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Abstract
Recent approaches to goal recognition have progressively re-
laxed the assumptions about the amount and correctness of
domain knowledge and available observations, yielding ac-
curate and efficient algorithms. These approaches, however,
assume completeness and correctness of the domain theory
against which their algorithms match observations: this is too
strong for most real-world domains. In this paper, we develop
a goal recognition technique capable of recognizing goals us-
ing incomplete (and possibly incorrect) domain theories as
well as noisy observations. Such recognition needs to cope
with a much larger space of plan hypotheses consistent with
observations. We show the efficiency and accuracy of our ap-
proach empirically against a large dataset of goal recognition
problems with incomplete domains.

1 Introduction
Goal recognition is the problem of identifying the correct
goal intended by an observed agent, given a sequence of
observations as evidence of its behavior in an environment
and a domain model describing how the observed agent
generates such behavior. Approaches to solve this prob-
lem vary on the amount of domain knowledge used in the
behavior, or plan generation, model employed by the ob-
served agent (Sukthankar et al. 2014), as well as the level
of observability and noise in the observations used as ev-
idence (Sohrabi, Riabov, and Udrea 2016). Recent work
has progressively relaxed the assumptions about the ac-
curacy and amount of information available in observa-
tions required to recognize goals (E.-Martı́n, R.-Moreno,
and Smith 2015; Sohrabi, Riabov, and Udrea 2016; Pereira
and Meneguzzi 2016; Pereira, Oren, and Meneguzzi 2017a).
However, regardless of the type of domain model formal-
ism describing the observed agent’s behavior, all recent ap-
proaches assume that the planning domain models are cor-
rect and complete, restricting its application to realistic sce-
narios in which the domain modeler either has an incomplete
or incorrect model of the behavior under observation.

Specifically, real world domains have two potential
sources of uncertainty:
• ambiguity in how actions performed by agents are real-

ized; and
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• ambiguity from how imperfect sensor data reports fea-
tures of the world.

The former stems from an incomplete understanding of
the action being modeled and requires a domain modeler to
specify a number of alternate versions of the same action to
cover the possibilities. For example, an action to turn on the
gas burner in a cooker may or may not require the observed
agent to press a spark button. The latter stems from imper-
fections in the way actions themselves may be interpreted
from real-world noisy data, e.g., if one uses machine learn-
ing algorithms to classify objects to be used as features (e.g.,
logical facts) of the observations (Granada et al. 2017), cer-
tain features may not be recognizable reliably, so it is useful
to model a domain with such feature as optional.

In this paper, we develop a goal recognition approach
that can cope with incomplete planning domain mod-
els (Nguyen, Sreedharan, and Kambhampati 2017). This
paper has four main contributions. First, we formalize
goal recognition in incomplete domains (Section 2.3) by
combining the standard formalization of Ramı́rez and
Geffner (2009; 2010) for plan recognition and that of
Nguyen, Sreedharan, and Kambhampati (2017). Second, we
develop an algorithm, adapted from (Hoffmann, Porteous,
and Sebastia 2004), that extracts possible landmarks in in-
complete domain models (Section 3). Third, we develop a
notion of overlooked landmarks that we can extract online
as we process (on the fly) observations that we can use to
match candidate goals to the multitude of models induced
by incomplete domains. Fourth, we develop an algorithm
to recognize goals very efficiently using a heuristic that ac-
counts for the various types of landmark as evidence in the
observations (Section 4).

We evaluate our approach using a new dataset constructed
by modifying an existing one (Pereira, Oren, and Meneguzzi
2017a; Pereira and Meneguzzi 2017) of planning-based goal
and plan recognition problems (Section 5). We have built
this new dataset by removing just information from the com-
plete domain model and annotating it with possible precon-
ditions and effects, creating and adding an incomplete do-
main model. Using these modified datasets, we show that
our approach is fast and accurate for recognizing goals in
large and non-trivial incomplete domain models at most per-
centages of domain incompleteness.



2 Problem Formulation
2.1 STRIPS Domain Models
We assume that the agents being observed reason using plan-
ning domains described using the STRIPS (Fikes and Nils-
son 1971) domain model D = 〈R,O〉, where: R is a set of
predicates with typed variables. Grounded predicates repre-
sent logical values according to some interpretation as facts,
which are divided into two types: positive and negated facts,
as well as constants for truth (>) and falsehood (⊥); O is
a set of operators op = 〈pre(op), eff (op)〉, where eff (op)
can be divided into positive effects eff +(op) (the add list)
and negative effects eff −(op) (the delete list). An operator
op with all variables bound is called an action and allows
state change. An action a instantiated from an operator op is
applicable to a state S iff S |= pre(a) and results in a new
state S′ := (S/eff −(a)) ∪ eff +(a).

A planning problem within D and a set of typed objects
Z is defined as P = 〈F ,A, I, G〉, where: F is a set of facts
(instantiated predicates fromR and Z); A is a set of instan-
tiated actions from O and Z; I is the initial state (I ⊆ F);
and G is a partially specified goal state, which represents a
desired state to be achieved. A plan π for a planning prob-
lem P is a sequence of actions 〈a1, a2, ..., an〉 that modifies
the initial state I into a state S |= G in which the goal state
G holds by the successive execution of actions in a plan π.

2.2 Incomplete STRIPS Domain Models
The agent reasoning about the observations and try-
ing to infer a goal has information described using
the formalism of incomplete domain models from
Nguyen, Sreedharan, and Kambhampati (2017), de-
fined as D̃ = 〈R, Õ〉. Here, Õ contains the definition
of incomplete operators comprised of a six-tuple õp =

〈pre(õp), p̃re(õp), eff +(õp), eff −(õp), ẽff
+
(õp), ẽff

−
(õp)〉,

where: pre(õp) and eff (õp) have the same semantics as
in the STRIPS domain models; and possible preconditions
p̃re(õp) ⊆ R that might be required as preconditions, as

well as ẽff
+
(õp) ⊆ R and ẽff

−
(õp) ⊆ R that might be

generated as possible effects either as add or delete effects.
An incomplete domain D̃ has a completion set 〈〈D̃〉〉
comprising all possible domain models derivable from the
incomplete one. There are 2K possible such models where

K =
∑

õp∈Õ(|p̃re(õp)| + |ẽff
+
(õp)| + |ẽff

−
(õp)|), and

a single (unknown) ground-truth model D∗ that actually
drives the observed state. An incomplete planning problem
derived from an incomplete domain D̃ and a set of typed
objects Z is defined as P̃ = 〈F , Ã, I, G〉, where: F is the
set of facts (instantiated predicates from Z), Ã is the set of
incomplete instantiated actions from Õ with objects from
Z, I ⊆ F is the initial state, and G ⊆ F is the goal state.

Like most planning approaches in incomplete do-
mains (Weber and Bryce 2011; Nguyen and Kambhampati
2014; Nguyen, Sreedharan, and Kambhampati 2017), we
reason about possible plans with incomplete actions by as-
suming that they succeed under the most optimistic condi-

tions, namely that: possible preconditions do not need to be
satisfied in a state; possible add effects are always assumed
to occur in the resulting state; and delete effects are ignored
in the resulting state. Formally, an incomplete action ã in-
stantiated from an incomplete operator õp is applicable to a
state S iff S |= pre(ã) and results in a new state S′ such that

S′ := (S/eff −(a)) ∪ (ẽff
+
(ã) ∪ eff +(a)). Thus, a valid

plan π that achieves a goal G from I in an incomplete plan-
ning problem P̃ is a sequence of actions that corresponds to
an optimistic sequence of states. Example 1 from Weber and
Bryce (2011) illustrates an abstract incomplete domain and
a valid plan for it.

Example 1 Consider the following incomplete planning
problem P̃ , where:

• F = {p, q, r, g};
• Ã = {ã, b̃, c̃}, where:

– pre (̃a) = {p, q}, p̃re (̃a) = {r}, ẽff
+
(̃a) = {r}, ẽff

−
(̃a) = {p}

– pre (̃b) = {p}, eff + (̃b) = {r}, eff− (̃b) = {p}, ẽff
−
(̃b) = {q}

– pre (̃c) = {r}, p̃re (̃c) = {q}, eff + (̃c) = {g}

• I = {p, q}; and
• G = {g}.

The [ã, b̃, c̃] sequence of actions is a valid plan to achieve
goal state {g} from the initial state {p, q}. It corresponds
to the optimistic state sequence: s0 = {p, q}, s1 =
{p, q, r}, s2 = {q, r}, s3 = {q, r, g}. The number of com-
pletions for this example is |〈〈D̃〉〉| = 25 (2 possible precon-
ditions and 3 possible effects, i.e., 1 possible add effect and
2 possible delete effects).

2.3 Goal Recognition in Incomplete Domains
Goal recognition is the task of recognizing and antici-
pating agents’ goals by observing their interactions in an
environment. Whereas most planning-based goal recogni-
tion approaches assume that a complete domain is avail-
able (Ramı́rez and Geffner 2009; 2010; Keren, Gal, and
Karpas 2014; E.-Martı́n, R.-Moreno, and Smith 2015;
Sohrabi, Riabov, and Udrea 2016; Pereira, Oren, and
Meneguzzi 2017a), we assume that the observer has an in-
complete domain model while the observed agent is plan-
ning and acting with a complete domain model. To ac-
count for such uncertainty, the model available to the ob-
server contains possible preconditions and effects, much like
the incomplete domain models from previous planning ap-
proaches (Weber and Bryce 2011; Nguyen, Sreedharan, and
Kambhampati 2017). We formalize goal recognition over in-
complete domain models in Definition 1.

Definition 1 (Goal Recognition Problem) A goal recogni-
tion problem with an incomplete domain model is a quintu-
ple T̃ = 〈D̃, Z, I,G, Obs〉, where:

• D̃ = 〈R, Õ〉 is an incomplete domain model (with pos-
sible preconditions and effects). Z is the set of typed ob-
jects in the environment, in which F is the set instantiated
predicates (facts) from Z, and Ã is the set of incomplete
instantiated actions from Õ with objects from Z;



• I ∈ F an initial state;
• G is the set of possible goals, which include a correct hid-

den goal G (i.e., G ∈ G); and
• Obs = 〈o1, o2, ..., on〉 is an observation sequence of exe-

cuted actions, with each observation oi ∈ Ã. Obs corre-
sponds to the sequence of actions (i.e., a plan) to solve a
problem in a complete domain in 〈〈D̃〉〉.
A solution for a goal recognition problem in incomplete

domain models T̃ is the correct hidden goal G ∈ G that the
observation sequence Obs of a plan execution achieves. As
most goal recognition approaches, observations consist of
the action signatures of the underlying plan1, more specifi-
cally, we observe incomplete actions with possible precon-
dition and effects, in which some of the preconditions might
be required and some effects might change the environment.
While a full (or complete) observation sequence contains all
of the action signatures of the plan executed by the observed
agent, an incomplete observation sequence contains only a
sub-sequence of actions of a plan and thus misses some of
the actions actually executed in the environment.

3 Extracting Landmarks in Incomplete
STRIPS Domain Models

In planning, landmarks are facts (or actions) that must be
achieved (or executed) at some point along all valid plans to
achieve a goal from an initial state (Hoffmann, Porteous, and
Sebastia 2004). Landmarks are often used to build heuris-
tics (Richter, Helmert, and Westphal 2008) for planning
algorithms (Richter and Westphal 2010). However, in the
planning literature, landmark-based heuristics extract land-
marks from complete and correct domain models. In this pa-
per, we extend the landmark extraction algorithm proposed
by Hoffmann et al. in (2004) to extract definite and possible
landmarks in incomplete STRIPS domain models.

The landmark extraction algorithm proposed by Hoff-
mann et al. in (2004) uses a Relaxed Planning Graph (RPG),
which is a leveled graph that ignores the delete-list effects
of all actions, thus containing no mutex relations (Hoffmann
and Nebel 2001). Once the RPG is built, this algorithm ex-
tracts a set of landmark candidates by back-chaining from
the RPG level in which all facts of the goal state G are pos-
sible, and, for each fact g inG, it checks which facts must be
true until the first level of the RPG. For example, if fact B
is a landmark and all actions that achieve B share A as pre-
condition, then A is a landmark candidate. To confirm that
a landmark candidate is indeed a necessary condition, and
thus a landmark, the algorithm builds a new RPG remov-
ing actions that achieve the landmark candidate and checks
the solvability over this modified problem. If the modified
problem is unsolvable, then the landmark candidate is a nec-
essary landmark. This means that the actions that achieve the
landmark candidate are necessary to solve the original plan-
ning problem. Deciding the solvability of a relaxed planning
problem using an RPG structure can be done in polynomial
time (Blum and Furst 1997).

1Our approach is not limited to using just actions as observa-
tions and can also deal with logical facts as observations.

Figure 1: ORPG for Example 1. Green arrows represent pre-
conditions, Orange arrows represent add effects, and Pur-
ple dashed arrows represent possible add effects. Light-Blue
boxes represent the set of definite landmarks and Light yel-
low boxes represent the set of possible landmarks. Hexagons
represent actions.

We adapt the extraction algorithm from (Hoffmann, Por-
teous, and Sebastia 2004) to extract landmarks from in-
complete domain models by building an Optimistic Relaxed
Planning Graph (ORPG) instead of the original RPG. An
ORPG is leveled graph that deals with incomplete domain
models by assuming the most optimistic conditions. Thus,
besides ignoring the delete-effects of all actions, this graph
also ignores possible preconditions and possible delete-
effects, whereas we use all possible add effects. Replacing
an RPG for an ORPG allows us to extract definite and pos-
sible landmarks, formalized in Definitions 2 and 3, respec-
tively.

Definition 2 (Definite Landmark) A definite landmark
LDefinite is a fact (landmark) extracted from a known add
effect (eff +(a)) of an achiever2 a (action) in the ORPG.

Definition 3 (Possible Landmark) A possible landmark
LPossible is a fact (landmark) extracted from a possible add

effect (ẽff
+
(a)) of an achiever a (action) in the ORPG.

Figure 1 shows an ORPG for Example 1. For this exam-
ple, the set of definite and possible landmarks is {p, q, r, g}.
The set of definite landmarks is {r, g} (Light-Blue in Fig-
ure 1), and the set of possible landmarks is {p, q} (Light-
Yellow in Figure 1). The classical landmark extraction algo-
rithm from Hoffmann, Porteous, and Sebastia (without the
most optimistic conditions), returns {p, r, g} as landmarks.
The classical landmark extraction algorithm does not ex-
tract q as a fact landmark because it does not assume the
most optimistic condition that possible add effects always
occur, therefore, the a action was not considered as a pos-
sible achiever (action). Thus, by using an ORPG instead an
RPG we can extract not only definite landmarks but also pos-
sible landmarks.Although we use this modification (ORPG
instead RPG) to recognize goals in incomplete domain mod-
els, these landmarks can easily be used to build heuristics for
planning in incomplete domains.

2An achiever is an action at the level before a candidate land-
mark in the ORPG (or RPG) that can be used to achieve this candi-
date landmark.



4 Heuristic Goal Recognition
For Incomplete Domain Models

Key to our goal recognition approach is observing the evi-
dence of achieved landmarks during observations to recog-
nize which goal is more consistent with the observations. To
do so, our approach combines the concepts of definite and
possible with that of overlooked landmarks. An overlooked
landmark is an actual landmark, i.e., a necessary fact for all
valid plans towards a goal, that was not detected by approx-
imate landmark extraction algorithms. Since we are dealing
with incomplete domain models, and it is possible that they
have few (or no) definite and/or possible landmarks, we ex-
tract overlooked landmarks from the evidence in the obser-
vations as we process them in order to enhance the set of
landmarks useable by our heuristic. This on the fly landmark
extraction checks if the facts in the known preconditions and
known and possible add effects are not definite and possi-
ble landmarks, and if they are not, we check if these facts
are overlooked landmarks. To do so, we use the ISLAND-
MARK function that builds a new ORPG removing actions
that achieve a fact (i.e. a potentially overlooked landmark)
and checks the solvability of this modified problem. If the
modified problem is indeed unsolvable, then this fact is an
overlooked landmark. We check every candidate goal using
this function to extract additional landmarks.

Combining the concept of definite, possible, and over-
looked landmarks, we develop a goal recognition heuristic
for recognizing goals in incomplete domain models. Our
heuristic estimates the correct goal in the set of candidate
goals by calculating the ratio between achieved definite
(ALG), possible (ÃLG), and overlooked (ANLG) land-
marks and the amount of definite (LG), possible (L̃G), and
overlooked (NLG) landmarks. This estimate, computed us-
ing Equation 1, represents the percentage of achieved land-
marks for a candidate goal from observations.

h
G̃R

(G) =

(
ALG + ÃLG +ANLG

LG + L̃G +NLG

)
(1)

Algorithm 1 implements our approach to recognize goals
in incomplete domain models, using the h

G̃R
heuristic and

the extended landmark extraction process from Section 3.
This algorithm takes as input a goal recognition problem
T̃ , which contains an incomplete domain model D̃, a set of
typed objects Z, an initial state I, a set of candidate goals
G, and a sequence of observations Obs with incomplete ac-
tions. For every candidate goalG ∈ G this algorithm extracts
definite and possible landmarks for G from I in Line 5.
The algorithm then iterates over the observations Obs by
checking observed facts from preconditions (pre(o)) and ef-

fects (eff +(o) and ẽff
+
(o)) to store in OFo, and verifies

which definite and possible landmarks have been achieved
from the set of observed facts OFo (Lines 9 and 10). In
Line 12, our algorithm uses the ISLANDMARK to extract
possibly overlooked landmarks from the observations stor-
ing the set of overlooked landmarks in variables NLG and
ANLG in Lines 13 and 14. Note that since the overlooked

Algorithm 1 Recognize Goals in Incomplete Domain Models.

Input: T̃ = 〈D̃, Z, I,G, Obs〉, in which D̃ is an incomplete
domain model, Z is a set of typed objects, I is the initial
state, G is the set of candidate goals, and Obs represents
observations with incomplete action sequences.
Output: Recognized goal(s).

1: function RECOGNIZE(D̃, Z, I,G, Obs)
2: HG := 〈〉 . Map of goals to heuristic values.
3: for each goal G in G do
4: NLG := 〈〉 . Set of overlooked landmarks for G.

5: LG, L̃G := EXTRACTLANDMARKS(D̃, Z, I, G)
6: ALG, ÃLG,ANLG := 〈〉 . Achieved landmarks.
7: for each observed action o in Obs do
8: OFo := all facts in pre(o)∪ eff +(o)∪ ẽff

+
(o) .

Observed facts in the incomplete model of action o.
9: ALG := all landmarks l in LG s.t l ∈ OFo

10: ÃLG := all landmarks l̃ in L̃G s.t l̃ ∈ OFo

11: for each fact f in OFo s.t f /∈ (LG ∪ L̃G) do
12: if ISLANDMARK(f, I, G) then
13: NLG := NLG ∪ f
14: ANLG := ANLG ∪ f
15: end if
16: end for
17: end for
18: HG := HG ∪ 〈G,

(
ALG+ÃLG+ANLG

LG+L̃G+NLG

)
〉 . Use h

G̃R

heuristic for calculating the estimated value for G.
19: end for
20: return all G s.t 〈G, v〉 ∈ HG and

v ≥ (maxvi 〈G′, vi〉 ∈ HG)
21: end function

landmarks are extracted from the observations, they are all
also assumed to be achieved. Finally, the algorithm uses
heuristic h

G̃R
to compute a score (estimated value, a per-

centage of achieved landmarks) for G in Line 18, returning
the candidate goals with the highest percentage of achieved
landmarks in Line 20.

5 Experiments and Evaluation
We now describe the experiments carried out to evaluate our
goal recognition approach in incomplete domain models, de-
scribing how we have built and modified a dataset from lit-
erature, as well as describing the metrics we used for evalua-
tion. We conclude this section by discussing our results over
this modified dataset.

5.1 Dataset and Setup
For experiments, we used openly available goal and plan
recognition datasets (Pereira and Meneguzzi 2017)3, which
contain thousands of recognition problems. These datasets
contain large and non-trivial planning problems (with
optimal and sub-optimal plans as observations) for 15
planning domains, including domains and problems from
datasets that were developed by Ramı́rez and Geffner (2009;
2010)4. The planning domains used in these datasets

3
https://doi.org/10.5281/zenodo.825878

4
https://sites.google.com/site/prasplanning



are: BLOCKS-WORLD, CAMPUS, DEPOTS, DRIVER-LOG,
DOCK-WORKER-ROBOTS (DWR), IPC-GRID, FERRY,
INTRUSION-DETECTION (INTRUSION), KITCHEN, LO-
GISTICS, MICONIC, ROVERS, SATELLITE, SOKOBAN, and
ZENO-TRAVEL (ZENO). All planning domains in these
datasets are encoded using the STRIPS fragment of PDDL
(McDermott et al. 1998). Each goal/plan recognition prob-
lem in these datasets contains a (complete) domain defini-
tion, an initial state, a set of candidate goals, a correct hid-
den goal in the set of candidate goals, and an observation se-
quence. An observation sequence contains actions that rep-
resent an optimal plan or sub-optimal plan that achieves
a correct hidden goal, and this observation sequence can
be full or partial. A full observation sequence represents
the whole plan that achieves the hidden goal, i.e., 100% of
the actions having been observed. A partial observation se-
quence represents a plan for the hidden goal, varying in 10%,
30%, 50%, or 70% of its actions having been observed. To
evaluate our goal recognition approach in incomplete do-
main models, we modify the (complete) domain models of
these datasets by adding annotated possible preconditions
and effects (add and delete lists). Thus, the only modification
to the original datasets is the generation of new, incomplete,
domain models for each recognition problem, varying the
percentage of incompleteness (possible preconditions and
effects) in these domains.

We vary the percentage of incompleteness of a domain
from 20 to 80 percent. For example, consider that a com-
plete domain has, for all its actions, a total of 10 precon-
ditions, 10 add effects, and 10 delete effects. A derived
model with 20% of incompleteness needs to have 2 possi-
ble preconditions (8 known preconditions), 2 possible add
effects (8 known add effects), and 2 possible delete effects
(8 known delete effects), and so on for other percentages
of incompleteness. Like (Nguyen and Kambhampati 2014;
Nguyen, Sreedharan, and Kambhampati 2017), we used the
following conditions to generate incomplete domain models
with possible preconditions, possible add effects, and pos-
sible delete effects: (1) we randomly move a percentage of
known preconditions and effects into possible lists of pre-
conditions and effects; (2) we randomly add possible pre-
conditions from delete effects that are not preconditions of a
corresponding operator; and (3) we randomly add into pos-
sible lists (of preconditions, add effects, or delete effects)
predicates whose parameters fit into the operator signatures
and are not precondition or effects of the operator. By fol-
lowing all these three conditions, we generate three different
incomplete domain models from a complete domain model,
since the lists of preconditions and effects are generated ran-
domly. Thus, each percentage of domain incompleteness has
three domain models with different possible lists of precon-
ditions and effects.

Using these modified recognition problems, we ran all ex-
periments using a single core of a 12 core Intel(R) Xeon(R)
CPU E5-2620 v3 @ 2.40GHz with 16GB of RAM. The
JavaVM ran experiments with a 2GB memory limit and a
2-minute time limit.

5.2 Evaluation Metrics
We evaluated our approach using the following metrics: the
recognition time in seconds (Time); Accuracy5, represent-
ing the fraction of time steps in which the correct goal was
among the goals found to be most likely, i.e., how good our
approach is for recognizing the correct goal G in G over
time; and Spread in G represents the average number of re-
turned goals.

As each percentage of domain incompleteness has
three different incomplete domain models, the percentage
columns (20%, 40%, 60%, and 80%) in Table 1 report av-
erages for recognition time (Time), Accuracy, and Spread in
G by taking into account the results of the three incomplete
domain models. We also show in Table 1 the total number
of goal recognition problems for each domain name (first
column). Each row in the table expresses averages for the
number of candidate goals |G|; the percentage of the plan
that was actually observed (% Obs); the average number of
observations per problem |O|; and |〈〈D̃〉〉|, representing the
number of possible complete domain models (completion
set) for each percentage of domain incompleteness.

We adapt the Receiver Operating Characteristic (ROC)
curve metric to highlight the trade-off between true posi-
tive and false positive results. A ROC curve is often used
to compare not only true positive predictions, but also to
compare the false positive predictions of the experimented
approaches. Here, each prediction result of our goal recog-
nition approach represents one point in the space, and thus,
instead of a curve, our graphs show the spread of our results
over ROC space. In the ROC space, the diagonal line repre-
sents a random guess to recognize a goal from observations.
This diagonal line divides the ROC space in such a way that
points above the diagonal represent good classification re-
sults (better than random guess), whereas points below the
line represent poor results (worse than random guess). The
best possible (perfect) prediction for recognizing goals are
points in the upper left corner (i.e., coordinate x = 0 and y =
100) in ROC space.

5.3 Results
Table 1 shows the experimental results of our goal recog-
nition approach in incomplete domain models. Apart from
IPC-GRID and SOKOBAN that took substantial recognition
time, for most planning domains our approach yields high
accuracy at low recognition time. SOKOBAN exceeds the
time limit of 2 minutes for most goal recognition problems
because this dataset contains large problems with a huge
number of objects, leading to an even larger number of in-
stantiated predicates and actions. For example, as domain
incompleteness increases (i.e. the ratio of possible to defi-
nite preconditions and effects), the number of possible ac-
tions (moving between cells and pushing boxes) in a grid
with 9x9 cells and 5 boxes increases substantially because as
there are very few definite preconditions for several possible

5This metric is analogous to the Quality metric (also de-
noted as Q), used for most planning-based goal recognition ap-
proaches (Ramı́rez and Geffner 2009; 2010; E.-Martı́n, R.-Moreno,
and Smith 2015; Sohrabi, Riabov, and Udrea 2016).



Incompleteness of D̃ (%) 20% 40% 60% 80%

# |G| Obs (%) |O| |〈〈D̃〉〉| Time Accuracy Spread inG |〈〈D̃〉〉| Time Accuracy Spread inG |〈〈D̃〉〉| Time Accuracy Spread inG |〈〈D̃〉〉| Time Accuracy Spread inG
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C

K
S

(1
21

92
)

20.3

10 1.82

42.22

0.045 33.7% 1.45

1782.89

0.047 29.3% 1.74

75281.09

0.048 41.1% 2.46

3178688.02

0.052 45.0% 2.89
30 4.93 0.047 44.9% 1.33 0.048 50.9% 1.67 0.050 60.8% 2.04 0.054 56.4% 2.11
50 7.66 0.051 52.6% 1.33 0.052 62.1% 1.54 0.050 69.8% 1.69 0.058 65.0% 1.71
70 11.1 0.053 72.4% 1.32 0.052 76.6% 1.44 0.055 85.8% 1.67 0.059 82.2% 1.76
100 14.5 0.057 94.6% 1.31 0.060 96.4% 1.38 0.061 99.6% 1.61 0.063 99.3% 1.66

C
A

M
P

U
S

(9
00

)

2.0

10 1.0

7131.55

0.004 75.6% 1.22

50859008.46

0.003 84.4% 1.24

3.63E+11

0.005 57.8% 1.29

2.59E+15

0.005 80.0% 1.49
30 2.0 0.006 77.8% 1.11 0.005 80.0% 1.22 0.007 62.2% 1.24 0.007 84.4% 1.47
50 3.0 0.007 91.1% 1.09 0.008 91.1% 1.13 0.009 64.4% 1.16 0.008 77.8% 1.36
70 4.47 0.009 97.8% 1.02 0.009 95.6% 1.09 0.010 77.8% 1.11 0.011 82.2% 1.29
100 5.4 0.008 100.0% 1.02 0.007 97.8% 1.09 0.011 86.7% 1.09 0.012 86.7% 1.24

D
E

P
O

T
S

(4
36

8)

8.9

10 3.13

168.89

0.079 30.2% 1.38

28526.20

0.071 37.3% 1.87

4817990.10

0.075 39.3% 2.01

813744135.40

0.067 52.8% 2.68
30 8.61 0.079 40.5% 1.33 0.067 57.5% 1.62 0.083 48.0% 1.47 0.075 67.1% 2.37
50 14.04 0.079 61.5% 1.32 0.075 75.8% 1.38 0.087 63.9% 1.35 0.095 86.5% 1.85
70 19.71 0.079 78.6% 1.28 0.079 90.5% 1.28 0.099 79.8% 1.33 0.107 92.1% 1.71
100 27.43 0.083 89.3% 1.08 0.083 100.0% 1.11 0.107 90.5% 1.17 0.119 98.8% 1.46

D
R

IV
E

R
(4

36
8)

7.1

10 2.61

48.50

0.282 35.3% 1.45

2352.53

0.310 36.1% 1.90

114104.80

0.346 36.1% 2.01

5534417.30

0.377 53.6% 3.13
30 6.96 0.307 45.2% 1.37 0.325 47.2% 1.86 0.363 43.7% 1.92 0.406 60.7% 2.01
50 11.18 0.329 56.0% 1.32 0.344 63.5% 1.73 0.392 61.1% 1.84 0.424 79.0% 1.95
70 15.64 0.331 69.0% 1.26 0.339 75.4% 1.62 0.409 72.2% 1.76 0.452 90.1% 1.89
100 21.71 0.338 78.6% 1.21 0.341 82.1% 1.46 0.428 79.8% 1.65 0.464 95.2% 1.82

D
W

R
(4

36
8)

7.3

10 5.71

512.00

0.221 19.0% 1.31

262144.00

0.365 44.0% 2.42

134217728.00

0.413 48.8% 3.65

6.88E+10

0.468 63.9% 4.15
30 16.0 0.237 37.3% 1.26 0.392 66.3% 1.88 0.449 72.6% 2.97 0.603 77.0% 3.34
50 26.21 0.274 50.0% 1.27 0.348 75.0% 1.69 0.480 80.2% 2.15 0.718 84.1% 2.58
70 36.86 0.278 67.1% 1.11 0.484 91.7% 1.36 0.561 91.7% 1.91 0.802 92.9% 2.25
100 51.89 0.286 85.7% 1.01 0.507 98.8% 1.23 0.624 100.0% 1.74 0.917 100.0% 2.12

F
E

R
R

Y
(4

36
8)

7.6

10 2.93

8.00

0.071 73.8% 1.59

64.00

0.083 62.7% 1.71

512.00

0.091 67.9% 2.02

4096.00

0.098 80.6% 3.10
30 7.68 0.075 94.0% 1.43 0.102 87.7% 1.62 0.110 85.7% 1.78 0.113 88.9% 1.97
50 12.36 0.087 98.8% 1.32 0.103 96.0% 1.44 0.126 95.6% 1.63 0.125 92.5% 1.85
70 17.36 0.095 100.0% 1.24 0.117 100.0% 1.37 0.138 100.0% 1.58 0.144 97.6% 1.69
100 24.21 0.112 100.0% 1.0 0.129 100.0% 1.0 0.141 100.0% 1.0 0.153 100.0% 1.11

IN
T

R
U

S
IO

N
(5

58
0)

16.7

10 1.92

16.00

0.022 46.7% 2.07

256.00

0.034 34.6% 1.92

4096.00

0.043 25.7% 2.39

65536.00

0.049 16.5% 1.82
30 4.48 0.031 86.3% 1.31 0.039 65.7% 1.45 0.046 34.9% 2.68 0.050 23.8% 1.97
50 6.7 0.037 93.7% 1.15 0.041 79.4% 1.24 0.048 49.2% 2.81 0.053 31.4% 2.18
70 9.55 0.048 95.2% 1.12 0.052 85.7% 1.17 0.059 61.0% 2.79 0.066 44.1% 2.27
100 13.07 0.053 100.0% 1.03 0.060 87.4% 1.13 0.062 87.4% 3.27 0.075 58.5% 2.21

IP
C

-G
R

ID
(8

07
6)

8.7

10 2.8

10.55

0.492 28.8% 1.08

111.43

0.924 30.3% 2.02

1176.26

7.083 45.1% 3.24

12416.75

13.532 99.1% 7.58
30 7.49 0.495 45.1% 1.19 0.946 44.1% 1.65 8.499 46.8% 2.76 14.294 99.3% 6.01
50 12.02 0.497 66.7% 1.11 0.967 66.7% 1.51 9.547 58.6% 2.06 15.063 99.8% 3.99
70 17.16 0.503 73.4% 1.11 1.203 75.4% 1.35 10.259 67.8% 1.82 15.588 99.3% 3.21
100 21.84 0.432 82.5% 1.05 1.317 85.7% 1.29 10.573 81.4% 1.46 16.208 100.0% 2.25

K
IT

C
H

E
N

(9
00

)

3.0

10 1.33

2767208.65

0.002 51.1% 1.47

7.66E+12

0.003 15.6% 1.33

2.11+19

0.003 26.7% 1.07

5.86E+25

0.005 57.8% 1.33
30 3.33 0.004 40.0% 1.18 0.006 26.7% 1.29 0.005 33.3% 1.07 0.007 48.9% 1.33
50 4.0 0.006 53.3% 1.07 0.008 48.9% 1.36 0.008 37.8% 1.04 0.009 48.9% 1.33
70 5.0 0.008 71.1% 1.21 0.007 53.3% 1.33 0.008 46.7% 1.09 0.009 44.4% 1.33
100 7.47 0.008 73.3% 1.21 0.007 48.9% 1.33 0.010 42.2% 1.09 0.010 48.9% 1.33

L
O

G
IS

T
IC

S
(8

07
6)

10.5

10 2.82

27.85

0.205 42.5% 2.01

776.04

0.233 52.3% 2.72

21618.81

0.271 59.0% 4.07

602248.76

0.312 80.8% 5.51
30 8.01 0.227 66.0% 1.53 0.258 72.5% 1.68 0.314 79.3% 2.85 0.436 88.9% 3.08
50 13.07 0.246 81.5% 1.31 0.319 81.0% 1.53 0.355 85.6% 2.21 0.504 92.6% 2.23
70 18.33 0.253 91.7% 1.14 0.362 93.2% 1.19 0.421 93.5% 1.45 0.515 97.6% 1.44
100 24.41 0.324 97.3% 1.04 0.412 99.5% 1.08 0.466 97.3% 1.09 0.564 100.0% 1.02

M
IC

O
N

IC
(4

36
8)

6.0

10 3.96

9.18

0.282 56.3% 1.58

84.44

0.291 84.5% 2.21

776.05

0.294 64.7% 2.93

7131.55

0.302 68.7% 3.12
30 11.14 0.286 81.3% 1.29 0.299 95.2% 1.67 0.302 81.7% 1.82 0.333 83.3% 2.07
50 18.07 0.294 94.4% 1.19 0.303 97.2% 1.31 0.311 88.9% 1.46 0.354 87.7% 1.79
70 25.32 0.311 98.4% 1.07 0.329 99.6% 1.13 0.345 92.5% 1.51 0.369 94.8% 1.94
100 35.57 0.298 100.0% 1.0 0.340 100.0% 1.02 0.374 94.0% 1.07 0.381 100.0% 1.26

R
O

V
E

R
S

(4
36

8)

6.0

10 3.0

9410.14

0.579 51.6% 1.81

88550676.93

0.659 41.7% 1.88

8.34E+11

0.738 41.3% 1.94

7.84E+15

0.675 68.7% 3.19
30 7.93 0.583 64.7% 1.49 0.676 57.9% 1.49 0.765 61.5% 1.78 0.721 81.0% 2.45
50 12.75 0.591 76.2% 1.19 0.687 79.4% 1.28 0.790 78.2% 1.49 0.762 92.5% 1.96
70 17.96 0.595 88.9% 1.13 0.702 86.9% 1.14 0.806 90.5% 1.26 0.794 99.6% 1.74
100 24.93 0.602 94.0% 1.07 0.714 92.9% 1.04 0.821 97.6% 1.12 0.846 100.0% 1.28

S
A

T
E

L
L

IT
E

(4
36

8)

6.4

10 2.07

27.85

0.105 50.0% 1.88

776.04

0.108 50.4% 2.06

21618.81

0.112 58.3% 2.02

602248.76

0.124 65.1% 2.46
30 5.43 0.119 59.9% 1.52 0.124 63.1% 1.63 0.128 71.8% 1.66 0.131 75.8% 1.77
50 8.71 0.123 65.1% 1.25 0.141 75.0% 1.37 0.152 81.0% 1.46 0.145 85.3% 1.52
70 12.29 0.143 72.6% 1.14 0.155 85.7% 1.29 0.164 86.1% 1.19 0.173 90.9% 1.26
100 16.89 0.158 82.1% 1.06 0.169 95.2% 1.08 0.173 94.0% 1.08 0.197 100.0% 1.10

S
O

K
O

B
A

N
(4

36
8)

7.1

10 3.18

9.18

4.799 26.6% 1.33

84.44

Timeout - -

776.04

Timeout - -

7131.55

Timeout - -
30 8.82 5.591 29.0% 1.23 Timeout - - Timeout - - Timeout - -
50 14.07 6.347 32.5% 1.22 Timeout - - Timeout - - Timeout - -
70 19.86 6.803 35.3% 1.19 Timeout - - Timeout - - Timeout - -
100 27.71 7.595 45.2% 1.14 Timeout - - Timeout - - Timeout - -

Z
E

N
O

(4
36

8)

6.9

10 2.61

48.50

0.895 37.3% 1.38

2352.53

1.352 38.1% 1.43

114104.80

1.441 56.7% 2.12

5534417.30

1.697 79.4% 3.02
30 6.75 0.909 50.8% 1.43 1.376 52.0% 1.49 1.465 71.0% 1.73 2.184 88.1% 2.12
50 10.82 0.937 63.1% 1.29 1.412 66.3% 1.33 1.501 83.3% 1.43 2.273 93.7% 1.41
70 15.21 0.948 79.0% 1.19 1.430 77.4% 1.22 1.548 91.7% 1.29 2.452 96.8% 1.33
100 21.14 0.954 91.7% 1.07 1.571 92.9% 1.08 1.513 96.4% 1.04 2.758 100.0% 1.04

Table 1: Experimental results of our approach for recognizing goals in incomplete STRIPS domain models.

0

20

40

60

80

100

0 20 40 60 80 100

T
ru

e
 P

o
s
iti

v
e

 R
a

te

False Positive Rate

Domain Incompleteness 20%

Random Guess
Incompleteness 20%

0

20

40

60

80

100

0 20 40 60 80 100

T
ru

e
 P

o
s
iti

v
e

 R
a

te

False Positive Rate

Domain Incompleteness 40%

Random Guess
Incompleteness 40%

0

20

40

60

80

100

0 20 40 60 80 100

T
ru

e
 P

o
s
iti

v
e

 R
a

te

False Positive Rate

Domain Incompleteness 60%

Random Guess
Incompleteness 60%

0

20

40

60

80

100

0 20 40 60 80 100

T
ru

e
 P

o
s
iti

v
e

 R
a

te

False Positive Rate

Domain Incompleteness 80%

Random Guess
Incompleteness 80%

Figure 2: ROC space for all four percentage of domain incompleteness.



preconditions. The average number of possible complete do-
main models |〈〈D̃〉〉| is huge for several domains (CAMPUS,
DWR, KITCHEN, and ROVERS), showing that the task of
goal recognition in incomplete domains models is quite dif-
ficult and complex.

Figure 2 shows four ROC space graphs corresponding to
recognition performance over the four percentages of do-
main incompleteness we used in our experiments. We aggre-
gate multiple recognition problems for all domains and plot
these results in ROC space varying the percentage of domain
incompleteness. Although the true positive rate is high for
most recognition problems at most percentages of domain
incompleteness, as the percentage of domain incomplete-
ness increases, the false positive rate also increases, leading
to several problems being recognized with a performance
close to the random guess line. We argue that this happens
because the number of extracted landmarks decreases sig-
nificantly the as the number of definite preconditions and ef-
fects diminishes, and consequently, all candidate goals have
just a few (if any) landmarks. For example, in several cases
in which the domain incompleteness is 60% and 80%, the
set of landmarks is quite similar, leading our approach to
return more than one candidate goal (Spread in G) as the
correct one (i.e., there is more uncertainty in the result of the
recognition process).

6 Related Work
To the best of our knowledge, the only earlier work that deals
directly with plan or goal recognition with incomplete do-
mains are that of Lee and McCartney (1998) and Kerkez and
Cox (2002). In the first one, Lee and McCartney (1998) de-
veloped plan recognition approach that uses machine learn-
ing and stochastic techniques (Hidden Markov Models) to
learn actions and properties based on an incomplete agent
behavior model from partial observation, which are stored
as a history of interactions in a dataset. They use an incom-
plete plan library to represent the agent behavior model. The
approach of Kerkez and Cox (2002) takes as input an incom-
plete plan library and deals with incomplete domain infor-
mation by using a planner. More specifically, the approach
of Kerkez and Cox uses a planner to fill and complete an
incomplete plan library from the observations, and then rec-
ognize the observed agent’s goal.

Unlike our approach, most recent planning-based recogni-
tion approaches (Ramı́rez and Geffner 2009; 2010; Sohrabi,
Riabov, and Udrea 2016) use a planner to recognize goals
and plans from observations, running a planner at least 2×G
times. Conversely, E.-Martı́n, R.-Moreno, and Smith (2015)
and Pereira, Oren, and Meneguzzi (2017a) are similar to
our approach and avoid using any planning system during
the goal and plan recognition recognition process and use
planning-graphs and landmarks, respectively. Keren, Gal,
and Karpas (2014) developed an approach that assumes
planning domain models are not fixed, and it changes (re-
designs) the domain definition to facilitate the task of goal
recognition in planning domain models. These approaches

differ from ours because they only deal with complete
(even if modified) domain models, and most of them trans-
form/compile the goal/plan recognition problem into a plan-
ning problem to be solved by a planner. Such transformation
or compilation process may not necessarily work with in-
complete STRIPS domain models, given the very large num-
ber of potential models. The approaches of E.-Martı́n, R.-
Moreno, and Smith and Pereira, Oren, and Meneguzzi could
work in incomplete domain models with some adaptations
(e.g., by ignoring all possible preconditions and effects),
though these approaches would likely be less accurate than
our approach because these approaches do not deal inten-
tionally with possible preconditions and effects. We leave a
comparison with these two approaches to future work.

Finally, the motivation for our use of incomplete do-
main models comes from work on planning algorithms us-
ing such models, of which there are several recent ap-
proaches in the literature (Garland and Lesh 2002; Robert-
son and Bryce 2009; Nguyen, Kambhampati, and Do 2010;
Weber and Bryce 2011; Nguyen and Kambhampati 2014;
Nguyen, Sreedharan, and Kambhampati 2017).

7 Conclusions and Future Work
In this paper, we have developed a novel goal recognition ap-
proach that deals with incomplete domain models that have
possible, rather than known, preconditions and effects. The
main contributions of this paper are: first, a landmark ex-
traction algorithm that deals with incomplete domains mod-
els using ORPG; second, a goal recognition heuristic for in-
complete domain models that relies on landmarks; third, a
dataset with thousands of problems that use incomplete do-
main models (annotated with possible preconditions and ef-
fects). Experiments over thousands of goal recognition prob-
lems in 15 planning domain models show that our approach
is fast and accurate when dealing with incomplete domains
at all variations of observability and domain incompleteness.

As future work, we aim to explore multiple refinements
of our goal recognition approach. First, we aim to explore
the set of possible preconditions for extracting landmarks,
since our approach only explores the set of possible add ef-
fects to build an ORPG. Second, we intend to use a prop-
agated RPG to reason about impossible incomplete domain
models, much like in (Weber and Bryce 2011), to build a
planning heuristic. Third, we aim to use a bayesian frame-
work to compute probabilistic estimations of which possible
complete domain is most consistent with the observations.
Forth, we intend to combine the concept of landmarks and
planning heuristics to enhance the process of goal recogni-
tion (Pereira, Oren, and Meneguzzi 2017b). Finally, we aim
to explore recent work that could be used as part of a com-
plete methodology to develop domains includes an approach
to acquire and infer information from domains with incom-
plete information based plan traces. More specifically, Zhuo,
Nguyen, and Kambhampati (2013) developed an approach
to refine incomplete domain models based on plan traces.
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