The More the Merrier?! Evaluating the Effect of Landmark Extraction Algorithms on Landmark-Based Goal Recognition

> Kin Max Piamolini Gusmão Ramon Fraga Pereira Felipe Meneguzzi

Pontifical Catholic University of Rio Grande do Sul - Brazil

February 8, 2020

• Motivation

• Goal Recognition and Landmark-Based Goal Recognition

• Experimentation Methodology

- Heuristics and Algorithms;
- Dataset;
- Evaluation Metrics

• Results

- Missing and Full Observations
- Missing, Noisy and Full Observations

• Conclusions

- **Explore** different landmark extraction algorithms with landmark-based heuristics for goal recognition;
- Evaluate wether more landmarks lead to a more precise recognition;
- Inform future fine-tuning of algorithms to enhance recognition precision;

- **Goal Recognition**: recognize agent's goal based on it's interactions with the environment;
- Landmarks: necessary facts or actions that must be present in any solution plan;
- Landmark-Based Goal Recognition: goal recognition techniques that leverage on landmarks.

Experimentation Methodology

- Heuristics and Algorithms
- Dataset
- Evaluation Metrics

Experimentation Methodology: Heuristics and Algorithms

- 2 landmark-based heuristics for goal recognition¹:
 - Goal Completion Heuristic (*h*_{gc});
 - Landmark Uniqueness Heuristic (*h*_{uniq}).
- 5 landmark extraction algorithms:
 - Exhaust;
 - $h^{m2};$
 - *RHW*³;
 - Zhu & Givan⁴;
 - Hoffamnn et al.⁵
- 2 threshold values: 0% and 10%.

¹ Pereira et al., Landmark-Based Heurristics for Goal Recognition. AAAI, 2017.

² Keyder et al., Sound and complete landmarks for and/or graphs. ECAI, 2010.

³Richter et al., Landmarks revisited. AAAI 2008.

⁴ Zhu L. e Givan R., Landmark extraction via planning graph propagation, 2003.

⁵ Hoffmann et al., Ordered landmarks in planning. JAIR, 2004.

- Dataset with goal and plan recognition problems⁶;
- Problems from 15 classical planning domains;
- 6313 problems with missing and full observations with 5 observability levels (10%, 30%, 50%, 70% and 100%);
- 2850 problems with missing, noisy and full observations with 4 observability levels (25%, 50%, 75% and 100%).

⁶ Pereira F. R. e Meneguzzi F., Goal and plan recognition datasets using classical planning domains. 2017.

- Percentage of extracted landmarks;
- Accuracy (%);
- Spread in \mathcal{G} ;
- Accuracy/Spread in ${\cal G}$ ratio;
- Recognition time (s).

- Missing and Full Observations
- Missing, Noisy and Full Observations

Figure: Percentage of extracted landmarks.

Kin Max Piamolini Gusmão

Figure: Accuracy/Spread in \mathcal{G} ratio for h_{gc} .

Kin Max Piamolini Gusmão

Figure: Accuracy/Spread in \mathcal{G} ratio for h_{uniq} .

Kin Max Piamolini Gusmão

Figure: Recognition time for h_{gc} .

Kin Max Piamolini Gusmão

Figure: Recognition time for h_{uniq} .

Kin Max Piamolini Gusmão

Figure: Percentage of extracted landmarks.

Kin Max Piamolini Gusmão

Figure: Accuracy/Spread in \mathcal{G} ratio for h_{gc} .

Kin Max Piamolini Gusmão

Figure: Accuracy/Spread in G ratio for h_{uniq} .

Kin Max Piamolini Gusmão

Figure: Recognition time for h_{gc} .

Figure: Recognition time for h_{uniq} .

- Quantity is not more important than quality;
- Algorithms with higher extraction capability obtained better performance with h_{uniq};
- Quantity matters more when dealing with noisy observations.

Thank You!

Questions?