Monitoring Plan Optimality using Landmarks and Domain-Independent Heuristics

Ramon Fraga Pereira†, Nir Oren‡, and Felipe Meneguzzi†

> ‡University of Aberdeen, United Kingdom n.oren@abdn.ac.uk

> > February, 2017

- Agents often deviate from the optimal plan, either because they have concurrent/multiple goals or because they are not perfect optimizers;
- In this work, we develop an approach to detect which actions during a plan execution do not advance (are non-optimal) to perform an optimal plan for achieving a monitored goal;
- Our contribution is twofold:
 - We formalize this problem using **planning domain definition**; and
 - We combine two planning techniques to solve this problem: **landmarks** and **domain-independent heuristics**.
- We evaluate our approach using several planning domains, and show that our approach yields **high accuracy at low computational cost**.

イロト イポト イヨト イヨト

Definition (Planning)

A planning instance is represented by a triple $\Pi = \langle \Xi, \mathcal{I}, G \rangle$, in which:

- Ξ = (Σ, A) is the domain definition, and consists of a finite set of facts Σ and a finite set of actions A (action costs = 1);
- *I* and *G* represent the planning problem, in which *I* ⊆ Σ is the initial state, and *G* ⊆ Σ is the goal state.
- **Heuristics** are used to estimate the cost to achieve a particular goal. In this work, we use **domain-independent heuristics**;

Definition (Landmarks)

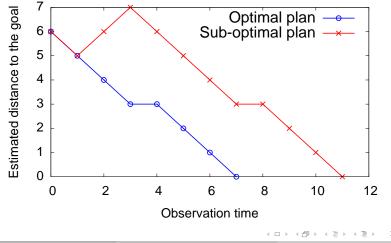
Given a planning instance $\Pi = \langle \Xi, \mathcal{I}, G \rangle$, a fact (or action) *L* is a landmark in Π iff *L* must be satisfied (or executed) at some point along all valid plans that achieve *G* from \mathcal{I} .

イロト 不得下 イヨト イヨト ニヨー

Background: Plan Optimality Monitoring Problem

Definition (Plan Optimality Monitoring Problem)

- Domain definition (Facts and Actions) $\Xi = \langle \Sigma, \mathcal{A} \rangle$;
- Initial state \mathcal{I} ;
- A monitored goal G; and
- An observation sequence O = (o₁, o₂, ..., o_n), representing a full observable plan execution;
- The solution to a plan optimality monitoring problem is the set of observations (**non-optimal actions**) that do not advance an optimal plan that the agent may be following.


= nac

Plan Optimality Monitoring Approach

- Our approach combines planning techniques, *i.e.*, landmarks and domain-independent heuristics.
- We use **landmarks** to obtain information about **what cannot be avoided** to achieve a monitored goal *G*; and
- We use heuristics to analyze possible plan execution deviation.

Analyzing Plan Execution Deviation

If an observation o_i results a state s_i, we consider a deviation from a plan to occur if h(s_{i-1}) < h(s_i).

Pereira, Oren, and Meneguzzi

Monitoring Plan Optimality

February, 2017 6 / 13

Predicting Non-regressive Actions via Landmarks

- To predict which actions could be executed in the next observation, we **analyze the closest landmarks by estimating the distance** (using h_{max}) from the current state to the extracted landmarks \mathcal{L} , namely:
 - For every fact landmark $l \in \mathcal{L}$ in which the estimated distance is 0, we select those actions $a \in \mathcal{A}$ such that $l \in \text{pre}(a)$; and
 - For every fact landmark *l* ∈ *L* in which the estimated distance is 1, we select those actions *a* ∈ *A* such that *pre*(*a*) ∈ current state and *l* ∈ eff(*a*)⁺;
- These predicted actions may reduce the distance to the monitored goal and next landmarks.

- To detect sub-optimal steps (actions) in observation sequence *O* for a monitored goal *G*, we combine the techniques we developed and filter with the following condition:
 - An observed action $o \in O$ is considered sub-optimal if:
 - $o \notin$ set of predicted actions AND $(h(s_{i-1}) < h(s_i))$.

Detecting Sub-Optimal Steps (Monitor Plan Optimality)

Algorithm 2 Plan Optimality Monitoring.

Parameters: $\Xi = \langle \Sigma, \mathcal{A} \rangle$ planning domain, \mathcal{I} initial state, *G* monitored goal, and *O* observed actions. **Output:** $A_{SubOptimal}$ as sub-optimal actions.

- 1: **function** MONITORPLANOPTIMALITY(Ξ, \mathcal{I}, G, O)
- 2: $A_{SubOptimal} \leftarrow \langle \rangle \triangleright Actions that do not contribute to achieve the monitored goal G.$
- 3: $L \leftarrow \text{ExtractLandmarks}(\mathcal{I}, G)$
- 4: $\delta \leftarrow \mathcal{I}$ $\triangleright \delta$ is the current state.
- 5: $\eta_{PActions} \leftarrow \text{NONREGRESSIVEACTIONS}(\Xi, \delta, L)$
- 6: $D_G \leftarrow \text{ESTIMATEGOALDISTANCE}(\delta, G) \Rightarrow A \text{ desired domain-independent heuristic to estimate goal } G \text{ from } \delta.$
- 7: for each observed action o in O do
- 8: $\delta \leftarrow \delta$.Apply(*o*)
- 9: $D'_G \leftarrow \text{ESTIMATEGOALDISTANCE}(\delta, G)$
- 10: **if** $o \notin \eta_{PActions} \land (D'_G > D_G)$ then
- 11: $A_{SubOptimal} \leftarrow A_{SubOptimal} \cup o$
- 12: $\eta_{PActions} \leftarrow \text{NonRegressiveActions}(\Xi, \delta, L)$
- 13: $D_G \leftarrow D'_G$
- 14: return $A_{SubOptimal}$

Sac

- We evaluate our approach over 10 planning domains;
 - Precision: percentage of correctly detected sub-optimal steps;
 - Recall: percentage of true sub-optimal steps, actually detected.
- We use 6 domain-independent heuristics:
 - h_{adjsum} , $h_{adjsum2}$, $h_{adjsum2M}$, h_{combo} , h_{ff} , and h_{sum} ;
- To extract landmarks and their ordering, we use an algorithm developed by Hoffman *et al.* (Ordered Landmarks in Planning. JAIR, 2004);
- We manually generate the dataset from medium and large planning problems, containing both optimal and sub-optimal plan execution.

イロト イポト イヨト イヨト

Experiments and Evaluation (2 of 2)

Domain	0	$ \mathcal{L} $	Heuristic	Time	Precision / Recall / F1
BLOCKS-WORLD	15.2	20.1	h _{adjsum2} / h _{ff}	0.19 / 0.21	100% / 74.2% / 85.2%
Driver-Log	20.1	53.6	h _{adjsum2M}	1.33	100% / 100% / 100%
Depots	16.7	64.7	h _{adjsum2} / h _{ff}	1.22 / 1.43	81.2% / 100% / 89.6%
EASY-IPC-GRID	14.1	48.5	h _{adjsum2} / h _{ff}	0.77 / 0.86	100% / 100% / 100%
Ferry	13.8	18.1	h _{adjsum} / h _{sum}	0.23 / 0.19	88.8% / 78.5% / 83.1%
LOGISTICS	20.8	24.0	h _{adjsum2} / h _{ff}	0.35 / 0.55	100% / 91.3% / 95.4%
Miconic	18.1	19.4	h _{adjsum} / h _{sum}	0.29 / 0.21	100% / 86.9% / 93.1%
SATELLITE	25.7	60.8	h _{adjsum2M}	9.58	88.8% / 53.3% / 66.6%
Sokoban	24.0	76.5	h _{combo}	4.28	90.9% / 83.3% / 86.9%
Zeno-Travel	12.2	38.7	h _{adjsum2} / h _{ff}	0.86 / 0.99	100% / 92.8% / 96.2%

Table: Plan Optimality Monitoring experimental (best) results.

= nar

イロト イポト イヨト イヨ

Conclusions

• Contribution:

- Formalized plan optimality monitoring problem as planning;
- Developed an approach based on landmarks and heuristics;
- We show that our approach has high accuracy in almost all domains (besides SATELLITE).

Limitations:

• We do not yet deal with partial observability;

• Future Work:

- Evaluate our approach using more modern domain-independent heuristics;
- Try/use different landmark extraction algorithms; and
- Apply our approach to goal recognition (online and offline).

Thank you! Questions?

Pereira, Oren, and Meneguzzi

Monitoring Plan Optimality

February, 2017 13 / 13