Hybrid Activity and Plan Recognition for Video Streams

Roger Granada, Ramon Fraga Pereira, Juarez Monteiro, Rodrigo Barros, Duncan Ruiz, Felipe Meneguzzi

Pontifical Catholic University of Rio Grande do Sul, Brazil {roger.granada, ramon.pereira, juarez.santos}@acad.pucrs.br {rodrigo.barros, duncan.ruiz, felipe.meneguzzi}@pucrs.br

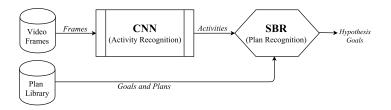
February, 2017

• Plan recognition

Task of recognizing the plan (i.e., the sequence of actions) the observed agent is following in order to achieve his intention (Sadri, 2012)

Activity recognition

The task of recognizing the independent set of actions that generates an interpretation to the movement that is being performed (Poppe, 2010)

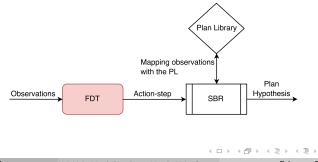

- Much research effort focuses on activity and plan recognition as separate challenges;
- We develop a hybrid approach that comprises both activity and plan recognition;
- The approach infers, from a set of candidate plans, which plan a human subject is pursuing based exclusively on fixed-camera video.

Poppe, R. A survey on vision-based human action recognition. Image and Vision Computing 28(6), pp. 976–990, 2010. Sadri, Fariba. Intention Recognition in Agents for Ambient Intelligence: Logic-Based Approaches. Ambient Intelligence and Smart Environments, pp. 197-236, 2012.

A Hybrid Architecture for Activity and Plan Recognition

• Conceptually divided in two main parts

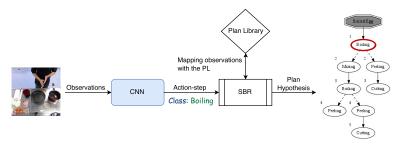
- CNN-based activity recognition (CNN)
- CNN-backed symbolic plan recognition (SBR)


• Convolutional Neural Network

- Architecture: GoogLeNet
- 22-layer deep network based on the Inception module
- Input images: 224x224 (3 channels: RGB)
- Output classes: 9 (activities)

CNN-backed Symbolic Plan Recognition

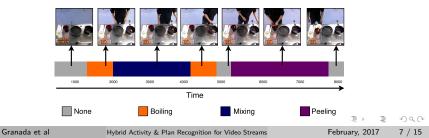
• Symbolic Behavior Recognition (SBR)


- A plan recognition approach that takes as input a plan library and a sequence of observations
- Feature decision tree (FDT) maps observable features to plan-steps in a plan library
- SBR returns set of hypotheses plans such that each hypothesis represents a plan that achieves a top-level goal in a plan library

CNN-backed Symbolic Plan Recognition

• Our Symbolic Behavior Recognition

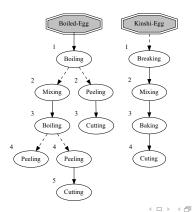
- We modify the SBR and replace the FDT with the CNN-backed Activity Recognition
- The CNN-backed Activity Recognition maps frames directly into nodes (activities) in the plan library used by SBR to compute sequential consistency of plan steps


Experiments

Dataset

- ICPR 2012 Kitchen Scene Context based Gesture Recognition dataset (KSCGR)
- 5 recipes for cooking eggs in Japan
 - Ham and Eggs, Omelet, Scrambled-Egg, Boiled-Egg and Kinshi-Tamago
 - Each recipe is performed by 7 subjects (5 in training set, 2 in testing set)

• 9 cooking activities composes the dataset


• Breaking, mixing, baking, turning, cutting, boiling, seasoning, peeling, and none

Experiments

• Plan Library Modeling

- We model a plan library containing knowledge of the agent's possible goals and plans based on the KSCGR dataset
- We consider that a sequence of cooking gestures is analogous to a sequence of a plan in the plan library

Activity Recognition results

• Precision, Recall, F-measure and Accuracy scores for each activity

Activity	Precision	Recall	F-measure	Accuracy
None	0.65	0.97	0.78	0.64
Breaking	0.44	0.41	0.42	0.27
Mixing	0.67	0.34	0.45	0.29
Baking	0.74	0.88	0.80	0.67
Turning	0.77	0.38	0.51	0.34
Cutting	0.87	0.63	0.73	0.58
Boiling	0.61	0.34	0.43	0.28
Seasoning	0.89	0.37	0.52	0.35
Peeling	0.72	0.10	0.18	0.09

- - ∃ →

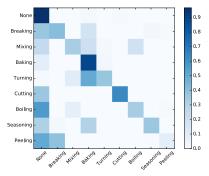
< D > < P > < P > < P >

Sac

Activity Recognition results

• Accuracy scores for each activity and the distribution of frames in KSCGR dataset

Activity	Frames	Accuracy
None	31%	0.64
Breaking	3%	0.27
Mixing	11%	0.29
Baking	25%	0.67
Turning	5%	0.34
Cutting	9%	0.58
Boiling	7%	0.28
Seasoning	3%	0.35
Peeling	6%	0.09


3

Sar

∃ ► < Ξ.</p>

• Activity Recognition results

Confusion matrix

- Close position in the scene
- Similar movements

Breaking

Turning

Baking

3

∃ ► < ∃ ►</p>

Sac

• Plan Recognition results

- We evaluate the whole pipeline using the number of hypotheses inferred by the plan recognizer
- Score weights correct predictions by the number of hypotheses

$$Score = rac{c}{\#recipesFromSBR}$$

- c: 1 if the correct recipe was inferred, 0 otherwise
- $\bullet~\#\mbox{recipesFromSBR}$. Number of recipes yielded by the recognizer

• Plan Recognition results

#	True Recipe	Predicted Recipes	Score
	Boiled-Egg	Scramble-Egg, Omelette, Ham-Egg	0.00
	Ham-Egg	Scramble-Egg, Omelette	0.00
10	Kinshi-Egg	Kinshi-Egg	1.00
	Omelette	Scramble-Egg, Omelette	0.50
	Scramble-Egg	Ham-Egg	0.00
11	Boiled-Egg	Kinshi-Egg, Omelette, Ham-Egg	0.00
	Ham-Egg	Scramble-Egg	0.00
	Kinshi-Egg	Scramble-Egg, Omelette, Ham-Egg	0.00
	Omelette	Kinshi-Egg, Scramble-Egg, Omelette, Ham-Egg	0.25
	Scramble-Egg	Kinshi-Egg	0.00
		Average:	0.18

Ξ

990

< □ > < □ > < □ > < Ξ > < Ξ >

Conclusion and Future Work

- We developed a hybrid architecture for activity and plan recognition
- Our pipeline includes:
 - a convolutional Neural Network (CNN) for activity recognition that feeds directly into
 - a modified Symbolic Behavior Recognition (SBR) approach that works with the CNN to identify the goal that describes the sequence of activities
- There are limitations of using a plan library in the plan recognizer
- Employ other deep learning architectures such as Long-Short Term Memory networks (LSTM) and 3D CNNs
- Use a more flexible approach for plan recognition, such as planning-based plan recognition
- Explore object recognition to provide additional clues of the activity that is being performed
- Demo video: https://youtu.be/BoiLjU1vg3E

Granada et	al
------------	----

Sac

イロト イポト イヨト イヨト

Thank you! Questions?