, 2
′1′11,P(N,E′)11]

[2112, 2
′1′12,P(N,W ′)12]

[2313, 1
′3′13,P(N,N ′)13]

[2314, 2
′4′14,P(N,E′)14]

[2315, 2
′3′15,P(N,W ′)15]

[3116, 2
′1′16,P(N,N ′)16]

[3117, 3
′2′17,P(N,E′)17]

[3118, 3
′1′18,P(N,W ′)18]

[3219, 3
′2′19,P(N,N ′)19]

[3220, 3
′3′20,P(N,E′)20]

[3221, 3
′1′21,P(N,W ′)21]

[3322, 2
′3′22,P(N,N ′)22]

[3323, 3
′4′23,P(N,E′)23]

[3324, 3
′2′24,P(N,W ′)24]

[3425, 2
′4′25,P(N,N ′)25]

[3426, 3
′4′26,P(N,E′)26]

[3427, 3
′3′27,P(N,W ′)27]

As the third-order tensor representation C(a) ∈ CI∗J∗K , we express the sum
of individual components by Equation 3.

C(a) ≈
C∑

c=1

(xyc ⊗ x′y′c ⊗ P(a, a′)c) (3)

Where C is a positive integer and xyc ∈ CI , x′y′c ∈ CJ , and P(a, a′)c ∈ CK

for c = 1, ..., C. Thus, we write Equation 3 as follows:

Cijk ≈
C∑

c=1

(xyic, x
′y′jc,P(a, a′)kc) for i = 1, ..., I; j = 1, ..., J ; k = 1, ..., K.

Therefore, we define the computational cost of our optimizations previously
mentioned by Equation 4 and its respective complexity (O).

A∏
i=1

ai ×
C(ai)∏
j=1

cj ×
D∏

k=1

dk =⇒ O(|C(a)| × |A| × |D|) (4)

In example proposed, C(ai) = 27, A = 4 and D = 3, resulting in a computa-
tional cost of 324 multiplications.

8 Related Work

A method to represent large MDPs in a compact representation is called factored
MDPs. The idea of representing a large MDP using a factored model was first
proposed by Boutilier et al. [5]. The benefit of using such a representation is
the state transition model can be compactly represented using one of several
methods, the most common being a Dynamic Bayesian Network (DBN). This
technique allows a compact representation of the transition model, by exploiting
the fact the transition of a variable often depends only on a small number of
other variables [11].

Guestrin et al. [9–11] developed three approaches to solve factored MDPs
using DBNs, respectively. The first approach introduces an efficient planning
algorithm for cooperative multiagent dynamic systems. The second approach
proposes an approximation scheme to the solution using an approximate value

A Tensor-based Markov Decision Process Representation 11

function with a compact representation. The third approach presents two ap-
proximate solution algorithms using factored MDPs, where the first algorithm
uses approximate linear programming, and the second one uses approximate dy-
namic programming. All three approaches prove to be able to deal with problem
of exponentially large representations of vectors.

Delgado et al. [7] use Markov Decision Process with Imprecise Transition
Probabilities (MDP-IP), due to the necessity when transition probabilities are
imprecisely specified [8]. Thus, the authors introduce the factored MDP-IP, by
proposing to replace the usual Dynamic Bayes Networks (DBNs) used in fac-
tored MDPs by Dynamic Credal Networks (DCNs). Results show up to two or-
ders of magnitude speedup in comparison to traditional dynamic programming
approaches.

In general, all proposed methods and algorithms in related work prove decom-
posing the representation into smaller subsets (a factored representation) allows
an exponential reduction in representation size of structured MDPs. Moreover,
no single method proving superior in all applications is provided, so it still re-
mains an active area of research. In our approach, instead of using DBNs and
DCNs to represent transition models of factored MDPs, we provide a represen-
tation of MDPs using tensor decomposition, concept of Tensor Algebra, which
represents a multidimensional tensor by sums of separable arrays.

9 Conclusion and Future Work

Since investigating methods for efficiently determining optimal or near-optimal
policies remains an active area of research, in this paper we formalize an MDP
using Tensor Algebra to represent transition models compactly, aiming to allow
developers to implement efficient MDPs solvers. In Table 1 we show a comparison
of computational cost required to create the transition model of the 4×3 grid
example (Fig. 2) of our approach and Bellman’s operator method.

Table 1. Computational cost comparison

Method Number of multiplications

Bellman’s operator method 2,304
Proposed method 324

Complexity reduction 85.94 %

We compose out method by sums of tensors components, which represents
an approximate result of Bellman’s operator method. This optimized proposal
enables a complexity reduction of 85.94% compared to the regular method.

Therefore, as future work, we plan to: i) generalize our formalization for N -
dimensional environments; ii) compile Relational Dynamic Influence Diagram

12 Kuinchtner et al.

Language (RDDL)5 representations into tensor algebra; iii) implement the so-
lution using tensors as we modeled; and iv) solve MDPs leveraging advances in
Tensor Processing Frameworks that run on Graphics Processing Units (GPUs)
to further increase solver efficiency, by processing each action apart and at the
same time.

In closing, we envision this kind of formalization will allow developers to
implement efficient MDP solvers. Moreover, in the lack of solvers leveraging
advances in tensor processing, the tensor-based representation is a potential
stand-in solution, as computational cost calculations show it provides complexity
reduction compared to the regular method.

References

1. Amari, S.V., McLaughlin, L., Hoang Pham: Cost-effective condition-based main-
tenance using markov decision processes. In: RAMS ’06. Annual Reliability and
Maintainability Symposium, 2006. pp. 464–469 (2006)

2. Bellman, R.: A markovian decision process. Journal of Mathematics and Mechanics
pp. 679–684 (1957)

3. Bellman, R.E.: Dynamic Programming. Dover Publications, Inc., New York, New
York, USA (1957)

4. Boger, J., Hoey, J., Poupart, P., Boutilier, C., Fernie, G., Mihailidis, A.: A plan-
ning system based on markov decision processes to guide people with dementia
through activities of daily living. IEEE Transactions on Information Technology
in Biomedicine 10(2), 323–333 (2006)

5. Boutilier, C., Dearden, R., Goldszmidt, M.: Exploiting structure in pol-
icy construction. In: Proceedings of the 14th International Joint Confer-
ence on Artificial Intelligence - Volume 2. pp. 1104–1111. IJCAI’95, Mor-
gan Kaufmann Publishers Inc., San Francisco, California, USA (1995),
http://dl.acm.org/citation.cfm?id=1643031.1643043

6. Cassandra, A.R., Kaelbling, L.P., Kurien, J.A.: Acting under uncertainty: discrete
bayesian models for mobile-robot navigation. In: Proceedings of IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems. IROS ’96. vol. 2, pp.
963–972 vol.2 (1996)

7. Delgado, K.V., Sanner, S., de Barros, L.N.: Efficient solutions to factored mdps
with imprecise transition probabilities. Artificial Intelligence 175(9), 1498 – 1527
(2011). https://doi.org/https://doi.org/10.1016/j.artint.2011.01.001

8. Delgado, K.V., Sanner, S., de Barros, L.N., Cozman, F.G.: Efficient solutions
to factored mdps with imprecise transition probabilities. In: Proceedings of
the Nineteenth International Conference on International Conference on Auto-
mated Planning and Scheduling. pp. 98–105. ICAPS’09, AAAI Press (2009),
http://dl.acm.org/citation.cfm?id=3037223.3037237

9. Guestrin, C., Koller, D., Parr, R.: Multiagent planning with factored mdps. In:
Proceedings of the 14th International Conference on Neural Information Processing
Systems: Natural and Synthetic. pp. 1523–1530. NIPS’01, MIT Press, Cambridge,
Massachusetts, USA (2001), http://dl.acm.org/citation.cfm?id=2980539.2980737

5 https://github.com/ssanner/rddlsim

A Tensor-based Markov Decision Process Representation 13

10. Guestrin, C., Koller, D., Parr, R.: Solving factored pomdps with linear value func-
tions. In: Planning under Uncertainty and Incomplete Information. pp. 67–75. IJ-
CAI’01, Seattle, Washington, USA (2001)

11. Guestrin, C., Koller, D., Parr, R., Venkataraman, S.: Efficient solution al-
gorithms for factored mdps. J. Artif. Int. Res. 19(1), 399–468 (2003),
http://dl.acm.org/citation.cfm?id=1622434.1622447

12. Guestrin, C.E.: Planning Under Uncertainty in Complex Structured Environments.
Ph.D. thesis, Stanford University, Stanford, California, USA (2003), aAI3104233

13. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications.
SIAM Rev. 51(3), 455–500 (2009). https://doi.org/10.1137/07070111X,
http://dx.doi.org/10.1137/07070111X

14. Kronecker, L.: Über einige interpolationsformeln für ganze funktionen mehrerer
variabeln. Lecture at the Academy of Sciences pp. 133–141 (1865)

15. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Inc., New York, New York, USA, 1st edn. (1994)

16. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall
Press, Upper Saddle River, New Jersey, USA, 3nd edn. (2009)

17. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press,
Cambridge, Massachusetts, USA (2018)

