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Abstract

Online goal recognition is the problem of recognizing the
goal of an agent based on an incomplete sequence of ob-
servations with as few observations as possible. Recogniz-
ing goals with minimal domain knowledge as an agent exe-
cutes its plan requires efficient algorithms to sift through a
large space of hypotheses. We develop an online approach to
recognize goals in both continuous and discrete domains us-
ing a combination of goal mirroring and a generalized notion
of landmarks adapted from the planning literature. Extensive
experiments demonstrate the approach is more efficient and
substantially more accurate than the state-of-the-art.

Introduction
Goal recognition is the problem of recognizing the goal
of an agent based on an incomplete sequence of observa-
tions. Real-world applications include human-robot interac-
tion (Wang et al. 2013), intelligent user interfaces (Blay-
lock and Allen 2004; Hong 2001), and recognizing navi-
gation goals (Liao et al. 2007). Most approaches to goal
recognition rely on a plan library describing the plans as-
sumed known by the agent being observed to achieve its
goals (Sukthankar et al. 2014). While these approaches can
be computationally efficient, they require substantial do-
main knowledge, and make strong assumptions about the
preferences of observed agents. A different approach is
plan recognition as planning (Ramı́rez and Geffner 2010;
Sohrabi et al. 2016) whereby a planner is used in the recog-
nition process to generate recognition hypotheses as needed,
eliminating the need for a plan library. This approach has
shown that it is possible to perform effective plan and goal
recognition using only a domain-theory describing actions
in the environment as domain knowledge. However, such ap-
proaches are computationally expensive as they require mul-
tiple executions of a planning algorithm to compute alterna-
tive ways in which the observed agent can achieve a goal.
Furthermore, most existing approaches assume all observa-
tions, even if noisy or incomplete, are received at once (of-
fline) at the end of their execution (Pereira et al. 2017a). This
assumption does not hold in many realistic environments,
where one must recognize goals online. In online recogni-
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tion, observations are provided incrementally, and the ob-
jective is to recognize the goal as soon as possible, without
knowledge which one is the final observation.

In this paper, we develop an efficient approach for online
goal recognition as planning that generalizes over both dis-
crete (STRIPS style) and continuous (navigation) domains.
Our approach achieves substantial runtime efficiency by re-
ducing the complexity of the problems sent to an underly-
ing planning algorithm using an online goal mirroring tech-
nique (Vered et al. 2016; Vered and Kaminka 2017) and
minimizing the number of goal hypotheses to be computed
using landmarks computed once during run-time (Pereira
and Meneguzzi 2016; Pereira et al. 2017b), and a landmark-
based heuristic (Pereira et al. 2017a). To generalize over dis-
crete and continuous domains we adapt the notion of plan-
ning landmarks (Hoffmann et al. 2004) to comprise its orig-
inal planning semantics as well as continuous spatial do-
mains and develop a new and efficient algorithm to generate
spatial landmarks. Since our approach can use any type of
PDDL (McDermott et al. 1998) planning algorithm or path
planner (Sucan et al. 2012), we can leverage current and fu-
ture advances in efficiency in such algorithms.

This paper makes three key contributions: (a) a novel goal
recognition approach for both discrete and continuous do-
mains; (b) an online approach to efficiently recognize goals
early in the observed agent’s plan execution; (c) a novel
notion of landmarks encompassing discrete and continuous
domains and an algorithm to generate such landmarks. We
evaluate the resulting approach empirically over hundreds of
recognition problems in classical and motion planning do-
mains. The results show superior efficiency and generally
superior recognition quality over the state of the art.

Background and Related Work
Library-based goal recognition assumes the existence of a li-
brary of plans leading to known goals. Such methods include
probabilistic inference (Bui 2003; Avrahami-Zilberbrand
and Kaminka 2007), grammar-based approaches (Pynadath
and Wellman 2000; Geib and Goldman 2009; Sadeghipour
and Kopp 2011; Geib 2015; Mirsky and Gal 2016), and oth-
ers (Sukthankar et al. 2014). While often efficient, these
methods are limited to recognizing goals for which plans
are a-priori known, and encoded in the plan library.

Plan recognition based on domain-theories removes the



reliance on a plan-library, assuming the any valid sequence
of actions is a possible plan. For example, plan recogni-
tion as planning (PRP) (Ramı́rez and Geffner 2009; 2010;
Sohrabi et al. 2016) uses a planner to generate plan hy-
potheses dynamically, based on the domain-theory and the
observations. More efficient offline approaches (Pereira and
Meneguzzi 2016; Pereira et al. 2017a) avoid planning al-
together, instead generating planning landmarks from the
domain theory prior to recognition. Such landmarks are ac-
tions (or state properties) that must be included in plans that
achieve specific goals (Hoffmann et al. 2004), and thus pro-
vide strong evidence for recognizing these goals,

Some domain-theory methods address online recognition.
Early seminal work by Hong (2001) uses a goal graph rep-
resentation for online goal recognition, constructed from
a domain theory and incoming observations; recognized
goals are not probabilistically ranked. In contrast, Baker
et.al (2005) use a bayesian framework to calculate goal like-
lihoods by marginalizing over possible actions and gener-
ating state transitions. Martin et al. (2015) take an extreme
approach, using significant offline computation to eliminate
all online planner calls by pre-computing cost estimates.

In contrast, Vered et al. (2016; 2017) present an online
PRP algorithm for continuous spaces, using off-the-shelf
motion planners to estimate goal likelihoods. Like other PRP
methods, they rely on repeated calls to a planner. We gener-
alize their algorithm to also work in discrete domains, and
show how to heuristically use landmarks, computed only
once at run-time, to reduce the number of planner calls and
improve accuracy. To do this, we generalize the notion of
landmarks to motion planning in continuous spaces, and
show how to use landmarks in an online fashion.

Combining Landmarks and Planning
We now introduce an online goal recognition approach
that combines the online use of a planner, and landmark
information—computed once—for increased efficiency and
accuracy. We start by adapting the formalization of Pom-
merening and Helmert (2015) to accommodate both dis-
crete and continuous planning problems in the same formal
framework. We then develop a baseline online recognition
algorithm; algorithms to extract landmarks from continuous
spaces; and a combined recognition algorithm that uses both
a planner and landmarks in the recognition process.

Online Goal Recognition Using Planning
We define the goal recognition problem R as a quintuple
〈s0,W,G,O,M〉. W is the set of possible states of the
world (in discrete domains, this is implicitly represented by
the domain theory; in continuous spaces, it is the standard
motion planning work area (LaValle 2006)) and s0 ∈W the
agents’ initial state; G is a set of k ≥ 1 goals g1, . . . , gk;
each goal gj ∈ W , a partial state in W; The ordered set of
observations O is noisy and potentially incomplete (Sohrabi
et al. 2016) and is defined for a subset of W . M = 〈V,O〉
is a domain model defined by a set of variables V and a set
of operators O over states where states are defined over a
set of variables V with finite domains (Pommerening and
Helmert 2015). Partial states s map a subset of variables of

s, vars(s) to values in their domain so that vars(s) ⊆ V .
Consistent partial states are such that all their shared vari-
ables have the same value, i.e. s and s′ are consistent iff
s(V ) = s′(V ) for all V ∈ vars(s) ∩ vars(s′). We use the
s |= s′ as a shorthand for the relation that states that s is con-
sistent with s′. States are such that they contain all variables
so that vars(s) = V . Facts are variable/value pairs (i.e. they
state what is the current value of a variable) V 7→ v. The
finite set of operators O contains state transformation oper-
ations o = 〈pre(o), eff (o), cost(o)〉 with preconditions, ef-
fects and cost. An operator o is applicable in state s if pre(o)
is consistent with s (i.e. s |= pre(o)). The set of operators
induces a transition function γ that maps variable assign-
ments and operators into new variable assignments. Apply-
ing o to s results in a new state s′ that is consistent with
eff (o) and agrees with all variables not in the effect (i.e.
s′ |= eff (o) ∪ (s/vars(eff (o)))). In this paper, we assume
that cost(o) is 1 for discrete domains, and the euclidean dis-
tance between the value of the position variables in the pre-
condition and the effect of a move action.

A planning problem Π = 〈s0, g,W,M〉 may have a num-
ber of solutions π = 〈o1, . . . , on〉 with oi ∈ O such that
the sequential application of oi starting from initial posi-
tion, s0, leads to a state sn |= g. A plan π∗ is optimal if∑
oi∈π∗ cost(oi) is minimal. Thus, M denotes a generative

model for intentional plans for the pairs 〈s0, gi〉 ∀gi ∈ G,
when transitioning to plan recognition we assume that the
states in the observation O are consistent with valid states
generated by plans generated by M . Given the problem R,
the task is to choose a specific goal g ∈ G that best matches
the observations O. Vered et al. (2016) define best matches
as minimizing matching error, this refers to minimizing the
difference between the accumulated cost, measured by con-
catenating the observations, against the cost of the hypothe-
sized plan trajectory to reach goal g. Note that though some
work on plan recognition as planning assumes observations
to be actions, without loss of generality, these observations
can be converted to sequences of states using the model M
and taking the last known state s and applying the effects of
operator o ∈ O matching the observation o ∈ O.

We build on goal mirroring, an online goal recognition
approach first described in (Vered et al. 2016), and applied
to recognition in continuous domains and generalize this al-
gorithm to admit discrete domains as well. For each goal
gk ∈ G in a problem R, goal mirroring compares the costs
of two plans: an ideal plan denoted ik, and an observation-
matching plan, denoted mk. In the 3D navigation domain
cost is defined according to distance, as the distance reflects
the “effort” needed to achieve the goal; and the optimality
is determined according to cost alone. For continuous vari-
ables we consider cost to be the euclidean distance between
observations whereas for discrete ones we consider cost to
be the number of observations.

The ideal plan ik is an optimal plan, computed once from
the initial state s0 to each goal gk ∈ G. The observation-
matching plan mk is constructed for each new observation
such that it always visits the states induced by all the ob-
servations thus far, and then optimally reaches the goal.
Ramirez and Geffner (2009, Theorem 7) show that neces-



sarily, a goal gk for which the two plans, mk and ik , have
equal costs is a solution to the goal recognition problem. We
use this to probabilistically rank the goals. The closer two
costs for ik and mk are, the higher the likelihood of gk. The
plan hypothesis mk is constructed for each new observation
by concatenating two parts. First, a plan prefix m− which is
a concatenation of all observations received to date. This is
very efficiently done by simply adding the latest observation
to the current prefix (which is initially ∅). As shown in (Mas-
ters and Sardina 2017) this may be generated only once for
all possible goal trajectories. Second, a plan suffix m+

k gen-
erated by a motion planner, from the last state of the prefix
(after incorporating the observations), to the goal state, gk.
Most computation takes place here by calling the planner.

The plan prefix m− and suffix m+
k are handled slightly

differently in continuous and discrete domains. In contin-
uous domains, plans and observations are both trajectories
in Rn. Thus updating m− with a new observation o is a
straightforward operation of adding the point o to a trajec-
tory, or (if o is an observed trajectory segment) connecting
the end-point of m− to the new observation o. The suffix
trajectory is generated by calling a motion planner to gen-
erate a plan from the end point of o to a goal gk. In dis-
crete domains, the synthesis of the sequence m+

k by calling
a symbolic planner involves updating the initial known state
by successively updating the variables of s0 so that they are
consistent with the variables in each observation in m−.

Online Goal Recognition Using Landmarks
In the planning literature, landmarks are facts (alternatively,
actions) that must be true (alternatively, executed) at some
point along all valid plans that achieve a goal from an ini-
tial state (Hoffmann et al. 2004). Landmarks are often par-
tially ordered based on the sequence in which they must
be achieved. Given their usefulness for planners and plan-
ning heuristics (Richter and Westphal 2010), research has
yielded multiple notions of landmarks (Porteous and Cress-
well 2002), including that of disjunctive landmarks. Pereira
et al. (2016; 2017a) show that it is possible to carry out of-
fline plan recognition by reasoning heuristically about land-
marks. The key idea is to maintain a list of ordered land-
marks associated with each goal, though partial overlaps
are allowed. The goal completion heuristic from Pereira et
al. (2017a) matches the observations against this list. This
heuristic marks a landmark as achieved when facts in the ob-
servation match a landmark. The heuristic then uses the ratio
of the number of landmarks achieved to the total number of
landmarks associated with the goal, inducing a ranking of
the goals, used as a proxy for estimating P (g|O).

In principle, we can translate the same idea into recog-
nition in continuous domains. In such domains, landmarks
can be defined as areas surrounding goals, as illustrated in
Figure 1 where black dots represent goals and the surround-
ing rectangles represent the continuous landmark areas. In
this case, to reach a goal, the observed motion must intersect
(go through) the corresponding landmark area. Naturally, we
would prefer such areas to be maximal, but must maintain
the restriction that landmarks cover only obstacle-free space,
and do not intersect completely with other landmarks.
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Figure 1: Landmarks for Cubicles environment.

Algorithm 1 Online Goal Recognition With Landmarks.
Require: L← EXTRACTLANDMARKS(s0,W,M,G)
Require: R = 〈s0,W,G,O,M〉

1: function CONTONLINELANDMARKS(R,L)
2: static FL← ∅
3: static activeF l← ∅
4: static PruneG← ∅
5: for all oi ∈ O do
6: activeFL, FL ←

ACHIEVELANDMARK(oi, L, activeFL, FL)
7: for all gk ∈ G do
8: if lk ∈ FL then
9: PruneG← PruneG+ gk

10: else
11: PruneG← PruneG− gk
12: for all gk ∈ G ∩ PruneG do
13: P (gk|O)← RANK(gk)

14: return P

The two characteristic operations between observations
and landmarks in continuous environments are: testing
whether a landmark has been observed, and differentiating
between what constitutes an active landmark, and, how to
identify a landmark that has recently been active but no
longer fits the last observation (an achieved landmark). Al-
gorithm 1 uses landmarks and the notions above for on-
line recognition as follows. First, we pre-compute the land-
marks for the problem and provide these (cached land-
marks) to the algorithm at every execution. As we con-
tinually update our goal ranking by successive calls to
CONTONLINELANDMARKS(R,L), we maintain a number
of data structures between the calls (identified as static in
Lines 2-4). We maintain FL, the ordered set of fact land-
marks that have been achieved. We also need to remember
the currently active landmark against which we will com-
pare every additional observation, activeF l and to maintain
PruneG, the group of goals that has been pruned out during
the recognition process. We maintain this group of pruned
goals in case of backtracking in which we will have to re-
introduce a recently pruned goal intoG. For every incremen-
tally revealed observation, oi, we check if this observation



Algorithm 2 Achieve landmark in continuous domains.
1: function ACHIEVELANDMARK( oj , L, activeFL, FL)

2: if oj ∩ activeFL = ∅ ∧ activeFL 6= ∅ then
3: FL← FL ∪ activeFL . activeFL is passed, i.e. a

fact landmark
4: activeFL← ∅
5: else if oj ∩ activeFL = ∅ ∧ activeFL = ∅ then
6: for all lm ∈ L do
7: if oj ∩ lm 6= ∅ then
8: activeFL← lm . Found an active landmark
9: return activeFL, FL

has caused any landmarks to be activated or achieved via the
ACHIEVELANDMARK (Algorithm 2) function in Line 6.

Because landmarks are necessary conditions to each goal,
we can use the last ordered landmark associated with a goal
to be the threshold, which provides evidence that an agent is
pursuing a certain goal. Now that we can mark landmarks
as achieved, we use them to infer that a certain goal can
be removed from further consideration for recognition, as
it has been passed. Thus, each goal gk has a corresponding
landmark lk ∈ L as the area that contains (i.e. is necessary
for) that goal position. We then check these landmarks lk for
each goal gk, and, if it has been passed we prune gk out or
reinstate it if necessary in Lines 9–11.Finally, in Line 13, we
iterate over all unpruned goals ranking them in decreasing
order according to percentage of achieved landmarks. Con-
sequently, the goals with the highest completion percentage
will be ranked first and so on in consecutive order.

Analogously to the discrete case, we match observations
to landmarks, by intersecting observations (points) with
each landmark. However, unlike the discrete case where,
once an observation causes a landmark to be achieved, the
next observation will no longer be equal to the landmark
(i.e., the next step will go out of the landmark), in the con-
tinuous case this may not be so. We may see several con-
secutive observations, all in the same landmark area. Only
once the observations no longer match the landmark we can
mark it as passed. Thus continuous landmarks, in the form
of areas in spaces, define an inclusive disjunction: multiple
observations within an area cause the landmark to be marked
activated. We therefore define activeFL as the currently ac-
tive landmark while FLmarks the landmarks that have been
active but are now achieved.

Algorithm 2 is a general algorithm that evaluates whether
landmarks are achieved in both discrete and continuous do-
mains. Variable activeFL either holds the currently active
landmark, which means that the observations are within that
landmark area, effectively making the goal corresponding
to the landmark a leading goal hypothesis, or it could be ∅.
Line 2 determines if a new incoming observation oj has just
caused an active landmark to become achieved. If oj is not
currently in the activeFL area, and activeFL is not empty,
it means the observations have just left the activeFL area
and have therefore caused that landmark to be achieved. We
can therefore add it to the FL set (Line 3) and re-initialize

activeFL (Line 4). However, if oj is not currently in the
activeFL area, and activeFL is empty we check if this
new observation has caused any landmarks to be activated.
In this case we check whether the observation is part of a
landmark area and insert it into activeFL (Lines 5– 8).

Extracting Landmarks in Continuous Space
We can use any one of a number of landmark extraction
algorithms to extract landmarks in discrete environments.
Here, we adapt the algorithm of Hoffman et al. in (2004)
since it efficiently approximates landmark sets that are good
enough for the domains we use. This algorithm builds a
tree in which nodes represent landmarks and edges repre-
sent necessary prerequisites between landmarks, thus repre-
senting the landmarks and their ordering. A node in this tree
represents a conjunction of facts that must be true simulta-
neously at some point during the execution of a plan, and the
root node is a landmark representing the goal state.

Since the interpretation of landmarks we rely on for plan
recognition is that of bottlenecks in the state space, we try to
partition a continuous space so that such bottlenecks become
identifiable areas in the continuous space. Specifically, to
extract landmarks in continuous environments we partition
the area using the wall corners as references, to eventually
identify pathways between individual “rooms” in the space.
Though we define a landmark generation algorithm for con-
tinuous path planning domains, our approach should work
with any notion of numeric landmarks, e.g. recent work on
landmarks for hybrid domains (Scala et al. 2017).

Algorithm 3 extracts continuous landmarks using a world
configuration W and the set of goals G, and maps each
g ∈ G to a rectangular area that represents a landmark po-
sition.1 The landmark area for each goal starts as the out-
ermost bounding box in the environment in Line 4. The
algorithm iteratively scales it down by generating a hori-
zontal or vertical line limit using the closest visible walls
in Line 6. We define visibility as there being no obsta-
cles between the goal and the wall in question and assume
that walls correspond to axis-aligned rectangles, though at
greater computational cost we could use more sophisticated
notions of visibility for any polygonal obstacle through a
visibility graph (Choset et al. 2005, Chapter 5). If a single
landmark area contains more than one goal, we partition this
area again based on the midpoint between an arbitrary goal
and the remaining ones to obtain new non-overlapping ar-
eas for each goal in Line 13, discarding the original area.
This partition separates rectangles with multiple goals into
a partition analogous to a Voronoi diagram with rectangular
areas (Aurenhammer 1991).

Figure 1 illustrates such landmark partition: the black
lines represent walls; black dots represent goal candidates;
and the different colored rectangles represent landmark ar-
eas. We can see the leftmost wall limiting the width of the
landmark areas B and C of the two leftmost goals while
the center wall limits their height. The dashed area includ-
ing goals G and I exemplify a partition using the midpoints

1Note that we include additional parameters to match the algo-
rithm for extracting landmarks for discrete domains.



Algorithm 3 Landmark Extraction for continuous domains.
1: function EXTRACTLANDMARKS(s0,W,M,G)
2: landmarks← [] . Initialize an empty dictionary
3: for all g ∈ G do
4: rect← BOUNDINGBOX(g,W )
5: for all wall ∈W do
6: if VISIBLEFROMCENTROID(g, wall,W ) then
7: rect← UPDATEBOUNDINGBOX(rect, wall)
8: if rect 6∈ landmarks then landmarks[rect]← ∅
9: landmarks[rect]← landmarks[rect] ∪ goal

10: for all (rect, goals) ∈ landmarks do
11: if |goals| > 1 then
12: for all g ∈ goals do
13: landmarks[MIDPOINTBOX(g, goals)]← g

14: REMOVE(landmarks[rect]) . Remove rect index
from dictionary

15: return landmarks

between these two goals from a square that initially con-
tained both goals. Now that we can compute landmarks for
both discrete and continuous domains, we proceed to em-
ploy them to perform online goal recognition.

Goal Mirroring with Landmarks
In general, PRP recognizers repeatedly call a planner during
recognition, and this is exacerbated in online recognition, as
the goal recognizer previously described calls the planner
to compute a new plan suffix, m+

k with every observation,
and for every goal gk ∈ G. By combining goal mirroring
and the evidence provided by landmarks, we exploit both the
flexibility of a PRP approach and the efficiency of reasoning
about landmarks. Specifically, we use the information con-
veyed by the landmarks as a pruning mechanism with which
we may rule out hypotheses, reducing |G| and therefore the
number of calls to the planner and overall run-time.

We extensively modify the original goal mirroring algo-
rithm to use landmark information as a pruning mechanism
in Algorithm 4. For simplicity of the algorithm we assume
agents do not backtrack and therefore eliminate the need to
monitor the last achieved landmark and to maintain a sepa-
rate set of pruned out goals. Like Algorithm 1, we assume a
single cached computation of domain specific landmarks for
all monitored goals, and the initialization of the previously
introduced FL and activeFL in Lines 2– 3. Additionally, as
part of the Goal Mirroring algorithm we now calculate the
ideal plan (minimum cost) from the initial position to each
possible goal (Line 4).

For every incoming observation oj ∈ O, we update
the plan prefix m− in Line 6 and then proceed to ascer-
tain whether this observation has caused any landmarks to
be achieved via the previously introduced ACHIEVELAND-
MARK function. If the observation has caused a landmark to
be achieved, FL will be updated and we may use the ex-
isting fact landmarks to prune unlikely goals in Line 10, in
which case we only call the planner to compute plans for
those goals whose landmarks have been satisfied in the cor-
rect order and have not been passed (Lines 12–14).

Algorithm 4 Goal Mirroring With Landmarks.
Require: R = 〈s0,W,G,O,M〉
Require: L← EXTRACTLANDMARKS(s0,W,M,G)

1: function ONLINEGMWLANDMARKS(R,L)
2: static FL← ∅
3: static activeFL← ∅
4: for all gk ∈ G do ik ← PLANNER(s0,M, gk)

5: for all oj ∈ O do
6: m− ← m− ∪ oj
7: ACHIEVELANDMARK(oj , L, activeFL, FL)
8: for all gk ∈ G do
9: if lk ∈ FL then

10: G← G− gk
11: else
12: m+

k ← PLANNER(oj ,M, gk)
13: mk ← m− ⊕mk+
14: rankk ← cost(ik)/cost(mk)

15: for all gk ∈ G do
16: P (gk|O)← η · rankk
17: return P

We use the same ranking procedure as Vered and
Kaminka (2017) in which the goals are ranked accord-
ing to the ratio between the initially generated ideal plan
and the newly generated plan hypothesis, which is com-
prised of a concatenation of the plan prefix and plan suf-
fix (Lines 13– 14). Finally, the algorithm transforms these
rankings into probabilities P (gk | O) via the normalizing
factor η = 1/

∑
gk∈G rank(gk) and returns these rankings

in Lines 15–17. Mathematically, Algorithm 4 approximates
P (g | O) for all g ∈ G using landmarks to rank probabili-
ties, so that, when computing candidate goal probabilities in
the bayesian framework of Ramı́rez and Geffner 2010, we
compute P (O | g) = cost(ik)/(cost(m−) + cost(mk+)).
Since P (gk | O) = η

∑
gk∈G P (O | gk), our pruning step

updates P (gk) = 0 for all ruled-out goals thereby limiting
the number of times we need to call the planner.

Experiments and Evaluation
We empirically evaluated our approach on both discrete and
continuous environments, over hundreds of goal recognition
problems while measuring both efficiency and performance.

Evaluation on Continuous and Discrete Domains
For our continuous environment we used the domain of 3D
navigation, where the target is to recognize navigational
goals as soon as possible while the observations, i.e., ob-
served agents’ positions, are incrementally revealed. We
used TRRT (Transition-based Rapidly-exploring Random
Trees), an off-the-shelf planner that guarantees asymptotic
near-optimality by preferring shorter solutions, available as
part of the Open Motion Planning Library (OMPL (Sucan et
al. 2012)) along with the OMPL cubicles environment and
default robot. Each call to the planner was given a time limit
of 1 sec; and the cost measure being the length of the path.
We set 11 points spread through the cubicles environments.



Continuous Domains
GOAL MIRRORING GOAL MIRRORING WITH LANDMARKS ONLINE RECOGNITION WITH LANDMARKS

Domain
(# problems) |G| |O| |L| Time PC TPR FPR RF CV Time PC TPR FPR RF CV Time PC TPR FPR RF CV

Cubicles
(220) 11.0 26.5 11.0 104.70 265.0 100% 100% 20.2% 21.8% 85.90 184.8 78.2% 61.1% 24.3% 26.2% 0.020 0 78.3% 60.9% 21.7% 15%

Discrete Domains
GOAL MIRRORING GOAL MIRRORING WITH LANDMARKS ONLINE RECOGNITION WITH LANDMARKS

Domain
(# problems) |G| |O| |L| Time PC TPR FPR RF CV Time PC TPR FPR RF CV Time PC TPR FPR RF CV

Campus
(15) 2.0 5.4 8.6 0.441 12.8 60.0% 21.3% 57.3% 41.3% 0.212 7.7 96.4% 1.7% 96.4% 96.4% 0.065 0 92.8% 3.5% 92.8% 92.8%

IPC-Grid
(61) 8.3 21.8 10.2 10.36 209.1 87.2% 19.4% 36.6% 35.6% 3.29 71.2 55.6% 10.5% 45.8% 41.5% 0.335 0 59.4% 21.8% 32.6% 31.1%

Ferry
(28) 7.5 24.2 28.5 55.24 179.5 83.1% 10.2% 59.2% 57.2% 7.98 35.4 83.3% 3.1% 82.4% 82.1% 0.101 0 82.4% 5.4% 72.5% 71.9%

Intrusion
(45) 16.6 13.1 16.0 2.02 235.5 100% 7.2% 55.3% 55.3% 0.257 34.7 75.5% 3.6% 67.1% 67.1% 0.127 0 87.6% 3.9% 57.1% 55.1%

Kitchen
(15) 3.0 7.4 5.0 0.141 25.4 70.1% 18.4% 44.6% 36.1% 0.07 20.0 77.6% 17.9% 62.6% 58.3% 0.04 0 100% 50% 23.9% 23.9%

Logistics
(61) 10.4 24.4 16.1 53.82 199.3 95.4% 14.7% 26.9% 25.8% 14.39 49.6 61.7% 6.7% 49.1% 48.4% 0.594 0 56.1% 9.5% 40.5% 40.5%

Rovers
(28) 6.0 24.9 19.8 Timeout - - - - - 58.87 31.1 76.8% 4.8% 76.2% 75.1% 0.867 0 72.1% 8.5% 62.1% 62.1%

Satellite
(28) 6.4 16.9 10.1 93.89 177.2 100% 33.8% 36.1% 36.1% 5.18 30.6 81.8% 9.4% 72.8% 71.9% 1.09 0 78.2% 9.3% 64.4% 64.1%

Table 1: Experimental results for both continuous and discrete domains.

Discrete Domains
ONLINE RECOGNITION WITH LANDMARKS

Domain
(# problems) |G| |O| |L| Time TPR FPR RF CV

Blocks-World
(92) 20.2 20.3 21.0 0.251 39.4% 3.9% 38.1% 37.2%

Depots
(28) 8.8 27.4 33.2 0.812 49.5% 9.5% 32.1% 30.6%

Driver-Log
(28) 7.1 21.7 10.7 0.574 51.8% 8.8% 43.7% 40.1%

DWR
(28) 7.2 51.8 45.0 0.708 45.1% 7.9% 43.1% 33.5%

Miconic
(28) 6.0 35.5 25.5 0.711 82.5% 9.7% 62.6% 61.2%

Sokoban
(28) 7.1 27.7 9.8 0.772 58.1% 14.1% 36.0% 29.5%

Zeno-Travel
(28) 6.8 21.1 8.5 1.23 70.8% 6.4% 61.3% 59.7%

Table 2: Experimental results for discrete domains (large and
non-trivial planning problems).

We then generated two observed paths from each point to
all others, for a total of 110 × 2 goal recognition problems.
The observations were obtained by running the asymptoti-
cally optimal planner RRT* on each pair of points, with a
time limit of 5 minutes per run.

For our discrete environments we used the openly avail-
able datasets (Pereira and Meneguzzi 2017) based on the
ones developed by Ramı́rez and Geffner (2009; 2010).These
datasets comprise 15 domain models with thousands of non-
trivial and large goal recognition problems with optimal
and sub-optimal plans. We evaluated our approaches in sub-
optimal plans. Each goal recognition problem contains a do-
main description, initial state, set of candidate goals, a hid-
den goal, and an observation sequence representing a plan
that achieves the hidden goal. For our discrete planner we
used the JavaFF2 implementation of Fast-Forward (Hoff-
mann and Nebel 2001). We ran the experiments for discrete
environments with an 8GB memory limit on the JavaVM

2
https://github.com/Optimised/JavaFF

and a 2-minute time limit.
We evaluated our combined approach (GOAL MIRROR-

ING WITH LANDMARKS) both in terms of improvement in
efficiency and in terms of overall performance showing that
the improvement in efficiency did not come at the expense of
performance but rather improved it. We then contrasted the
performance with the existing PRP approach (GOAL MIR-
RORING) and our newly presented online recognition ap-
proach utilizing only the landmarks for ranking and pruning
out goals (ONLINE RECOGNITION WITH LANDMARKS).

Efficiency Measures We used two separate measures to
evaluate the overall efficiency of our approach: the number
of planner calls (PC) within the recognition process; and the
overall time (Time, in sec.) spent planning. Both these pa-
rameters measure the overhead of the PRP approach of us-
ing the planner and while they are closely linked, they are
not wholly dependent. While a reduction in overall number
of calls to the planner necessarily results in a reduction in
planner run-time, the total amount of time allowed for each
planner run may vary according to the difficulty of the plan-
ning problem and therefore create considerable differences.
Naturally, lower values are better.
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Figure 2: Comparison of average number of calls to planner.



0

20

40

60

80

100

C
ubicles

C
am

pus

IPC
-G

rid

Ferry

Intrusion

Kitchen

Logistics

Satellite

T
im

e
 I
m

p
ro

v
e

m
e

n
t 
P

e
rc

e
n

t

Goal Mirroring with Landmarks
Online Recognition with Landmarks

Figure 3: Comparison of runtime improvement.

Performance Measures We used several complementary
measures for a thorough evaluation of recognition perfor-
mance. True positive rate (TPR) measures the number of
times an approach recognized the correct goal as a possi-
ble hypothesis, i.e. didn’t prune it out due to landmarks al-
though didn’t necessarily rank it as the chosen hypothesis.
We measure mean average percent TPR over all recognition
steps. Higher TPR values are better, indicating a measure
of the reliability of the system. This value corresponds to 1-
FNR (False negative rate). False positive rate (FPR) refers to
how many goals were not pruned out due to landmarks. We
measure FPR in percent out of overall goal number. Lower
FPR values are better indicating more pruning and therefore
a more efficient algorithm. Ranked first (RF) is the number
of times the correct hypothesis was not only recognized as a
possible hypothesis but also ranked first. Convergence (CV)
to the correct answer indicates the time step in which the
recognizer converged to the correct hypothesis from the end
of the observation sequence (or 0 if it failed). Higher values
indicate earlier convergence and are therefore better.

Results Table 1 shows the experimental results for both
continuous and discrete domains across all criteria. For the
continuous domain, the combined GOAL MIRRORING WITH
LANDMARKS approach achieved the best performance with
an improvement both in convergence and the amount of
times the recognizer ranked the correct goal hypothesis first.
It proved just as reliable as ONLINE RECOGNITION WITH
LANDMARKS in terms of TFR and FPR, however not as reli-
able as GOAL MIRRORING, which does not prune out goals
at all, incurring no risk of overlooking the correct goal.

We see that the combined approach of GOAL MIRROR-
ING WITH LANDMARKS achieves the overall best results in
terms of convergence and ranked first in the discrete do-
mains. However, unlike in the continuous domain, using
the ONLINE RECOGNITION WITH LANDMARKS technique
also provided good results, sometimes even better than the
GOAL MIRRORING approach (Campus, Ferry domain, Lo-
gistics, Satellite). In the Rovers domain problem we see an
instance where GOAL MIRRORING was unable to find a so-
lution within the given time limit, however when utilizing
landmarks, the GOAL MIRRORING WITH LANDMARKS ap-

proach was able to finish and provide better results than ON-
LINE RECOGNITION WITH LANDMARKS. This is due to the
complex nature of the dataset and highlights the advantages
of using landmarks as a pruning mechanism.

However, there were several instances where the dataset
was so complex that both the GOAL MIRRORING and GOAL
MIRRORING WITH LANDMARKS approaches failed. Due to
the repeated calls to the planner these approaches timed-
out without results. These problems were considerably more
complex with a larger number of objects and instantiated ac-
tions. The results are summarized in Table 2, where we see
the strength of the ONLINE RECOGNITION WITH LAND-
MARKS approach, which does not employ a planner and
therefore evades the considerable overhead calculations.

The improvement of run time over the baseline GOAL
MIRRORING approach is presented in Figure 3. For the con-
tinuous domain, GOAL MIRRORING WITH LANDMARKS,
incorporating landmarks, reduces the run time to 80% while
ONLINE RECOGNITION WITH LANDMARKS was by far the
most efficient with a reduction to only 0.019% of the original
GOAL MIRRORING runtime. For the discrete domain as well
we see that ONLINE RECOGNITION WITH LANDMARKS
more than doubles the reduction in run-time vs. the ONLINE
RECOGNITION WITH LANDMARKS, which in itself reduces
the run-time considerably to between 17%–46%. Figure 2
shows a comparison regarding the amount of times the plan-
ner was called within the recognition process for both con-
tinuous and discrete domains.

Conclusions
We developed an online approach to recognize goals in
both continuous and discrete domains using a combina-
tion of goal mirroring and reasoning over a generalized
notion of landmarks. Our formalization adapts work from
the transition normal form (TNF) of Pommerening and
Helmert (2015) without actually assuming problems are
converted to it to avoid having to transform incomplete and
noisy observations to suit the requirements of TNF. We have
shown how to dynamically generate continuous and discrete
landmarks and empirically evaluated the efficiency and per-
formance of our approach over hundreds of experiments in
both continuous and discrete domains; comparing our results
to an existing PRP approach and a newly defined continuous
landmark approach. We have shown that not only is our ap-
proach more efficient than the existing PRP recognizer but
also outperforms both other approaches.

However, as our technique continually calls a planner
within the recognition process, it is therefore limited from
recognizing very complex problems. Among some of the
other limitations is its use of relatively simple landmarks for
spatial domains, as well as the assumption that landmarks
do not change over the course of the recognition, which
would not be realistic for dynamically changing environ-
ments. Thus, we believe two important refinements should
be the target of future work. First, we aim to refine the notion
of spatial landmarks for more informative heuristics, such as
the ones developed by Scala et al. (2017). Second, we aim
to use techniques to compute landmarks incrementally so as
to allow their online recomputation in dynamic domains.
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Zhikun Wang, Katharina Mülling, Marc Peter Deisenroth,
Heni Ben Amor, David Vogt, Bernhard Schölkopf, and Jan
Peters. Probabilistic movement modeling for intention infer-
ence in human–robot interaction. The International Journal
of Robotics Research, 32(7):841–858, 2013.


