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Introduction

Plan recognition
Task of recognizing the plan (i.e., the sequence of actions) the observed
agent is following in order to achieve his intention (Sadri, 2012)

Activity recognition
The task of recognizing the independent set of actions that generates
an interpretation to the movement that is being performed
(Poppe, 2010)

Much research e↵ort focuses on activity and plan recognition as
separate challenges;

We develop a hybrid approach that comprises both activity and plan
recognition;

The approach infers, from a set of candidate plans, which plan a
human subject is pursuing based exclusively on fixed-camera video.

Poppe, R. A survey on vision-based human action recognition. Image and Vision Computing 28(6), pp. 976–990, 2010.
Sadri, Fariba. Intention Recognition in Agents for Ambient Intelligence: Logic-Based Approaches. Ambient Intelligence and
Smart Environments, pp. 197-236, 2012.
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A Hybrid Architecture for Activity and Plan Recognition

Conceptually divided in two main parts
CNN-based activity recognition (CNN)
CNN-backed symbolic plan recognition (SBR)
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CNN-based Activity Recognition

Convolutional Neural Network
Architecture: GoogLeNet
22-layer deep network based on the Inception module
Input images: 224x224 (3 channels: RGB)
Output classes: 9 (activities)
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CNN-backed Symbolic Plan Recognition

Symbolic Behavior Recognition (SBR)
A plan recognition approach that takes as input a plan library and a
sequence of observations
Feature decision tree (FDT) maps observable features to plan-steps in
a plan library
SBR returns set of hypotheses plans such that each hypothesis
represents a plan that achieves a top-level goal in a plan library
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CNN-backed Symbolic Plan Recognition

Our Symbolic Behavior Recognition
We modify the SBR and replace the FDT with the CNN-backed
Activity Recognition
The CNN-backed Activity Recognition maps frames directly into nodes
(activities) in the plan library used by SBR to compute sequential
consistency of plan steps
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Experiments

Dataset
ICPR 2012 Kitchen Scene Context based Gesture Recognition dataset
(KSCGR)

5 recipes for cooking eggs in Japan
Ham and Eggs, Omelet, Scrambled-Egg, Boiled-Egg and
Kinshi-Tamago
Each recipe is performed by 7 subjects (5 in training set, 2 in testing
set)

9 cooking activities composes the dataset
Breaking, mixing, baking, turning, cutting, boiling, seasoning, peeling,
and none
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Experiments

Plan Library Modeling
We model a plan library containing knowledge of the agent’s possible
goals and plans based on the KSCGR dataset
We consider that a sequence of cooking gestures is analogous to a
sequence of a plan in the plan library
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Results

Activity Recognition results
Precision, Recall, F-measure and Accuracy scores for each activity

Activity Precision Recall F-measure Accuracy

None 0.65 0.97 0.78 0.64
Breaking 0.44 0.41 0.42 0.27
Mixing 0.67 0.34 0.45 0.29
Baking 0.74 0.88 0.80 0.67
Turning 0.77 0.38 0.51 0.34
Cutting 0.87 0.63 0.73 0.58
Boiling 0.61 0.34 0.43 0.28
Seasoning 0.89 0.37 0.52 0.35
Peeling 0.72 0.10 0.18 0.09
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Results

Activity Recognition results
Accuracy scores for each activity and the distribution of frames in
KSCGR dataset

Activity Frames Accuracy

None 31% 0.64
Breaking 3% 0.27
Mixing 11% 0.29
Baking 25% 0.67
Turning 5% 0.34
Cutting 9% 0.58
Boiling 7% 0.28
Seasoning 3% 0.35
Peeling 6% 0.09
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Results

Activity Recognition results
Confusion matrix

Close position in the scene
Similar movements
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Results

Plan Recognition results
We evaluate the whole pipeline using the number of hypotheses
inferred by the plan recognizer
Score weights correct predictions by the number of hypotheses

Score =
c

#recipesFromSBR

c: 1 if the correct recipe was inferred, 0 otherwise
#recipesFromSBR: Number of recipes yielded by the recognizer
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Results

Plan Recognition results

# True Recipe Predicted Recipes Score

Boiled-Egg Scramble-Egg, Omelette, Ham-Egg 0.00
Ham-Egg Scramble-Egg, Omelette 0.00

10 Kinshi-Egg Kinshi-Egg 1.00
Omelette Scramble-Egg, Omelette 0.50
Scramble-Egg Ham-Egg 0.00

Boiled-Egg Kinshi-Egg, Omelette, Ham-Egg 0.00
Ham-Egg Scramble-Egg 0.00

11 Kinshi-Egg Scramble-Egg, Omelette, Ham-Egg 0.00
Omelette Kinshi-Egg, Scramble-Egg, Omelette, Ham-Egg 0.25
Scramble-Egg Kinshi-Egg 0.00

Average: 0.18
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Conclusion and Future Work

We developed a hybrid architecture for activity and plan recognition

Our pipeline includes:

a convolutional Neural Network (CNN) for activity recognition that
feeds directly into
a modified Symbolic Behavior Recognition (SBR) approach that works
with the CNN to identify the goal that describes the sequence of
activities

There are limitations of using a plan library in the plan recognizer

Employ other deep learning architectures such as Long-Short Term Memory
networks (LSTM) and 3D CNNs

Use a more flexible approach for plan recognition, such as planning-based plan
recognition

Explore object recognition to provide additional clues of the activity that is being
performed

Demo video: https://youtu.be/BoiLjU1vg3E
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Thank you!
Questions?
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