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1 Introduction
As computer systems become more complex, abstraction mechanisms have become more and more im-
portant. One abstraction mechanism that is increasingly becoming accepted is the notion of autonomous
agents [Jennings, 2000], which embody a component independent from direct external control, and which
are expected to operate unsupervised for an undetermined amount of time. Research into agent systems has
yielded an extensive body of work in terms of both theoretical results and practical models and systems,
and is still ongoing. In the particular area of autonomous agents, the theoretical work has not always been
matched by the creation of practical models. Despite this difficulty, there have been many applications
requiring autonomy; for example, control systems for space exploration vehicles, and for operation in haz-
ardous environments. These applications are often specifically designed for their application domain and
require regular human intervention.

For agent designers to expect an agent to act autonomously, they must be able to specify what the agent
must accomplish and allow for the agent’s reasoning process to select the best way of accomplishing it. In
contrast, current practical agent models require the designer to provide detailed specifications of how an
agent should achieve its goals (e.g. create a plan library), as well as precise descriptions of the conditions
under which an agent should pursue their achievement. In this setting, the success or failure of a goal is
implied by the successful execution of these plans, so that when an agent selects one of the available plans,
it has no way of determining how appropriate that selection is until the plan has either succeeded or failed.
Given the association of plan execution with goal achievement, the way in which an agent’s plan library
is defined might interfere with the agent’s perception of which goals are possible or not. Recent work on
declarative agent languages has partially addressed the problem by dissociating plan execution from goal
achievement, and allowing the agent to try other plans to accomplish the same goal in case the currently
chosen plan fails. However, agents still rely on a plan library and lack any kind of knowledge about the
plan’s suitability for a given situation until that plan has been achieved, so that an agent has no way of
evaluating a course of action before trying to follow it. This lack of knowledge regarding the courses of
action to follow applies also in the context of multiagent systems. That is, an agent never evaluates whether
interacting with other agents is actually required, relying on a set of hard-coded rules specifying when it
should go into social mode.

Normal living beings constantly evaluate their surroundings and their past experiences to decide their
courses of action, and changes to ongoing courses of action are rarely sudden and arbitrary, reflecting a
mechanism that is much more elaborate than simply obeying a set of rules or maximising rewards. There-
fore, we believe that for autonomous behaviour to be possible, an agent has to be able to evaluate its
available courses of action before investing any resources in pursuing them. For an agent to perform this
kind of evaluation, it must be supplied not only with a set of design objectives, but also with a mechanism
that allows it to evaluate how the importance of accomplishing individual objectives changes in response
to events in the world.
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1.1 Research problem
Considering the gap in real autonomy of current agent architectures discussed previously, the research
problem lies in the integration of two components that we consider key for flexible behaviour and hence,
autonomy. First, for agents to be able to truly operate without intervention in a dynamic environment, they
need to be able to create plans to address new problems by composing their basic capabilities, instead of
relying on specific plans created at design time. Second, by allowing the search for new solutions to occur
at runtime instead of simply reacting with pre-defined ones, an agent needs to manage its own reasoning
process in what is known as meta-level control, to avoid losing its capability to react timely in critical
situations. Moreover, when operating in a social environment, it is necessary to consider the behaviour of
others in the generation of new solutions, since third parties might collaborate or oppose the achievement
of one’s goals. Therefore, we intend to investigate the integration of planning and meta-level control into a
traditional agent architecture for a single-agent setting in the first part of our research, and later expand it
to consider multi-agent interactions.

1.2 Expected Results
Since the research focuses on the construction of a new architecture integrating planning and meta-level
control, the main output of this research is the architecture itself, as well as an associated agent language
to allow the development of generic agents using this architecture.

Developing agents able to use a planning component together with a declarative view of goals have a
number of advantages over traditional approaches:

• by allowing the creation of new plans at runtime, we expect to augment an agent’s ability to deal
with unforeseen circumstances;

• goals specified declaratively as desired world states are much less prone to omission errors by the
designer; and

• a declarative specification of goals underpinned by a planner allows an agent description to be more
concise, since the planner can be relied on to quickly generate trivial combinations of basic capabil-
ities instead of having the designer to this manually.

The addition of a model of meta-level control allows agents operating in most real-world situations
to assess the consequences of following one of many possible courses of action, as this assessment is not
always realisable in the form of quick and hard rules. To this end, the usage of the motivational states as an
abstraction for meta-level control provides at least two advantages:

• describing meta-reasoning rules in terms of motivations is more intuitive than a possible abstract
representation; and

• there is a rich body of work on motivations from diverse areas of study, such as psychology, philo-
sophy and ethology, which can be leveraged in our research;

It is clear that such an architecture will not be created from the ground up, but rather be a specialisation
of an established architecture with an associated language, and therefore we must focus on comparing them
to assess the benefits of the new components on a practical level, which are plan to be done throughout
this research. Therefore, once a prototypical architecture is designed, we expect to refine it using the
feedback obtained from our initial experiments so that our final architecture and language should have
clear advantages in terms of efficiency and expressivity.

1.3 Overview
This report is organised as follows: Section 2 briefly summarises existing efforts related to our research
objectives; Section 3 describes extended AgentSpeak interpreter capable of planning developed during the
first year of research; Section 4 describes another extension of an AgentSpeak interpreter, which uses a
model of motivations to perform meta-level control; finally, Section 5 contains our plans for future work
towards the PhD thesis.
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2 Related Work

2.1 BDI Agents
One commonly used way of informally describing autonomous behaviour is using the notions of beliefs,
desires and intentions, in which beliefs describe one’s knowledge about the world, while desires are states
of affairs one seeks to achieve and intentions are one’s commitment to achieving a particular subset of de-
sires. This model was proposed for human practical reasoning by philosopher Michael Bratman [Braubach
et al., 2004], to account for the way in which humans select a series of actions directed at the achievement
of a larger goal while avoiding spending time considering less important ones. The BDI model serves as
an architecture for intelligent agents [Bratman, 1987], using the same mental abstractions of beliefs de-
sires and intentions to describe the operation of software programs. This BDI architecture has become
one of most widely known and studied models of deliberative agents, and evolved from Bratman’s seminal
work [Bratman, 1987] into formalisations [Cohen and Levesque, 1990] and subsequently a more complete
computational theory [Rao and Georgeff, 1995b; Wooldridge, 2000].

The components that characterise the BDI model can be briefly described as follows [Müller, 1996].

• Beliefs are the agent’s model of the current world, as perceived by its sensors, including the know-
ledge an agent has about how to modify the world.

• Desires are a (possibly inconsistent) set of preferences regarding world states.

• Intentions represent the agent’s choice regarding alternative courses of action, constraining the con-
sideration of new objectives to allow it to fulfil one subset of its desires at a time.

In essence, BDI agents operate as follows.

1. The agent’s beliefs are constantly updated by its sensors.

2. The agent chooses an internally and externally consistent subset of its desires. Internally consistent
desires are those that do not conflict with each other, like being in two places at the same time.
Externally consistent desires are those that are not impossible given the agent’s beliefs and are not
already satisfied.

3. Considering the chosen desires, the agent commits to following a course of action (or intention) to
fulfil them.

2.2 Declarative Agent Architectures
The BDI model has been the focus of agents research for a significant time, and is still ongoing. Examples
of recent research include improving the model through the construction of new theories to underpin it as
a unified system [van Riemsdijk et al., 2005], and extending pre-existing BDI theories to allow for more
flexible BDI agents [Meneguzzi et al., 2004]. Among these efforts, many seek to address the fact that
BDI architectures and models tended to avoid including many of the declarative aspects of desires/goals
in support of practicality. More specifically, the first instances of complete BDI logics [Rao and Georgeff,
1995b] assumed an agent able to foresee all of the future ramifications of its actions as part of the process
of deciding which courses of action to take. This assumption was clearly too strong if computationally
bounded BDI architectures were to be constructed. Therefore, when designing practical architectures based
on specific BDI logics, modifications were necessary to avoid unbounded computations. Since the agent
cannot look directly into future world states and then select the sequence of actions that leads to the desired
future (as this would imply omniscience), the inverse approach was taken; that is, an agent would select
from a set of known courses of action, the one that would lead to the desired future. In practice, this means
that the agent no longer selects directly what he wanted to achieve, but rather what he wants to perform
under the assumption that his actions would ultimately bring about the desired state of affairs. This way of
selecting agent goals was later dubbed goals to do [Winikoff et al., 2002].

Concurrently with goals to do are what have been termed goals to be [Winikoff et al., 2002]; the
difference being that here, an agent selects the desired state of affairs directly. Consequently, the actions
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required by the agent to reach such a state of affairs are decoupled from the ultimate goal. The most widely
known BDI agent implementations bypass this problem through the use of plan libraries where the courses
of action for every possible objective an agent might have are stored [d’Inverno and Luck, 2004] (which we
have seen are associated with to do agents). The near absence of pragmatic architectures that implement
the notion of to be goals represents a gap that current research is trying to address.

2.3 AI Planning
Generic planning systems operate on problem descriptions that contain three main elements, a domain
specification containing the operators available to the agent, a description of an initial state of the world
and a description of a goal state of the world that the agent wishes to attain. A planning algorithm solves
a problem by finding a sequence of instantiated operators that transform the world from the initial state
to the goal state. This specification is used to generate the search-space over which the planning system
searches for a solution. The search-space consists of all possible instantiations of the set of operators using
the Herbrand universe1 derived from the symbols contained in the initial and goal state specifications.

Initial approaches to general purpose planning include the Stanford Research Institute Planning System
(STRIPS) [Fikes and Nilsson, 1971], whose notational concepts are still used as the basis for the specific-
ation of planning problems, as well as multiple approaches to Partial Order Planning (POP) [Ambros-
Ingerson and Steel, 1988]. These approaches to generic planning were very limited in the size and type
of problems that could be handled in reasonable time, due to their method of navigating the search-space.
After a lull in new approaches to planning, several new algorithms were developed, such as Graphplan,
SATPlan and HTN, representing a significant leap of efficiency allowing more complex planning problems
to be computed in reasonable time.

A generic planner takes three inputs: a description of the initial state of the world; a description of the
goal state that should be true after a plan is executed; and a description of the available operators, in some
formal language (such as the language of STRIPS). The planner then tries to generate a sequence of actions
that when applied to the initial state modifies the world so that the goal state becomes valid.

2.4 Meta-level Control
The widespread use of simple fixed rules for agent control is mainly concerned with maintaining agent re-
activity in dynamic scenarios. This approach is usually associated with avoiding computationally expensive
operations instead of allowing the risk of losing responsiveness. However, for an agent to operate in com-
plex environments, it must have the means to decide on the tradeoff of computational cost and the worth of
goals. This might involve the possibility of sacrificing smaller short-term goals to allow the achievement
of larger, longer-term goals. It is clear that in this situation, the cost of executing some internal process
can outweigh the cost of executing external actions, justifying a more complex mechanism for deciding
how computing power must be spent, in a process which is known as meta-level control [Raja and Lesser,
2004]. In most agent architectures, it is often the case that behaviour selection occurs as a result of a set of
fixed reactive rules, an approach that also applies to an agent’s decision to adopt social behaviour to solve
a problem. As a result, this type of agent is merely an abstraction for traditional software development,
endowing the agent with no true autonomy. True autonomy involves decisions on the meta-level, that is,
decisions regarding the reasoning process itself, which may lead the agent to spend resources thinking on
a problem rather than acting immediately. We believe that meta-level control is a key component any such
autonomy component, and that a suitable abstraction for a meta-level component is needed. In our archi-
tecture, the motivational model provide a valuation of the relative importance of certain goals, allowing the
agent to decide which goals warrant a greater investment of processing power more effectively than fixed
logic-based rules would allow.

1Any formal language with symbols for constants and functions has a Herbrand universe, which describes all of the terms that can
be created by the application of all combinations of constant symbols as parameters to all functional symbols.
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3 AgentSpeak-PL
Typically, agent interpreters select plans using more or less elaborate algorithms, but these seldom have
any knowledge of the contents of the plans, so that plan selection is ultimately achieved using fixed rules,
with an agent adopting black box plans based solely on the contextual information that accompanies them.
Alternatively, some agent interpreters allow for plan modification rules to allow plans to be modified to suit
the current situation [van Riemsdijk et al., 2003], but this approach still relies on a designer establishing
a set of rules that considers all potentially necessary modifications for the agent to achieve its goals. The
problem here is that for some domains, an agent description must either be extremely extensive (requiring
a designer to foresee every possible situation the agent might find itself in), or will leave the agent unable
to respond under certain conditions.

This procedural response to goal achievement has been favoured to enable the construction of practical
systems that are usable in real-world applications. However, it also causes difficulties in cases of failure.
When a procedural agent selects a plan to achieve a given goal the selected plan may fail, in which case
the agent typically concludes that the goal has also failed, regardless of whether other plans to achieve the
same goal might have been successful. By neglecting the declarative aspect of goals in not considering
the construction of plans on-the-fly, agents lose the ability to reason about alternative means of achieving a
goal, making it possible for poor plan selection to lead to an otherwise avoidable failure.

In this section, we describe how a procedural agent model can be modified to allow an agent to build
new plans at runtime by chaining existing fine-grained plans from a plan library into high-level plans.
We demonstrate the applicability of this approach through a modification to the AgentSpeak architecture,
allowing for a combination of declarative and procedural aspects. This modification requires no change
to the plan language, allowing designers to specify predefined procedures for known tasks under ideal
circumstances, but also allowing the agent to form new plans when unforeseen situations arise. Though
we demonstrate this technique for AgentSpeak, it can be easily applied to other agent architectures with an
underlying procedural approach to reasoning, such as JADEX or the basic 3APL [Bordini et al., 2005a].
The key contribution is a method to augment an agent’s runtime flexibility, allowing it to add to its plan
library to respond to new situations without the need for the designer to specify all possible combinations
of low-level operators in advance.

3.1 AgentSpeak
AgentSpeak [Rao, 1996] is an agent language that allows a designer to specify a set of procedural plans
which are then selected by an interpreter to achieve the agent’s design goals. It evolved from a series
of procedural agent languages originally developed by Rao and Georgeff [Rao and Georgeff, 1995a]. In
AgentSpeak an agent is defined by a set of beliefs and a set of plans, with each plan encoding a procedure
that is assumed to bring about a desired state of affairs, as well as the context in which a plan is relevant.
Goals in AgentSpeak are implicit, and plans intended to fulfil them are invoked whenever some triggering
condition is met in a certain context, presumably the moment at which this implicit goal becomes relevant.

The control cycle of an AgentSpeak interpreter is driven by events on data structures, including the
addition or deletion of goals and beliefs. These events are used as triggering conditions for the adoption
of plans, so that adding an achievement goal means that an agent desires to fulfil that goal, and plans
whose triggering condition includes that goal (i.e. are relevant to the goal) should lead to that goal being
achieved. Moreover, a plan includes a logical condition that specifies when the plan is applicable in any
given situation. Whenever a goal addition event is generated (as a result of the currently selected plan
having subgoals), the interpreter searches the set of relevant plans for applicable plans; if one (or more)
such plan is found, it is pushed onto an intention structure for execution. Elements in the intention structure
are popped and handled by the interpreter. If the element is an action, this action is executed, while if the
element is a goal, a new plan is added into the intention structure and processed. During this process,
failures may take place either in the execution of actions, or during the processing of subplans. When such
a failure takes place, the plan that is currently being processed also fails. Thus, if a plan selected for the
achievement of a given goal fails, the default behaviour of an AgentSpeak agent is to conclude that the
goal that caused the plan to be adopted is not achievable. This control cycle is illustrated in the diagram of
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Figure 1,2 and strongly couples plan execution to goal achievement.

Find applicable plans

Push plan into Intentions

Process Intention

Goal FailedGoal Achieved

Goal addition/deletion

Applicable plan found

No plan found

Plan failed

Plan executed

Figure 1: AgentSpeak control cycle.

The control cycle of Figure 1 allows for situations in which the poor selection of a plan leads to the
failure of a goal that would otherwise be achievable through a different plan in the plan library. While such
limitations can be mitigated through meta-level [Georgeff and Ingrand, 1989] constructs that allow goal
addition events to cause the execution of applicable plans in sequence, and the goal to fail only when all
plans fail, AgentSpeak still regards goal achievement as an implicit side-effect of a plan being executed
successfully.

3.2 Planning in an AgentSpeak interpreter
In response to these limitations, we have created an extension of AgentSpeak that allows an agent to expli-
citly specify the world-state that should be achieved by the agent. In order to transform the world to meet
the desired state, the agent uses a propositional planner to form high-level plans through the composition
of plans already present in its plan library. This propositional planner is invoked by the agent through a
regular AgentSpeak action, and therefore requires no change in the language definition. The only assump-
tion we make is the existence of plans that abide by certain restrictions in order to be able to compose
higher-level plans taking advantage of planning capabilities introduced in the interpreter. Whenever an
agent needs to achieve a goal that involves planning, it uses a special planning action that converts the
low-level procedural plans of AgentSpeak into STRIPS operators and invokes the planning module. If the
planner succeeds in finding a plan, it is converted back into a high-level AgentSpeak plan and added to the
intention structure for execution. Here, we liken the low-level procedural plans of AgentSpeak to STRIPS
operators, connecting the agent interpreter to the planner by converting one formalism into the other and
vice versa. We have chosen to use STRIPS as the planning language in this paper for simplicity reasons,
and this approach would not lose applicability if one was to use PDDL [Fox and Long, 2003] (or another
language) as the planning language.

3.2.1 The planning action

In order to describe the connection of the planning component with AgentSpeak, we need to review the
main constructs of this agent language. As we have seen, an AgentSpeak interpreter is driven by events
on the agent’s data structures that may trigger the adoption of plans. Additions and deletions of goals
and beliefs are represented by the plus (+) and minus (−) sign respectively. Goals are distinguished into
test goals and achievement goals, denoted by a preceding question mark (?), or an exclamation mark (!),
respectively. For example, the addition of a goal to achieve g would be represented by +!g. Belief additions
and deletions arise as the agent perceives the environment, and are therefore outside its control, while goal
additions and deletions only arise as part of the execution of an agent’s plans.

2For a full description of AgentSpeak, refer to d’Inverno et al. [d’Inverno and Luck, 1998]
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+goal_conj(Goals) : true ← plan(Goals).

Table 1: Planner invocation plan.

In our approach, in addition to the traditional way of encoding goals for an AgentSpeak agent implicitly
as triggering events consisting of achievement goals (!goal), we allow desires including multiple beliefs
(b1, . . . , bn) describing a desired world-state in the form goal_conj([b1, . . . , bn]). An agent desire descrip-
tion consists of a conjunction of beliefs the agent wishes to be true simultaneously at a given point in time.
The execution of the planner component is triggered by an event +goal_conj([b1, . . . , bn]) as shown in
Table 1.

Now, the key to our approach to planning in AgentSpeak is the introduction of a special planning action,
denoted plan(G), where G is a conjunction of desired goals. This action is bound to an implementation
of a planning component, and allows all of the process regarding the conversion between formalisms to
be encapsulated in the action implementation, making it completely transparent to the remainder of the
interpreter.

Planning Action

Create STRIPS Problem

Invoke Planner

Convert STRIPS Plan

Plan LibraryPlan Library

BeliefsBeliefs

Trigger Plan Execution

Intention StructureIntention Structure

plan(Goals)

(Strips Problem)

Planner succeeded

Planner failed

Plan Created

Trigger Added

Plan Executed

Plan Failed / Reassess Initial State

Figure 2: Operation of the planning action.

As illustrated in Figure 2, the internal action to plan takes as an argument the desired world-state,
and uses this, along with the current belief database and the plan library, to generate a STRIPS [Fikes
and Nilsson, 1971] planning problem. This action then invokes a planning algorithm; if a plan is found,
the planning action succeeds, otherwise the planning action fails. If the action successfully yields a plan,
it converts the resulting STRIPS plan into a new AgentSpeak plan to be added to the plan library, and
immediately triggers the adoption of the new plan. If the newly created plan fails, the planner may then be
invoked again to try and find another plan to achieve the desired state of affairs, taking into consideration
any changes in the agent beliefs.

3.2.2 Chaining plans into higher-level plans

The design of a traditional AgentSpeak plan library follows a similar approach to programming in proced-
ural languages, where a designer typically defines fine-grained actions to be the building blocks of more
complex operations. These building blocks are then assembled into higher-level procedures to accomplish
the main goals of a system. Analogously, an AgentSpeak designer traditionally creates fine-grained plans
to be the building blocks of more complex operations, typically defining more than one plan to satisfy the
same goal (i.e. sharing the same trigger condition), while specifying the situations in which it is applicable
through the context part of each plan. Here, we are likening STRIPS actions to low-level AgentSpeak
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+!move_to(A, B) : available(car)

← get(car);

drive(A, B).

+!move_to(A, B) : available(car)

← walk(A, B).

Table 2: Movement plans.

plans, since the effects of primitive AgentSpeak actions are not explicitly defined in an agent description.
For example, an agent that has to move around in a city could know many ways of going from one place
to another depending on which vehicle is available to it, such as by walking or driving a car, as shown in
Table 2.

Modelling STRIPS operators to be supplied to a planning algorithm is similar to the definition of these
building-block procedures. In both cases, it is important that operators to be used sequentially fit. That is,
the results from applying one operator should be compatible with the application of the possible subsequent
operators, matching the effects of one operator to the preconditions of the next operator.

Once the building-block procedures are defined, higher-level operations must be defined to fulfil the
broader goals of a system by combining these building blocks. In a traditional AgentSpeak plan library,
higher-level plans to achieve broader goals contain a series of goals to be achieved by the lower-level
operations. This construction of higher-level plans that make use of lower-level ones is analogous to the
planning performed by a propositional planning system. By doing the planning themselves, designers
must cope with every foreseeable situation the agent might find itself in, and generate higher-level plans
combining lower-level tasks accordingly. Moreover, the designer must make sure that the subplans being
used do not lead to conflicting situations. This is precisely the responsibility we intend to delegate to a
STRIPS planner.

Plans resulting from propositional planning can then be converted into sequences of AgentSpeak achie-
vement goals to comprise the body of new plans available within an agent’s plan library. In this approach,
an agent can still have high-level plans pre-defined by the designer, so that routine tasks can be handled
exactly as intended. At the same time, if an unforeseen situation arises, the agent is flexible enough to find
novel ways to solve problems, while augmenting the agent’s plan library in the process.

Clearly, lower-level plans defined by the designer can (and often will) include the invocation of atomic
actions intended to generate some effect on the environment. Since the effects of these actions are not
usually explicitly specified in AgentSpeak (another example of reasoning delegated to the designer), an
agent cannot reason about the consequences of these actions. When designing agents using our model, we
expect designers to explicitly define the consequences of executing a given AgentSpeak plan in terms of
belief additions and deletions in the plan body as well as atomic action invocations. The conversion process
can then ignore atomic action invocations when generating a STRIPS specification.

3.2.3 Translating AgentSpeak into STRIPS

Once the need for planning is detected, the plan in Table 1 is invoked so that the agent can tap into a
planner component. The process of linking an agent to a propositional planning algorithm includes con-
verting an AgentSpeak plan library into propositional planning operators, declarative goals into goal-state
specifications, and the agent beliefs into the initial-state specification for a planning problem. After the
planner yields a solution, the ensuing STRIPS plan is translated into an AgentSpeak plan in which the
operators resulting from the planning become subgoals. That is, the execution of each operator listed in the
STRIPS plan is analogous to the insertion of the AgentSpeak plan that corresponded to that operator when
the STRIPS problem was created.

Plans in AgentSpeak are represented by a header comprising a triggering condition and a context,
as well as a body describing the steps the agent takes when a plan is selected for execution. If e is a
triggering event, b1, . . . , bm are belief literals, and h1, . . . , hn are goals or actions, then e : b1& . . . &bm ←
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h1; . . . ;hn. is a plan. As an example, let us consider a triggering plan for accomplishing !move(A,B)

corresponding to a movement from A to B, where:

• e is !move(A,B);

• at(A)& not at(B) are belief literals; and

• -at(A); +at(B). is the plan body, containing information about belief additions and deletions.

The plan is then as follows:

+!move(A,B) : at(A) & not at(B)
<- -at(A);

+at(B).

When this plan is executed, it results in the agent believing it is no longer in position A, and then
believing it is in position B. For an agent to rationally want to move from A to B, it must believe it is at
position A and not already at position B.

In the classical STRIPS notation, operators have four components: an identifier, a set of preconditions,
a set of predicates to be added (add), and a set of predicates to be deleted (del). For example, the same
move operator can be represented in STRIPS following the correspondence illustrated in Figure 3, in which
we convert the AgentSpeak invocation condition into a STRIPS operator header, a context condition into
an operator precondition, and the plan body is used to derive add and delete lists.

Figure 3: Correspondence between an AgentSpeak plan and a STRIPS operator.

A relationship between these two definitions is not hard to establish, and we define the following al-
gorithm for converting AgentSpeak plans into STRIPS operators. Let e be a triggering event, b1& . . . &bm

a conjunction of belief literals representing a plan’s context, and a1, . . . , an be belief addition actions and
d1, . . . , do be belief deletion actions within a plan’s body. All of these elements can be represented in
a single AgentSpeak plan. Moreover let opname be the operator name and parameters, pre be the pre-
conditions of the operator, add the predicate addition list and del the predicate deletion list. Mapping an
AgentSpeak plan into STRIPS operators is accomplished as follows:

1. opname = e

2. pre = b1& . . . &bm

3. add = a1, . . . , an

4. del = d1, . . . , do

In Section 3.2.1, we introduced the representation of a conjunction of desired goals as the predicate
goal_conj([b1, . . . , bn]). The list [b1, . . . , bn] of desires is directly translated into the goal state of a STRIPS
problem. Moreover, the initial state specification for a STRIPS problem is generated directly from the
agent’s belief database. Regarding the generation of an initial state-specification from the entire set of
agent’s beliefs, one may ponder about the frame problem [McCarthy and Hayes, 1969] and how it affects
the performance of both the agent and the planning system. Here, an agent might be overwhelmed by
the number of irrelevant beliefs that may arise from a highly complex environment, while most planning
algorithms suffer severe performance loss as a result of a larger search space. In our architecture, the
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+goal_conj(Goals) : true

←!op1; . . . ; !opn.

Table 3: AgentSpeak plan generated from a STRIPS plan.

impact of the frame problem can be, in practice, mitigated. At the agent level, many implementations of
AgentSpeak provide a filter over what perceptions are actually added to the belief base, and therefore, we
can assume that the set of beliefs being submitted to the planning system is optimal. From the planning
system perspective, many modern planning systems perform a pre-processing step in which irrelevant
propositions are removed through the analysis of the operators, hence any beliefs that were not filtered out
by the agent will be removed by this pre-processing step.

3.2.4 Executing generated plans

The STRIPS problem generated from the set of operators, initial state and goal state is then processed
by a propositional planner. If the planner fails to generate a propositional plan for that conjunction of
literals, the plan in Table 1 fails immediately and this goal is deemed unachievable, otherwise the resulting
propositional plan is converted into an AgentSpeak plan and added to the intention structure.

A propositional plan from a STRIPS planner is in the form of a sequence op1, . . . , opn of operator
names and instantiated parameters. We define a new AgentSpeak plan in Table 3, where goal_conj(Goals)
is the event that initially caused the planner to be invoked.

Immediately after adding the new plan to the plan library, the event goal_conj(Goals) is reposted to
the agent’s intention structure, causing the generated plan to be executed. Plans generated in this fashion
are admittedly simple, since the development of a complete process of plan generalisation is not a trivial
matter since, for instance, it involves solving the issue of deriving the context condition adequately. An
extremely simple solution for this problem uses the entire belief base of the agent as context for that
plan, but this solution includes a great number of beliefs that are probably irrelevant to the goal at hand,
severely limiting this plan’s future applicability. Another solution involves replicating the preconditions
of the first operator for the new plan, but this could also lead the agent to fail to execute the plan later
on. We have developed an algorithm to derive a minimal set of preconditions, which we omit here due to
space constraints, showing instead the simple solution of using a constantly true context. Another possible
refinement to the conversion of a STRIPS plan into an AgentSpeak plan is to allow the same generated plan
to be reused to handle side-effects of the set of goals that led to its generation.

3.3 Discussion
In this section, we have demonstrated how the addition of a planning component can augment the capab-
ilities of a plan library-based agent. In order to exploit the planning capability, the agent uses a special
planning action to create high-level plans by composing specially designed plans within an agent’s plan
library. This assumes no modification in the AgentSpeak language, and allows an agent to be defined so
that built-in plans can still be defined for common tasks, while allowing for a degree of flexibility for the
agent to act in unforseen situations. Our system can also be viewed as a way to extend the declarative
goal semantics proposed by Hübner et al. [Hübner et al., 2006], in that it allows an agent designer to
specify only desired world-states and basic capabilities, relying on the planning component to form plans
at runtime. Even though the idea of translating BDI states into STRIPS problems is not new [Meneguzzi
et al., 2004], our idea of an encapsulated planning action allows the usage of any other planning formalism
sufficiently compatible with the BDI model.

The prototype implemented for the evaluation of the extensions described in this section has been em-
pirically tested for a number of small problems, but, further testing and refinement of this prototype is still
required, for instance, to evaluate how interactions between the addition of new plans will affect the existing
plan library. The system can also be improved in a number of ways in order to better exploit the underlying
planner component. For example, the effort spent on planning can be moderated by a quantitative model of
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control, so that an agent can decide to spend a set amount of computational effort into the planning process
before it concludes the goal is not worth pursuing. This could be implemented by changing the definition
of goal_conj(Goals) to include a representation of motivational model goal_conj(Goals, Motivation),
which can be used to tune the planner and set hard limits to the amount of planning effort devoted to
achieving that specific desire.

4 AgentSpeak-MPL
Considering the gap between the expected level of autonomy and what is currently possible in existing
agent architectures, we believe that meta-level control is a key element in improving agent autonomy, and
that a suitable abstraction for a meta-level component is needed. Inspired by the research on areas such as
psychology and ethology, several researchers [Cañamero, 1997; Grand and Cliff, 1998; Luck et al., 2003;
Norman et al., 2004] have proposed to address this gap by emulating motivated behaviour in animals. In
this section, we review previous research on motivation aiming at using it as an abstraction for meta-level
control, and describe a BDI architecture augmented with a motivated control module.

4.1 Definitions of motivation
Understood as the root cause of future-directed behaviour, motivation has been studied by researchers in
a variety of areas, such as psychology [Morignot and Hayes-Roth, 1996], ethology [Balkenius, 1993] and
philosophy [Mele, 2003]. A psychology-inspired definition of motivation considers it as representation of
an individual’s orientation towards particular classes of goals [Morignot and Hayes-Roth, 1996], while a
philosophical definition from Mele [Mele, 2003] encompasses the concept of varying motivational strength
linked to an agent’s urgency in relation to adopting its associated goals. Mele [Mele, 2003] posits based
on multiple sources that motivation is a trait present in animals that are capable of representing goals and
means to goals. Both goals and means to goals may be influenced by motivation; that is, a motivation
may influence both the adoption of a certain goal and the choice of the means to accomplish certain goals.
Motivations vary in strength, and this variation dictates the agent’s choice of behaviours to those associated
with the strongest motivation, so that whenever an agent acts intentionally, its actions stem from underlying
motivations.

From an ethological point of view, motivation is commonly associated with drives and incentives
[Balkenius, 1993; Munroe et al., 2003]. In a simplified explanation, drives are internally generated states
resulting from the violation of an animal’s homeostasis, such as the deprivation of food or the excess of a
given hormone. Incentives, on the other hand, are externally generated stimuli that increase certain motiv-
ations within the animal, such as in the presence of abundant food causing an animal to feed [Balkenius,
1993]. Motivations have also been described as giving rise to a continuum of appetitive behaviours (i.e.
those that cause an agent to need something) leading to consummatory ones (i.e. those that satisfy this
need). This means that some behaviours result in the build up of strength of certain motivations related to
appetitive behaviour, and when a motivation has reached a high enough level, consummatory behaviours
for the mitigation of this motivation are triggered.

The analysis of the motivational rewards of certain actions can also provide a mechanism to prevent
certain undesirable behaviours from occurring simultaneously (also referred to as lateral inhibition) [Grand
and Cliff, 1998], as in trying to look at a watch while holding a mug with the same hand. More generally, if
one assumes that the consequences of any action can be measured as affecting motivations either positively
or negatively, then this values can be used to determine which plans an agent can execute simultaneously
without incurring detrimental interference among these plans.

The aspect of motivation most commonly sought to be captured by computational architectures is the
continuous representation of priorities as a means to determine the focus of attention at any given time
[Cañamero, 1997; Griffiths and Luck, 2003; Norman and Long, 1995]. This is important as it allows an
agent with limited resources to concentrate its efforts on achieving goals that are relevant to it at specific
moments, and to adapt such a concentration of effort to the current reality. Contrasting with the traditional
process of goal selection based solely on environmental state, real biological systems often generate dif-
ferent plans of action under the same environment. Here, motivations can be modelled as a mechanism
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associated with internal cues that trigger goal generation in parallel with external factors [Munroe et al.,
2003]. An internal cue can be seen as a trigger condition that, when activated, causes an agent to consider
the adoption of a set of associated goals. It differs from the simple logical preconditions traditionally used
in agent languages in that internal cues are a result of the dynamics of motivation strength, rather than a
simple binary condition over the current state of the world.

4.2 A Motivated AgentSpeak Interpreter
Autonomous agents are expected to generate goals pro-actively instead of simply reacting to discrete events
in the environment [Duff et al., 2006]. Generating goals pro-actively entails that an agent has a way of
assessing its current situation and predicting how the environment (or other agents in the environment) will
behave, in order to provide a rational justification for the adoption of a goal. Since motivations can be used
to associate a measure of importance to goals, it is possible to use motivational intensity to guide an agent’s
choice of action when faced with multiple conflicting courses of action.

As our previous survey suggests [Meneguzzi, 2006],3 models of motivation typically provide some kind
of function that associates a motivational value representing intensity to world states and actions, which
tell how important a certain state is and how to react to it. Agents can use expected motivational rewards
to predict how much certain courses of action will affect its motivational state, allowing the agent to select
plans more effectively. At a more concrete level, motivation intensity information can be used to refine
several parts of the reasoning cycle in AgentSpeak, such as: goal selection, plan adoption and intention
selection. We have, therefore, defined a series of motivation-based extensions for the various functions
performed by an agent in its reasoning process.

4.2.1 Goals and Requirements

The addition of a model of motivations to underpin the generation of goals in autonomous agents provides
a rational basis not only for the goals thus generated, but also for the subsequent selection of plans to
fulfil these goals, and the actions carried out in the execution of the selected plans. This information-
rich connection between key parts of the agent reasoning process can be exploited in the refinement of
these processes to improve an agent’s ability to interact with the environment as well as other agents.
For example, explicit knowledge of what caused the adoption of a certain goal allows an agent to decide
the best course of action to achieve it. When using motivational intensity thresholds as triggers for goal
adoption, one can also use this quantitative information to compare concurrent goals and prioritise them in
case of conflicts. Furthermore, taking into consideration the shortcomings of existing agent architectures
regarding meta-level control, we have identified three requirements that our motivated architecture should
fulfil, namely:

• there must be a language for abstracting meta-level control based on motivation;

• agents must be able to start behaviours even in the absence of a steady stream of events; and

• there must be a quantitative association between world-states and actions or plans, allowing the
evaluation of alternative courses of action.

Abstract Motivation Functions .

From our previous survey [Meneguzzi, 2006] we have seen that several models of motivated control
mechanisms have been developed, each of which focuses on improving a particular application of an agent
system. These models share many commonalities, in particular regarding the flow of motivation dynamics,
which generally consists of: updating motivational levels based on the current agent state and perceptions;
generating goals as a result of this update; and mitigating motivations as a result of goal achievement.
However, they differ on the specific strategies for motivation update, goal selection and motivation mitiga-
tion. With this in mind, it is necessary to design a generic motivation framework for this agent architecture,

3This survey is not included in this document for brevity, but it is available at www.dcs.kcl.ac.uk/pg/meneguzzi.
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providing abstract functions for the three common elements we identified while allowing specific strategies
to be used within these functions.

Flexible Integration with Agent Control .

Besides the particularities of the motivational models themselves, these efforts also explore different
ways in which motivated control can be used to improve an agent. These improvements are targeted at
specific parts of the agent reasoning process, such as the update of an agent’s internal state based on
perceptions, goal selection, or the prioritisation of adopted plans. Conveniently, the architecture of an
idealised AgentSpeak interpreter [d’Inverno and Luck, 1998] is built around a set of abstract functions for
many of these processes that can be refined with information from the motivational module. Thus, the
design of our motivated architecture focuses on these abstract functions as the points of contact between
motivational information and agent control, allowing the composition of control strategies based on the
application of this information to specific parts of the reasoning process.

In turn, this arrangement of abstract functions enables us to evaluate the impact of using motivation
information indifferent parts of the agent, so that the limitations of one refinement do not negate the ad-
vantages of another. For instance, it is possible to refine the plan selection function with an assessment of
the motivational value of adopting a certain plan to achieve a goal, and it is also possible to use a similar
assessment in the intention selection function to prioritise plans executing concurrently. Using our archi-
tecture, the outcome of using these refinements can be evaluated individually or in conjunction, providing
a clearer picture of the applications of motivated control.

A basic model of motivations .

In order to create the motivation component for our experiments, we take the model of Griffiths et al.
[Griffiths and Luck, 2003] as a base, since it fulfils the requirements set forth in Section 4.2.1. This model
represents a motivation as a tuple < m, i, t, fi, fg, fm >, where m is the name of the motivation, i is its
current intensity, t is a threshold, fi is an intensity update function, fg is a goal generation function, and
fm is a mitigation function.

The model underpins the mBDI architecture [Griffiths and Luck, 2003], which in turn is based on the
PRS/AgentSpeak architecture plus motivations. The reasoning cycle for an mBDI agent is illustrated in
Algorithm 1.

Algorithm 1 mBDI control cycle.
1: loop
2: perceive the environment and update the beliefs;
3: for all motivation m do
4: apply fi to m to update its intensity;
5: end for
6: for all motivation m do
7: apply fg to m to generate new goals;
8: end for
9: select a plan for the most motivated of these new goals and adopt it as an intention;

10: select the most motivationally valuable intention and perform the next step in its plan;
11: on completion of an intention apply fm to each motivation to reduce its intensity;
12: end loop

The model of motivations used in the mBDI architecture has been created for a procedural agent archi-
tecture, as is apparent from Steps 9 and 11 of the control cycle in Algorithm 1, which describe an intention
as a plan to be executed, and mitigation of a motivation is equated to the completion of that plan. Such
an approach is not well suited to a declarative agent, in which goals are described as world-states to be
achieved, since a plan may execute successfully and still fail to bring about the desired world-state.
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Motivation processBay {
Threshold = 10;

IntensityUpdate MyIntensityUpdateFunction { ... }
GoalGeneration MyGoalGenerationFunction { ... }
Mitigation MyMitigationFunction { ... }

}

Table 4: High-level description of a motivation.

Besides this limitation, the mBDI architecture does not specify the behaviour of the goal generation
function between threshold activation and goal mitigation. The effects of this ambiguity become apparent
when there is a significant delay between goal adoption and goal achievement. For example, consider a
nourishment motivation that generates a goal to feed whenever its threshold is reached, and for which all
available plans take 3 units of time to be executed before the goal is achieved. Moreover, suppose that
this agent performs one reasoning cycle per unit of time so; assuming the plan is successful, the agent will
perform 3 reasoning cycles before mitigating this motivation. In the meantime, it is not clear whether or
not the agent should generate the same goal 3 times until the motivation is mitigated or generate goals only
once between a motivation’s threshold being reached and its subsequent mitigation.

A Language of Motivation .

So far, we have described the abstract machinery that drives motivated control, following some of
the requirements of Section 4.2.1. Therefore, it is necessary to associate these abstractions to concrete
motivations. However, as we have seen in the literature reviewed in Section 4.1, different individuals can
have particular sets of motivations, and consequently, be affected by their motivations in varying ways. We
must assume then, that every agent can be driven by a unique set of motivations, each of which having a
particular dynamics to allow the agent to evaluate its current situations and achieve its goals according to
its own priorities.

In order to allow a designer to describe the motivational aspects individually for each agent, we must
have a language that supports the description of unique sets of motivations based on the abstract functions
and data structures of the mBDI model. Therefore, we have designed a language centred on the three
abstract functions described in Section 4.2.1: intensity update; goal generation; and mitigation. Concrete
versions of these functions are essentially mappings between beliefs and an intensity value in the case of
intensity update and mitigation, or new goals for the goal generation function. These functions are specified
for each individual motivation, of which the agent can have several.

At a high level, each motivation is composed of an identifier, a threshold, and the name of a concrete
function to be used for each of the required abstract functions of our motivation model. These basic ele-
ments of a single motivation are shown in the excerpt of Table 4. Whenever the intensity of a motivation
reaches the declared threshold as a result of the intensity update function, this motivation is said to be ac-
tivated (following the terminology of Alarms [Norman and Long, 1995]), and the goal generation function
is invoked, after which the mitigation function is invoked to verify if the condition for the motivation to be
mitigated is reached. Within the declaration of each concrete function, details of the mapping process are
described, so if we are dealing with an intensity update function, the mapping consists of belief-value cor-
respondences, while if we are dealing with a goal generation function, the mapping is a series of belief-goal
associations.

We consider each of these in detail below. The whole BNF of the language described in this Section
is shown in Table 1, in which the logical framework has been derived from the BNF of the Jason parser
[Bordini et al., 2005b]. We review the relevant constructs in more detail as we describe specific parts of the
language.

Intensity Update and Mitigation Functions .
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parse ::= (motivation)+

motivation ::=< MOTIV ATION > identifier“{”motivationBody“}”
motivationBody ::= threshold“; ”intensityUpdategoalGenerationmitigation

threshold ::=< THRESHOLD > “ = ” < NUMBER >

identifier ::=< ATOM >

| < V AR >

classname ::= identifier

intensityUpdate ::=< INTENSITY _UPDATE > classname“{”
(beliefToIntegerMapping“; ”) ∗ “}”

beliefToIntegerMapping ::= (log_expr“− > ”arithm_expr)

goalGeneration ::=< GOAL_GENERATION > classname“{”
(beliefToTriggerMapping“; ”) ∗ “}”

beliefToTriggerMapping ::= (log_expr“− > ”trigger)

mitigation ::=< MITIGATION > classname“{”
(beliefToIntegerMapping”; ”) ∗ “}”

trigger ::= (“ + ”|“− ”)((“!”|“?”))?(literal|var)

literal ::= (((< TK_NEG >)?atom)| < TK_TRUE > | < TK_FALSE >)

atom ::=< ATOM > (“(”terms“)”)?(list)?

terms ::= term(“, ”term)∗
term ::= (literal|list|arithmexpr|string)

list ::= “[”(term(“, ”term)∗
(“|”(< V AR > | < UNNAMEDV AR > |list))?)?“]”

log_expr ::= log_expr_trm(“|”log_expr)?

log_expr_trm ::= log_expr_factor(“&”log_expr_trm)?

log_expr_factor ::= (< TK_NOT > log_expr_factor|rel_expr)

rel_expr ::= (arithm_expr|literal|string)

((“ < ”|“ <= ”|“ > ”|“ >= ”|“ == ”|“\\ == ”|“ = ”|“ = ..”)

(arithm_expr|literal|string|list))?
arithm_expr ::= arithm_expr_trm((“ + ”|“− ”)arithm_expr)?

arithm_expr_trm ::= arithm_expr_factor(

(“ ∗ ”|“/”| < TK_INTDIV > | < TK_INTMOD >)arithm_expr_trm)?

arithm_expr_factor ::= arithm_expr_simple((“ ∗ ∗”)arithm_expr_factor)?

arithm_expr_simple ::= (< NUMBER > |“− ”arithm_expr_simple|“(”logexpr“)”|var)

var ::= (< V AR > | < UNNAMEDV AR >)(list)?

string ::=< STRING >

Table 1: BNF of the motivation language.
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Motivation feed {
...

IntensityUpdate MyIntensityUpdateFunction {
hungry & near(food) -> 2; //This increases intensity
not hungry -> -1; //This lowers it a bit

}

...
}

Table 5: Example of an intensity update function.

Motivation processBay1 {
...

GoalGeneration MyGoalGenerationFunction {
near(food) -> +!eat(food);
//true -> +!eat(food); //Another possibility

}

...
}

Table 6: Example of a goal generation function.

As we have seen, the functions for updating the intensity of, and mitigating, a motivation need to
provide some kind of mapping between perceptual data and an intensity variation. As a result, our language
of motivation allows the specification of a mapping between beliefs and an arithmetic expression expressing
how the intensity level should be modified when the specified beliefs are true. Any specific mapping is
represented as log_expr− > arithm_expr, as shown in Table 1.

An example of such a mapping is shown in Table 5. In this example, the intensity of the motivation to
feed is increased by 2 points whenever the agent is hungry and believes food is nearby. It is important to
notice that this language deals exclusively with beliefs, both intrinsic ones and those resulting from per-
ception, whereas some motivation models assign values to actions and by doing so conform to a procedural
view of reasoning. The mitigation function provides a mapping that is syntactically the same as for the
intensity update function but, according to our model of motivations in Section 4.2.1, this function is only
invoked when an intention is adopted to satisfy its associated motivation.

Goal Generation .

Aside from mapping beliefs into perceptions, we must also describe the mapping of beliefs into goals.
Since the goal generation function is only invoked when the motivation threshold is exceeded as a result
of intensity accumulation, our language allows the specification of additional constraints before a goal is
generated, or the unconditional generation of goals through the true condition. The general form of goal
generation functions is illustrated in Table 1, similar to the intensity update function previously described,
mappings in the goal generation function start from a logical expression over beliefs, however the target
of this mapping are new goals to be achieved as a result of the intensity reaching the threshold in the
motivation containing this goal generation function.

This is illustrated in the example of Table 6, below. In this example, the agent generates an event to eat
the food located nearby whenever the goal generation function of Table 6 is invoked.

Example .

A complete example of a motivation described using our language is shown in Table 7. This example
describes the dynamics of a motivation to feed whenever the agent is sufficiently hungry and close to a
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Motivation feed {
Threshold = 10; //This is the threshold
IntensityUpdate MyIntensityUpdateFunction {

hungry & near(food) -> 2; //This increases intensity
not hungry -> -1; //This lowers it a bit

}

GoalGeneration MyGoalGenerationFunction {
near(food) -> +!eat(food);
//true -> +!eat(food); //Another possibility

}

Mitigation MyMitigationFunction {
ate(food) -> -20;

}
}

Table 7: Description of a motivation to feed.

Motivation avoidPredators {
Threshold = 10;
IntensityUpdate MyIntensityUpdateFunction {

near(predator) -> 5; //This increases intensity
seenBy(predator) -> 10;
far(predator) -> -5; //This lowers it a bit

}

GoalGeneration MyGoalGenerationFunction {
near(predator) -> +!fleeFrom(predator);

}

Mitigation MyMitigationFunction {
far(predator) -> -10;

}
}

Table 8: Description of a motivation to avoid predators.

source of food. The motivational intensity will start to increase as soon as the agent becomes hungry and
detects food nearby, until it reaches the threshold of 10. Once the threshold is reached, the goal generation
function will add a goal to eat this food. Finally, the agent assumes the motivation is mitigated when it
perceives it has eaten the food, diminishing the motivational intensity accordingly.

In this simple example, the goal to eat the food is not activated immediately upon the perception of hun-
ger and food proximity. In an agent with a single isolated motivation, describing goal adoption in terms of
motivated reasoning is not significantly more flexible than what could be described directly in AgentSpeak,
for example. However, when multiple concurrent behaviours are present, motivational information can be
used to identify priorities and gives a rational underpinning for not adopting certain goals immediately. If
we consider a new motivation to avoid predators, described in Table 8, in which motivational intensity is
increased by the proximity of and detection by a predator, the adoption of a goal to eat food might not be
rational if it means approaching a predator. In an agent with trigger-activated behaviours, this conflict must
be solved by a designer before the agent is deployed in one of two ways: enumerating all possible conflicts
and include them in a guard condition, or dropping (or failing) all conflicting goals whenever a higher
priority goal is adopted. Both solutions have limitations, as trying to describe guard conditions for a large
number of potentially conflicting goals can be challenging, while dropping goals may not be acceptable in
certain situations.
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4.2.2 Integration with AgentSpeak

In traditional AgentSpeak, plans are adopted as a reaction to events in the environment in a direct sense.
That is, plans are expressed so that if event e happens in a certain world state, the agent will always adopt
a plan matching that event. Furthermore, since goals in the procedural sense used by AgentSpeak(L) are
adopted as part of the execution of plans, the agent does not generate them through deliberation, and they
are instead adopted in the process of reacting to some event in the environment. For instance, a plan may
be described so that whenever an agent believes that a given block is on a table (e.g. on(block,table)),
a procedure to remove such a block is invoked. This amounts to simple reaction rather than autonomous
behaviour. Furthermore, this method of behaviour selection fails to properly describe the reasons for goal
adoption in a declarative sense. Using the same example of a block on a table, a declarative goal to remove
the block from the table could be described as not on(block,table). The question here is, whether
the agent should always react to new events and start deliberation immediately even if the agent might be
pursuing other more important goals.

Besides using the motivational model to generate goals, it is possible to investigate how motivation
information can be used to refine and improve other parts of the agent reasoning cycle. Since a motivated
agent acts to mitigate its motivations, the selection of plans to achieve these goals can be optimised by
selecting plans that more effectively mitigate their underlying motivations. Therefore, we are currently
investigating two modules that take advantage of motivational information for both plan and intention
selection, as well as an analysing of the results of using these modules in a prototype agent.

4.3 Discussion
We have defined a simple language of motivations that allows a designer to create agents whose behaviour
is activated by a more elaborate mechanism than the triggering mechanisms often used in current agent
architectures. This language is supported by an extensible meta-level control module that uses the motiv-
ation abstraction as a metric for the agent to evaluate its future behaviour rather than inflexibly reacting
to specific events in the environment. Reasoning about motivations serves not only to add flexibility (and
thus autonomy) to an agent, but the analysis of future behaviour is crucial for an agent acting to accomplish
a declarative goal, since any course of action that achieves such a goal would be acceptable, even if it
jeopardises other goals in the process.

By departing from a fixed set of trigger-activated behaviours, we are moving towards agents which
are truly autonomous, since they are able to reason about their courses of action at runtime instead of just
obeying predefined rules. When operating in a multi-agent scenario, this type of agent might be subjected to
a body of norms that regulate the agent society [Dignum, 1999], and a truly autonomous agent may decide
that it is worthwhile to violate certain norms to achieve very important goals. In this setting, a motivational
component might be used to reason about not only the concrete outcome of certain behaviours, but also the
implications for the agent in the context of a normative system.

5 Research Plan
This section outlines the main set of issues we intend to focus our research for the next 9-month period, as
well as summarising the results achieved so far. Moreover, we outline a strategy to carry out this research,
including the activities we intend to execute as well as their associated deliverables; these activities are
then organised in a work plan shown in Table 2.

5.1 Results
Two papers have already been published from this work, detailing the addition of a planning component
in BDI architectures in general [Meneguzzi et al., 2007], as well as the extended AgentSpeak described in
Section 3 [Meneguzzi and Luck, 2007]. Besides these papers, we have three thesis chapters drafted.
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5.2 Workplan: Activities and Deliverables
• Activity: Motivated agency

Description: Continuing the work on motivated agents started on the previous year, we need to
develop a scenario in which meta-level control is required, in order to conduct empirical evaluation
of the motivated architecture created previously.
Deliverables: A description of the scenario, to be included in the corresponding thesis chapter.

• Activity: Motivation and partner selection.
Description: Since the proposed research aims to introduce motivations as a mechanism for meta-
level control, which includes making decisions regarding the necessity of external assistance, it is
necessary to study the existing literature regarding partner selection to modify the motivational model
and allow it to effectively exercise control over task delegation. Since many approaches to partner
selection already exist in the literature, we intend to survey existing technologies and refine an exist-
ing method to take advantage of motivational information.
Deliverables: The modified architecture, which should include a partner selection mechanism that
takes advantage of the motivational model. The description of this architecture, as well as tests and
results should form the basis of a thesis chapter, and possible a paper describing a decision procedure
for partner selection and task delegation.

• Activity: Multiagent planning and coordination.
Description: As our motivation-based architecture is refined for multi-agent operation, we need
to integrate the planning mechanism introduced previously in our work. This involves investigat-
ing how to consider commitment in terms of a planning agent, and how to allow multiple planning
agents to reach an agreement over joint plans. Moreover, considering shortcomings in the planning
prototype when dealing with the simultaneous execution of plans, it is necessary to investigate meth-
ods for dealing with concurrent plans, aiming to allow our agent architecture to cope with multiple
interacting agents. Depending on time and results, we will consider the possibility of examining how
norms may be included in this framework.
Deliverables: A report or paper outlining a simple agent architecture using the studied concepts.
Possibly a prototype including one of the methods investigated.

5.3 Provisional Table of Contents
1. Introduction

2. AgentSpeak-PL

2.1. Introduction

2.2. AI Planning

2.2.1. Planning Problem Specification
2.2.2. Important planning algorithms
2.2.3. Planning Example

2.3. AgentSpeak

2.3.1. Language
2.3.2. Interpreter / Control Cycle
2.3.3. Example

2.4. Planning in AgentSpeak(L)

2.4.1. Underlying principles
2.4.2. Integrating the planner component
2.4.3. From AgentSpeak to STRIPS
2.4.4. From STRIPS to AgentSpeak
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Table 2: Workplan

2.4.5. Implementation and Example

2.5. Related Work

2.5.1. Jason
2.5.2. X-BDI
2.5.3. Declarative Goals (Riemsdijk et al)
2.5.4. Propice-Plan
2.5.5. Planning in JADEX
2.5.6. HTN planning in BDI
2.5.7. Comparison and Discussion

2.6. Conclusion
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3.3.2. Complete Agent Architectures
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