
UNIVERSITY OF SOUTHAMPTON
Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

A progress report submitted for continuation towards a PhD

Supervisor: Professor Michael Luck
Dr. Nicholas Gibbins

Examiner: Dr. Terry Payne

Motivated Declarative Agents in
Multiagent Domains: Open Issues

by Felipe Rech Meneguzzi

June 30, 2006

http://www.soton.ac.uk�
http://www.engineering.soton.ac.uk�
http://www.ecs.soton.ac.uk�
mailto:frm05r@ecs.soton.ac.uk�

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

A progress report submitted for continuation towards a PhD

by Felipe Rech Meneguzzi

Despite the renewed interest in the declarative nature of goals in autonomous agents,
a gap between declarative agent theory and practical architectures still exists. This
can be attributed to the way in which architectures of autonomous agents were initially
designed to rely on a pre-defined plan library that includes all possible agent behaviours
encoded in procedural plans. In such architectures, the agent knows only that when a
certain condition holds it should execute a plan in its entirety to achieve an implicit goal,
and if some step of this plan fails, that implicit goal is viewed as impossible. An agent
operating under this model has limited flexibility and no actual autonomy since its only
concern is to carry out plans regardless of their implications to higher-level objectives.
In this report we argue that agent autonomy is closely linked to the declarative nature of
goals and the agent ability to reason about the importance of goal achievement as well as
the implications of plan and goal failure. We review work on motivations and argue that
a motivations model can be used to direct autonomous agent behaviour and drive the
agent to adopt or to drop goals. We also review work on multiagent interactions aiming
to investigate how social behaviour may be initiated by an agent following declarative
goals. The literature thus reviewed allows us to point out a series of issues relating to
the construction of practical architectures of declarative agents.

http://www.soton.ac.uk�
http://www.engineering.soton.ac.uk�
http://www.ecs.soton.ac.uk�
mailto:frm05r@ecs.soton.ac.uk�

Contents

Acknowledgements xi

1 Introduction 1

2 Declarative Agents 3
2.1 BDI Agents . 3

2.1.1 BDI architectures . 5
2.1.1.1 IRMA: The embryonic BDI architecture 5
2.1.1.2 PRS: Procedural Planning 7
2.1.1.3 PRS Descendants . 11

2.2 Frameworks for Declarative Goals . 13
2.2.1 X-BDI . 13
2.2.2 GOAL . 15
2.2.3 Dribble . 16
2.2.4 Extensions to the GOAL/Dribble family of agents 17

2.3 Motivated Agency . 18
2.3.1 Motivations . 19
2.3.2 Models of Motivated Agency . 20

2.3.2.1 Alarms . 20
2.3.2.2 3M Motivation Taxonomy 21
2.3.2.3 SMART . 24

2.3.3 Motivation-driven Agent Architectures 25
2.3.3.1 Motivated Blackboard . 25
2.3.3.2 Motivations in InteRRaP 25
2.3.3.3 Creatures . 26

2.3.4 Motivation-based planning . 26
2.4 Discussion . 26

3 Agent Interaction 29
3.1 Agreement Mechanisms . 30

3.1.1 An abstract negotiation framework 30
3.1.2 Argumentation-based negotiation 32

3.2 Coordination Mechanisms . 34
3.2.1 The Contract Net Protocol . 35
3.2.2 Commitments and Mental States 36
3.2.3 Coalitions and Organizations . 37

3.2.3.1 Coalitions . 37

v

vi CONTENTS

3.2.3.2 Payoff . 38
3.2.3.3 Virtual Marketplaces . 39

3.2.4 Multiagent Planning . 39
3.2.4.1 Partial Global Planning 41
3.2.4.2 Generalised Partial Global Planning 41

3.3 Regulatory Mechanisms . 42
3.3.1 Norms . 43

3.3.1.1 Deontic logics . 44
3.3.1.2 Norms for autonomous agents 45

3.3.2 Policies . 46
3.3.3 Reputation and Trust . 47

3.3.3.1 Trust mechanisms . 47
3.3.3.2 Reputation of information sources 49
3.3.3.3 Reputation through social analysis 49
3.3.3.4 Automated relationship identification 50
3.3.3.5 Reputation as probability 51

3.4 Discussion . 52

4 Issues regarding declarative agent architectures 55

5 Future Work 59
5.1 Activities and Deliverables . 59
5.2 Work Plan . 60
5.3 Contributions . 60

Bibliography 61

List of Figures

2.1 IRMA architecture [Bratman et al., 1988]. 5
2.2 PRS architecture structure. 8
2.3 A PRS knowledge area. 9
2.4 X-BDI operation overview. 14
2.5 3M Motivation model. 23
2.6 A control loop driven by 3M motivations. 23

3.1 Elements of an abstract negotiation framework. 31
3.2 Bartolini’s abstract negotiation process. 32
3.3 Components of an ABN mechanism. 34
3.4 Coordination Mechanisms. 35
3.5 Steps in the contract net protocol. 36
3.6 Regulatory Mechanisms. 43
3.7 Dependencies among agent-interaction mechanisms. 53

4.1 Conceptual architecture for motivationally controlled delegation. 56

vii

List of Tables

2.1 Human motivations from [Morignot and Hayes-Roth, 1996]. 21

ix

Acknowledgements

Thanks to Mike Luck for giving me such a hard time in the writing of this report and
allowing its content to be so much better than I would otherwise be able to write. I
attribute to him any overly well-written passages, any mistakes are my own.

xi

Chapter 1

Introduction

As computer systems become more complex, abstraction mechanisms have become more
and more important. One abstraction mechanism that is increasingly becoming accepted
is the notion of autonomous agents [Jennings, 2000], which embody a component inde-
pendent from direct external control, and which are expected to operate unsupervised
for an undetermined amount of time. Research into agent systems has yielded an exten-
sive body of work in terms of both theoretical results and practical models and systems,
and is still ongoing. In the particular area of autonomous agents, the theoretical work
has not always been matched by the creation of practical models. Despite this difficulty,
there have been many applications requiring autonomy; for example, control systems for
space exploration vehicles, and for operation in hazardous environments. These appli-
cations are often specifically designed for their application domain and require regular
human intervention.

For agent designers to expect an agent to act autonomously, they must be able to specify
what the agent must accomplish and allow for the agent’s reasoning process to select
the best way of accomplishing it. In contrast, current practical agent models require the
designer to provide detailed specifications of how an agent should achieve its goals (e.g.
create a plan library), as well as precise descriptions of the conditions under which an
agent should pursue their achievement. In this setting, the success or failure of a goal is
implied by the successful execution of these plans, so that when the agent selects one of
the available plans, it has no way of determining how appropriate that selection is until
the plan has either succeeded or failed. Given the association of plan execution with goal
achievement, the way in which an agent’s plan library is defined might interfere with
the agent’s perception of which goals are possible or not. Recent work on declarative
agent languages has partially addressed the problem by dissociating plan execution from
goal achievement, and allowing the agent to try other plans to accomplish the same goal
in case the currently chosen plan fails. However, agents still rely on a plan library
and lack any kind of knowledge about the plan’s suitability for a given situation until
that plan has been achieved, so that an agent has no way of evaluating a course of

1

2 Chapter 1 Introduction

action before trying to follow it. This lack of knowledge regarding the courses of action
to follow applies also in the context of multiagent systems. That is, an agent never
evaluates whether interacting with other agents is actually required, relying on a set of
hard-coded rules specifying when it should go into social mode.

Normal living beings constantly evaluate their surroundings and their past experiences
to decide their courses of action, and changes to ongoing courses of action are rarely
sudden and arbitrary, reflecting a mechanism that is much more elaborate than simply
obeying a set of rules or maximising rewards. Therefore, we believe that for autonomous
behaviour to be possible, an agent has to be able to evaluate its available courses of action
before investing any resources in pursuing them. For an agent to perform this kind of
evaluation, it must be supplied not only with a set of design objectives, but also with
a mechanism that allows it to evaluate how the importance of accomplishing individual
objectives changes in response to events in the world.

This report reviews research efforts aimed at the development of autonomous agent sys-
tems, including research on autonomous and motivated agent models in Chapter 2, as
well as agent interaction mechanisms in Chapter 3. In our review we identify outstand-
ing issues on the integration of the individual results achieved by previous research in
Chapter 4 in order to define a plan for future work in Chapter 5.

Chapter 2

Declarative Agents

2.1 BDI Agents

One commonly used way of informally describing autonomous behaviour is using the
notions of beliefs, desires and intentions, in which beliefs describe one’s knowledge about
the world, while desires are states of affairs one seeks to achieve and intentions are one’s
commitment to achieving a particular subset of desires. This model was proposed for
human practical reasoning by philosopher Michael Bratman [Bratman, 1984], to account
for the way in which humans select a series of actions directed at the achievement of
a larger goal while avoiding spending time considering less important ones. The BDI
model serves as an architecture for intelligent agents [Bratman, 1987], using the same
mental abstractions of beliefs desires and intentions to describe the operation of software
programs. This BDI architecture has become one of most widely known and studied
models of deliberative agents, and evolved from Bratman’s seminal work [Bratman,
1987] into formalisations [Cohen and Levesque, 1990] and subsequently a more complete
computational theory [Rao and Georgeff, 1995b; Wooldridge, 2000a].

The components that characterise the BDI model can be briefly described as follows
[Müller, 1996].

• Beliefs are the agent’s model of the current world, as perceived by its sensors,
including the knowledge an agent has about how to modify the world.

• Desires are a (possibly inconsistent) set of preferences regarding world states.

• Intentions represent the agent’s choice regarding alternative courses of action,
constraining the consideration of new objectives to allow it to fulfill one subset of
its desires at a time.

In essence BDI agents operate as follows.

3

4 Chapter 2 Declarative Agents

1. The agent’s beliefs are constantly updated by its sensors.

2. The agent chooses an internally and externally consistent subset of its desires.
Internally consistent desires are those that do not conflict with each other, like
being in two places at the same time. Externally consistent desires are those that
are not deemed impossible given the agent’s beliefs and are not already satisfied.

3. Considering the chosen desires, the agent commits itself to following a course of
action (or intention) to fulfill them.

The BDI model has been the focus of agents research for a significant time [Georgeff
et al., 1999], and is still ongoing. Examples of recent research include improving the
model through the construction of new theories to underpin it as a unified system [der
Hoek and Wooldridge, 2003; van Riemsdĳk et al., 2005], and extending pre-existing
BDI theories to allow ever more complex domains to handled by BDI agents [Bordini
et al., 2003; Móra et al., 1999; Nair et al., 2003; Nide and Takata, 2002]. Among these
efforts, many seek to address the fact that BDI architectures and models tended to avoid
including many of the declarative aspects of desires/goals in support of practicality.
More specifically, the first instances of complete BDI logics [Rao and Georgeff, 1995b]
assumed an agent able to foresee all of the future ramifications of its actions as part of the
process of deciding which courses of action to take [Schut and Wooldridge, 2001]. This
assumption was clearly too strong if computationally-bounded BDI architectures were to
be constructed. Therefore, when designing practical architectures based on specific BDI
logics, modifications were necessary to avoid unbounded computations. Since the agent
cannot look directly into future world states and then select the sequence of actions that
leads to the desired future (as this would imply omniscience), the inverse approach was
taken; that is, an agent would select from a set of known courses of action, the one that
would lead to the desired future. In practice, this means that the agent no longer selects
directly what he wanted to achieve, but rather what he wants to perform under the
assumption that his actions would ultimately bring about the desired state of affairs.
This way of selecting agent goals was later dubbed goals to do [Winikoff et al., 2002].

Concurrently with goals to do are what have been termed goals to be [Winikoff et al.,
2002]; the difference being that here, an agent selects the desired state of affairs directly.
As a consequence, the actions required by the agent to reach such a state of affairs are
decoupled from the ultimate goal. In turn, this gives rise to the problem of discovering
which actions will have to be taken by the agent to realise its goals, a problem which
is sometimes referred to as the agent design problem [Wooldridge, 2000b]. The most
widely known BDI agent implementations bypass this problem through the use of plan
libraries where the courses of action for every possible objective an agent might have
are stored [d’Inverno and Luck, 2004; Ingrand et al., 1992; Rao, 1996] (which we have
seen are associated with to do agents). The near absence of pragmatic architectures that

Chapter 2 Declarative Agents 5

implement the notion of to be goals represents a gap that current research is trying to
address.

2.1.1 BDI architectures

2.1.1.1 IRMA: The embryonic BDI architecture

The Intelligent Resource-bounded Machine Architecture (IRMA), was defined to demon-
strate the applicability of Bratman’s practical reasoning model [Bratman et al., 1988].
IRMA provides a reasoning mechanism for an agent taking into account its limited re-
sources. IRMA was one of the first to incorporate intentions as a primary mental state,
playing an important part in the means-end reasoning of the deliberative process. The
role of intentions in IRMA is to keep track of the agent’s progress in achieving a goal and
constraining future deliberation to avoid new goals that conflict with the ones currently
being pursued to be adopted.

Structured into
Plans

Intentions

Library
Plan

Means−End
Reasoner

Oportunity
Analyser

Compatibility
Filter

Filter
Override

Deliberation DesiresBeliefs

Reasoner

Options Options

Action

Surviving Options

Intentions

Perception

Figure 2.1: IRMA architecture [Bratman et al., 1988].

Figure 2.1 represents IRMA’s architecture and contains two basic types of entities:
processes (denoted by rectangles) and storage entities (denoted by ellipses). IRMA
intentions are structured into high-level plans in which actual plans (or plans as recipes)
are stored in a plan library. The opportunity analyser reacts to changes in the environ-
ment, creating action options based on events that were not predicted by conventional
planning, which is performed by the means-end reasoner. Action options are alternative

6 Chapter 2 Declarative Agents

means through which the desired goals of an agent can be accomplished. The means-
end reasoner has as its most obvious inputs the beliefs and the plans stored in the
plan library. Also, according to Bratman’s practical-reasoning model, the role of inten-
tions in means-end reasoning is to narrow down the search space for its problems. The
means-end reasoner and the opportunity analyser come up with options for the filtering
process, represented by the compatibility filter and by the filter override. The compati-
bility filter checks if the generated options are consistent with the intentions currently
adopted, and the surviving options are passed to the deliberation process, which assesses
new options and incorporates them into plans. The filter override was included in the
filtering process due to the possibly limited agent knowledge, which creates situations
in which the consideration of certain options would be interesting despite an indication
by the beliefs that these options are inconsistent. Therefore, even when a given option
is eliminated by the compatibility filter it is possible that it might trigger a rule in the
filter override causing it to survive.

Despite IRMA being a highly abstract architecture, it was useful to explore some of the
problems that other BDI architectures might have to deal with [Bratman et al., 1988],
such as the need for procedures to:

• propose new options when changes in the environment are detected;

• evaluate conflicting options; and

• override the compatibility filter.

Some of the concepts outlined in the original IRMA work were put to the test in the
Tileworld system [Pollack and Ringuette, 1990], whose main objective was to provide
an agent architecture testbed for meta-level reasoning strategies. Essentially, the Tile-
world system consists of a simulated robot agent and a simulated environment, which
is dynamic and unpredictable. Both environment and agent were designed to be highly
parameterised so that various situations in which an agent might find itself could be
tested, and the behaviour of these agent/environment pairs could be evaluated. The
main components under scrutiny in the Tileworld agent were the filtering mechanism,
comprising the compatibility filter and the filter override, which is responsible for decid-
ing whether a change in the environment should cause a reconsideration of the agent’s
current intentions. Various deliberation strategies of increasing complexity were tested
against different environment set-ups, which varied in several dimensions, in order to test
their suitability. The experiments conducted over the Tileworld testbed demonstrated
that more restrictive filtering mechanisms that allow only clear opportunities (i.e. tasks
that can be accomplished with little planning and achieve an immediate benefit) to be
passed down to a deliberation process are more desirable when the environment is more
dynamic.

Chapter 2 Declarative Agents 7

These results are often analysed using the notion of cautiousness and boldness [Bratman
et al., 1988] where a cautious agent reconsiders its course of action frequently while a
bold agent does not. Here a bold agent tends to perform better than a cautious one
in a dynamic environment [Pollack et al., 1994], because the constant reconsideration
triggered by changes in the environment prevents the agent from carrying out plans to
their completion, diminishing the number of goals effectively achieved. Although these
conclusions conform to the hypotheses outlined in earlier work [Bratman et al., 1988],
Pollack et al. [Pollack et al., 1994] are careful not to assert their generality regarding
real-world applications, given that the environment in which the agent was embedded
was highly controlled.

2.1.1.2 PRS: Procedural Planning

The Procedural Reasoning System (PRS) [Georgeff and Lansky, 1987] was created as
a BDI architecture that could be used in real-world applications, and was aimed at
supporting both goal-directed and reactive reasoning. It was first used in the implemen-
tation of a task control system for a NASA spacecraft simulator.

A PRS agent or module consists of four components, shown in Figure 2.2:

• a database containing the current system’s beliefs about the world;

• a set of current goals;

• a procedure or plan library (knowledge area (KA) library); and

• an intention structure.

KAs describe action and test sequences intended to achieve the proposed goals or to
react to specific situations [Ingrand et al., 1992] while the intention structure maintains
the set of plans chosen at runtime for execution. PRS integrates these components
via an interpreter, which works as an inference mechanism that manipulates them and
selects an adequate plan based on the system’s beliefs and goals, putting this plan in
the intention structure and executing it.

System Database (Beliefs). The System Database can be viewed as the repre-
sentation of the system’s beliefs regarding the environment, represented as first-order
predicates [Georgeff and Ingrand, 1989a]. These beliefs may initially contain constant
properties regarding the world and application domain of a PRS system, though they can
evolve through system execution to include the agent’s observations about the world, or
even conclusions derived by the system using the knowledge contained within the data-
base. The system database is also the way through which the agent receives information

8 Chapter 2 Declarative Agents

Monitor

Sensors

Environment

Effectors

KA Library
(Plans)

Intention
Structure

Goals

Generator
Command

Interpreter
(Reasoner)

Database
(Beliefs)

Figure 2.2: PRS architecture structure.

regarding the world [Ingrand and Coutance, 2001]; in PRS it is assumed that there is an
automatic process that includes new facts coming from the environment. In addition to
describing the world, the agent’s beliefs may refer to the agent’s structure and its inter-
nal state, including beliefs, goals and intentions. Such reflective beliefs are expressed as
meta-level expressions, which describe properties concerning an agent’s internal state, as
well as operations affecting the agent’s behaviour, as opposed to standard expressions,
which only deal with the surrounding environment. These types of expression provide
the agent with introspective capabilities.

Goals (Desires). PRS goals describe tasks and desired behaviours such as [Georgeff
and Ingrand, 1989b; Ingrand et al., 1992]:

• reaching a given condition;

• testing a given condition;

• waiting until a given condition is true;

• maintaining a true condition;

• asserting a condition as being true ;

• retracting a condition; and

• concluding that a given condition is true.

Goals are divided into two types: intrinsic and operational. Intrinsic goals are adopted
as the agent reacts to changes in the environment and become roots of intentions in

Chapter 2 Declarative Agents 9

the intention structure. Operational goals represent intermediate steps in the process
of fulfilling an intrinsic goal, they can be seen as means to achieving intrinsic goals. As
with beliefs, PRS allows goals to be defined as meta-level, thus allowing the specification
of goals regarding internal system behaviour.

Context:

End

S2

S1

Start
+location(waste, X)

Trigger:

location(bin, Y)

location(robot, X) &

drop(waste)

!location(robot, Y)

pick(waste)

Activation

Condition Body

Figure 2.3: A PRS knowledge area.

Knowledge Area (Plans). The knowledge of how to achieve a given objective in
PRS is described by declarative procedure specifications called knowledge areas (KAs)
[Georgeff and Ingrand, 1989a,b], which use the notion of procedural knowledge [Georgeff
and Lansky, 1986] in the sense that the agent’s knowledge about the workings of its
surrounding world is encoded in pre-defined plans used to achieve its goals. KAs are
represented by a body and an activation condition, specifying a sequence of steps to
achieve a given objective in a given situation. A KA body can be viewed as a plan
or a plan schema, and is represented by a directed graph with a start node and one
or more finish nodes (Figure 2.3). The graph’s arcs are labelled with sub-goals to be
achieved throughout plan execution, so that he execution of a KA is said to be successful
when the arcs that connect a start goal to a finish goal are reached and, through this
path, all the specified sub-goals are satisfied. This means that a graph path in a KA is
actually multi-dimensional, given that satisfying sub-goals may require other KAs to be
executed and whenever a subplan is instantiated differently a new dimension is added to
the intention structure. It is possible that some KAs do not have a body, in which case
they are called primitive KAs, because they have some kind of primitive action tied to
them that is directly executable by the system. Note that the KA graph construction
formalism allows the use of various constructs that control the execution flow, such as
conditional branches, iterations and recursions.

The invocation condition of a KA is divided into two parts: the triggering part and the
context part [Georgeff and Ingrand, 1989a].

10 Chapter 2 Declarative Agents

• The triggering part of an invocation condition is a logic expression that describes
the events that must take place in order for the KA to be executed. These events
may consist in the acquisition of new goals, in which case the reasoning is goal
oriented, or the modification of the agent’s beliefs, in which case the reasoning is
data-oriented or reactive.

• The context part of an invocation condition specifies the conditions that must be
true regarding the current system state for the associated KA to be executed.

KAs are not limited to dealing with the environment that surrounds the agent, and can
also be used to manipulate beliefs, desires and intentions of PRS itself. These KAs are
therefore called meta-level KAs [Georgeff and Ingrand, 1989a; Ingrand et al., 1992]. One
of the objectives of such KAs is the modification of standard PRS interpreter behaviour
in dealing with reasoning. For example, this might include the modification of plans
during execution, the establishment of new goals or even the modification of beliefs
during the execution of a meta-level KA.

Intention Structure. The intention structure contains the tasks that the system has
chosen for immediate or later execution; these tasks are called intentions [Georgeff and
Ingrand, 1989b]. An intention is composed of a KA chosen to fulfill a goal, along with all
the KAs needed for the initial KA to be completed. Intentions in the intention structure
may be active, suspended or delayed (for example, waiting for a condition to become
true). For every goal being pursued there is an intention, and that for each intention
there is a stack of KAs to be executed in order to achieve the KA.

KAs in the intention structure are partially ordered, with possibly more than one KA
as the root of the intention structure. The order established for the executing KAs is
followed so that for a given KA to be executed it is necessary for all the preceding KAs
to be either executed or dropped. Meta-level KAs are treated in the exact same way as
regular KAs in the intention structure, ensuring a bounded response time regardless of
the type of KA being processed. Once a given KA is chosen to fulfill a goal, no other
KAs are selected to fulfill the same goal, even if their activation condition is satisfied
[Georgeff and Ingrand, 1989a]; other plans will only be considered for achieving any
given goals once the current plan fails.

System Interpreter. The interaction between the components of PRS is controlled by
a simple interpreter in order to attain a minimum reaction time for PRS agents[Ingrand
and Coutance, 2001]. Considering the existing desires and beliefs at a given moment,
one or more KAs may become eligible for execution, and one or more of these KAs is
chosen for inclusion in the intention structure (i.e. chosen for execution). In order for
the interpreter to determine whether to execute the KAs, the interpreter only tries to

Chapter 2 Declarative Agents 11

unify the KA execution condition with the system’s beliefs. If any other more complex
inference process was used, it would not be possible to prove a bounded execution time
for the KA selection process [Georgeff and Ingrand, 1989a]. Nevertheless, meta-level
KAs can be used to create more complex inference processes [Georgeff and Ingrand,
1989a]. The use such of meta-level KAs does not violate the reactive capability of the
system, since these are handled in the same way as any other KAs, allowing for new
KAs to take precedence over the meta-level KAs used to make complex inferences.

2.1.1.3 PRS Descendants

PRS has been used to underpin a variety of implementations of the BDI agent model,
and it has also evolved to a number of other systems aiming to solve some of its orig-
inal shortcomings. Two of the most notable direct PRS descendants are dMARS and
AgentSpeak(L), whose main objectives were respectively, to create an idealised C++
implementation of PRS, and to formally define an agent specification language and its
semantics. These efforts are briefly described below, as well as more recent systems,
such as JACK, Jason and JAM.

dMARS. The distributed Multi-Agent Reasoning System (dMARS) [d’Inverno et al.,
1998] is a PRS implementation that uses the same representation of beliefs as PRS,
consisting of Prolog-like ground literals of classical first-order logic. dMARS reduces
the amount of possible goal types from the original seven in PRS to achievement goals,
query (test) goals, and distinguishes the assertion and retraction goals present in PRS as
internal actions, naming them, respectively, add and remove actions. It also formalises
agent interaction with the environment through the notion of external actions, which
are used to perform some arbitrary operation defined by the system programmer. In the
same way as the original PRS, an agent’s intentions in dMARS are represented by the
currently adopted plans, though the events that trigger the adoption of a new intention
have been expanded from the original addition and removal of beliefs and adoption of a
new goal also to contain the receipt of a message. The definition of plans in dMARS is
performed through a textual version of PRS plan graphs, and the two components of the
PRS invocation condition were refined to the notions of relevance and applicability. One
of the greatest contributions of the dMARS formalisation is the unambiguous definition
of an interpreter algorithm.

JACK. JACK is a commercial agent framework aiming to provide a high-performance
infrastructure designed to be a part of a larger legacy system [Busetta et al., 1999;
Howden et al., 2001]. This framework itself is implemented in Java, while the agents
are defined in an extended version of the Java language that includes new constructs
for the specification of agent components. A special Java compiler is used to convert

12 Chapter 2 Declarative Agents

the extended subset of the base programming language into pure Java code that can
be accessed by the rest of the system. Besides the resulting code describing agent
behaviour, a deployed system contains a set of runtime support classes that provide an
agent infrastructure management for the deployed agents.

JAM. JAM [Huber, 1999] is an implementation of PRS that incorporates features
from several frameworks, like Structured Circuit Semantics (SCS) [Lee et al., 1994] and
the Act plan interlingua, also present in independently implemented PRS descendants
like UMPRS [Lee et al., 1994] and PRS-CL [Wilkins and Myers, 1995]. Its main purpose
is to gradually integrate successful elements from other agent architectures as a means
to further develop the JAM framework. In its current release it includes mobility ca-
pabilities; the next planned development step was to be the incorporation of generative
planning capabilities. Such a capability will include a partial order planner for the gen-
eration of plans whenever the plan library fails to find an appropriate plan for a given
situation.

AgentSpeak(L). The AgentSpeak language [Rao, 1996] was created in order to di-
minish the distance between BDI agent theory and practice. This gap is due to a number
of factors [d’Inverno and Luck, 1998; Rao, 1996]: for example, implementations are gen-
erally conceived in a simplified manner, resulting in the weakening of its theoretical
underpinning, and the logics used in the associated theories are usually weakly related
to practical problems. The goal to diminish the gap was to be attained through a formal
specification of the agents, later used to underpin their implementation. AgentSpeak(L)
is an agent specification language whose operational model is formally defined to match
that of a dMARS implementation. The agent programming language is based on a re-
stricted first-order language with events and actions, in which BDI components such as
beliefs, Desires and Intentions are not explicitly represented as modal formulas. Simi-
larly to dMARS, AgentSpeak(L) is based on a number of simplifications over PRS, the
most significant of which are the following.

• Goal Types: In PRS it is possible to specify the following goal types [Georgeff
and Ingrand, 1989b; Ingrand et al., 1992]: to reach or test a condition, to wait
for a condition to be true or to maintain true the condition, to assert or retract
the truth value of a condition and to conclude that the condition is true. In
AgentSpeak(L) it is possible to declare goals of achievement and testing of a given
condition over the world, as well as to assert and retract conditions over the world
through AgentSpeak(L) basic actions. This results in diminished expressivity at
the language tied to AgentSpeak formal model.

Chapter 2 Declarative Agents 13

• Meta-level components: In AgentSpeak(L) it is not possible to specify meta-
level components such as those that are possible in PRS, thus limiting behaviour
flexibility in the definition of a given agent.

Jason. Jason is a Java implementation of a modified version of an AgentSpeak(L)
interpreter, AgentSpeak(XL) [Bordini et al., 2003]. AgentSpeak(XL) specifications are
tailored to allow model checking to be used to verify a system prior to its deployment.
The available Jason implementation includes features such as strong negation and dis-
tribution of processing using a multi-agent framework.

InteRRaP. Another architecture that follows the PRS philosophy of procedural goals
is the InteRRaP (Integration of Reactive Behaviour and Rational Planning) architec-
ture [Müller, 1996]. InteRRaP is not closely related to any formal theory but innovates
through its layered architecture in which single-agent PRS-like reasoning operates con-
currently with reasoning about communication and cooperation.

2.2 Frameworks for Declarative Goals

Implementations of BDI agents have generally focused on runtime efficiency in order to
cope with deployment in systems with constrained computational resources. This has
led the first generation of BDI systems (usually based on the PRS [Ingrand et al., 1992]
model) to largely overlook the declarative nature of goals in BDI agent implementations
in favour of procedural goals [Winikoff et al., 2002]. We believe that declarative goals
were perceived to be computationally inefficient as a result of how a BDI decision pro-
cedure was initially formalised. In this formalisation, an agent was required to know all
of the possible attainable world-states and the payoff of achieving them before deciding
on a course of action [Rao and Georgeff, 1995b]. Constructing this kind of omniscient
model of possible worlds incurs a high computational cost. Nevertheless, much work has
recently been developed in order to bridge the gap between pragmatic BDI architectures
and declarative goal semantics. These efforts focus on new formal agent models such as
those by Hindricks et al. [Hindriks et al., 2000], Braubach et al. [Braubach et al., 2004]
and van Riemsdĳk et al. [van Riemsdĳk et al., 2004, 2005]; as well as new agent systems
and languages such as X-BDI [Móra et al., 1999], Dribble [van Riemsdĳk et al., 2003]
and its refinements [Dastani et al., 2003].

2.2.1 X-BDI

Executable-BDI or X-BDI is an agent model constructed using a non-monotonic form of
Extended Logic Programming (ELP) [Alferes and Pereira, 1996]. This agent model was

14 Chapter 2 Declarative Agents

created to allow a formal agent specification to be directly executed [Móra et al., 1999],
thus reducing the gap between theory and implementation. The implementation relies
on ELP’s reference implementation that includes a derivation procedure (SLX[Alferes
and Pereira, 1996]), used to perform consistency maintenance of the agent’s belief base.
The same procedure that enforces consistency among the agent’s beliefs underpins an
abduction planning process [Shanahan, 2000] operating over an event calculus [Kowalski
and Sergot, 1986] representation of the agent’s actions that is responsible for the agent’s
means-ends reasoning.

An X-BDI agent is composed of a cognitive structure composed of a set of beliefs, a set
of desires and a set of intentions as well as a set of time axioms. These components are
used by the X-BDI kernel to define an agent’s behaviour, an overview of which is shown
in Figure 2.4.

Consistency
Maintenance

Eligible
Desires

Candidate
Desires

Primary
Intentions

Planning

Relative
Intentions

BeliefsDesires Deliberation Perception

Action

Figure 2.4: X-BDI operation overview.

Whenever sensor input is available to the agent, it is used to update its set of beliefs.
When this set is changed in such a way that it affects the consistency of the agent’s de-
sires, the deliberation process commences. The deliberation process starts by selecting
a set of desires deemed viable (called eligible desires) considering the set of beliefs. Mu-
tually consistent subsets of eligible desires are then organised by some order relation. A
search for the existence of a set of actions capable of fulfilling one of these subsets ensues.
When one such set of actions is found, the desires associated with them are selected as
the candidate desires, which the agent commits itself to achieving by generating a set of
primary intentions. These intentions are refined into concrete actions (comprising the
relative intentions) queued for execution, which will ultimately lead the agent to act.

Chapter 2 Declarative Agents 15

2.2.2 GOAL

GOAL is a declarative programming language [Hindriks et al., 2000] developed in a
similar spirit as X-BDI (i.e. to bridge the gap between theory and practice in agent
programming), but unlike X-BDI, it was developed without recourse to an existing logical
scheme. GOAL was inspired by the UNITY concurrent programming logic [Misra and
Chandy, 1989], which expresses programs as actions that execute in parallel, assigning
values to variables. These actions are invoked randomly until there is no possible action
that will bring about a change in the state of the variables; unlike UNITY, agents in
GOAL select their actions on the basis of their current mental states. A mental state
is a pair containing the beliefs and the set of goals of the agent. These components are
also subject to a set of constraints:

• an agent cannot have a goal to achieve something if it believes that such thing is
already true; and

• no goal in the goal base can be inconsistent, i.e. no formula in the goal base is
allowed to support contradiction.

Conditions on mental states are expressed by a language of mental state formulas, which
expresses boolean combinations of the basic formulas over beliefs (formulas believed to be
true) and goals (formulas that are goals). Besides beliefs and goals, a GOAL agent has a
set of capabilities expressing actions that update the agent’s belief base. A GOAL agent
is therefore expressed as a triple, consisting of a specification of an initial mental state
(beliefs and goals) along with a set of actions derived from the agent’s capabilities. The
process of action adoption is based on the evaluation of pre-conditions associated with
the capabilities, and the actions are then executed in the process of fulfilling the agent’s
goals. The default commitment strategy of a GOAL agent is that of blind commitment,
which can be manipulated by the use of two special actions to adopt and drop goals.

The idea behind capabilities in GOAL is that they are mental state transformers, mean-
ing that they map an agent’s mental state into another mental state. Moreover, actions
can be conditional upon the beliefs as well as the goals of an agent. Conditions on
the beliefs are interpreted as pre-conditions for action execution, whereas conditions on
the goals specify the applicability of a given action towards the accomplishment of a
particular goal. Goal conditions are related to a special formula that states that a given
subgoal partially fulfills a goal in a mental state. This is used to guide an agent in
the action selection process that causes actions to be carried out, which in turn leads
to computation steps, defined as transition relations in which conditional actions are
executed causing a new agent state to be generated.

A GOAL agent is thus defined as a set of traces, in which a trace is an infinite computa-
tion sequence of consecutive mental states and actions performed in those mental states.

16 Chapter 2 Declarative Agents

Action specification follows the formalism commonly used for planning and conditional
assignments in concurrent programming. These actions are defined in advance as a plan
library, thus making GOAL agents devoid of planning capabilities.

2.2.3 Dribble

The Dribble language was created to combine features of procedural and declarative
goals [van Riemsdĳk et al., 2003] by drawing on elements from 3APL [Hindriks et al.,
1999] and GOAL [Hindriks et al., 2000]. The means for creating and modifying plans at
runtime was inherited from 3APL while the use of declarative goals was inherited from
GOAL. The basic operation of a Dribble agent consists of an agent selecting a plan to
achieve a certain goal, using the beliefs and goals of an agent along with rules to select,
create and modify plans. Plans in Dribble are defined to be a sequence of basic elements,
as follows.

• Basic Actions are operators that effect changes in the agent’s beliefs but have
no effect in the real world.

• If-then-else are constructs that allow plans to have conditional branches encoded
in their execution.

• Abstract Plans roughly correspond to the notion of procedural knowledge in
PRS in that they resemble procedures in imperative programming, they contain
both basic actions and if-then-else constructs.

A Dribble agent is a quadruple containing an initial mental state (with initial beliefs and
goals), an empty plan, a set of goal rules, and a set of practical reasoning (PR) rules.
Goal rules specify how to select a plan to satisfy a specific goal, while PR rules specify
modifications to the current plan to ensure this plan remains viable. A selected plan is
modified at run time as its actions are executed (and thus removed from the selected
plan), or through PR rules that can be applied to modify such plan. Since Dribble
maintains the blind commitment strategy used by GOAL, a goal rule is applied at the
start of an agent’s execution and whenever the currently pursued goal is achieved. This
encoding of an agent’s mental state entails that the agent is effectively single-minded in
the sense that it will only be pursuing the one goal contained in the goal rule that used
to select the current plan.

Since Dribble uses propositional logic in its formulas, the type of problem that can effec-
tively be encoded using Dribble agents is severely limited. Moreover, if the interpreter
was extended to handle first-order logic, Dribble agents might not be tractable.

A Dribble agent aims to select plans to further its goals rather than construct plans like
a planner; it also has no knowledge about the plans it selects aside the fact that these

Chapter 2 Declarative Agents 17

plans are intended to accomplish a certain goal. This type of plan selection strategy is
similar to that of PRS, so the planning component in Dribble cannot evaluate the plan
prior to execution to determine if a given goal is possible or not (i.e. the agent applies
plan modification rules until the plan succeeds or can no longer be modified or carried
out).

2.2.4 Extensions to the GOAL/Dribble family of agents

The general model set forth in Dribble has been used as the basis for the analysis of
the dynamics of adopting and dropping goal [van Riemsdĳk et al., 2004], as well as
the semantics of goal databases interaction [van Riemsdĳk et al., 2005]. These were all
carried out under the framework of the goal and PR rules defined for Dribble agents
(Section 2.2.3) so as to override the default blind commitment initially adopted. But,
since one of the main advantages of using a declarative semantics for agent goals is the
decoupling of plan execution from goal achievement, multiple views of the dynamics
of adopting and dropping goal were studied, as well as issues of goal persistency. The
agent configuration from previous models was modified with the addition of the currently
selected plan, and the rules collapsed into a single component.

Besides syntactic modifications, the transition system that describes system dynamics
has been expanded to consider the expansion and contraction of beliefs. Moreover, the
semantics of goal base transitions are studied in two distinct views, namely membership
of a goal in the set goals and entailment of goals from the same set. The semantics
of goal accomplishment was also investigated in terms of the adoption of subgoals that
will somehow approximate the agent the associated top goal. Van Riemsdĳk et al.
remark subgoals as being either parts (decomposition) of the top goal or landmarks that
should be reached on the way to accomplishing the main goal. The difference between
these two however, does not seem to be clearly identified. The goal decomposition view
states that the accomplishment of all subgoals entails the achievement of the top goal,
while landmark goals are described as goals whose achievement is necessary for the final
achievement of the top goal. Such a view of subgoals is supported in [van Riemsdĳk
et al., 2004] as a way of enabling an agent to cope with the shortage or absence of plans
to fulfill the main goal by using alternative plans to achieve landmarks leading to that
goal.

The extensions proposed in [van Riemsdĳk et al., 2005] modify the basic agent config-
uration with the explicit notion of intention, thus approaching a classic BDI view of
agent. An agent configuration in this extended model includes a component that en-
codes intentions as a set of pairs of goals and associated plans. The sets of rules are
similar to those of previous extensions to GOAL/Dribble agents, but includes rules for
intention generation, thus approaching a BDI-like definition of agents.

18 Chapter 2 Declarative Agents

A semantics rule for intention generation was also defined so as to avoid the adoption
of conflicting intentions. Such a semantics roughly approximates the idea of a screen of
admissibility present in IRMA [Bratman et al., 1988]. The rules for intention adoption
specify a belief (β) as well as a precondition goal (κ) that causes the adoption of a plan
π that satisfies a goal φ. It is not clear, however, what is the relationship between φ

and the precondition goal κ. Such a notion of intention relaxes the constraint set upon
Dribble agents that they must be consistent. It also partially solves the issue of single-
mindedness from which previous agent models from this series suffered. Ultimately, no
rule for deciding what to do next was set forth, hence leaving the system non-determinism
still in place and denying the agent the ability to prioritise the accomplishment of his
goals.

2.3 Motivated Agency

In the agent architectures described in Section 2.2, an autonomous agent’s reasoning
is typically driven by the set of its designated goals. In these architectures the main
criterion for selecting a given goal by an agent is a set of preconditions. This in turn
results in more or less binary behaviour resulting from the fact that these preconditions
are essentially triggers for the selection of goals with no indication of how valuable it
is for the agent to accomplish the associated goals. Given the lack of a valuation for
multiple goals, it can be very hard to predict which set of goals such an agent will pursue
at any given time, particularly if the agent has a large goal base, and its goal activation
preconditions can be complex. Moreover, the adopted goals have no indication of how
relevant they are for the agent’s larger purpose.

Simple precondition-based goal selection not only represents an oversimplification of au-
tonomous behaviour specification but, according to Luck et al. [Luck et al., 2003], is
also misleading about how to achieve autonomy in agent architectures. More specifically,
most of the models described in Section 2.2 claim to be models of autonomous agents,
despite the fact that among their components there is no identifiable source of autonomy.
The absence of an explicit component responsible for autonomy implies that these ar-
chitectures assume it to emerge from agents when they are sufficiently independent from
user interaction. In this sense, autonomy is a consequence of an agent’s independence of
others in its actions. Instead, the notion of autonomy advocated by [Luck et al., 2003]
is that autonomy derives from independence of choice rather than interaction, so that
an agent can depend upon others to carry out its tasks without relinquishing its auton-
omy. This view is exemplified by the fact that it is very straightforward to construct a
web agent whose sole responsibility is to deliver documents over the web, since it does
not depend upon any others to fulfill such a task. Yet this activity does not involve
any choice of alternate courses of action, and the agent is essentially carrying out an
imperative script defined at design time. On the other hand, an agent operating in an

Chapter 2 Declarative Agents 19

electronic marketplace whose purpose is to buy and sell assets for profit may depend
upon a multitude of agents to carry out its task. Its behaviour is directed by the mo-
tivation to profit from the marketplace and its members, yet the agents with whom it
interacts in no way take over its behaviour. Though a mechanism for goal prioritisation
is available in some architectures like X-BDI (Section 2.2.1), the mechanism is static in
the sense that goal priorities are not allowed to change during agent execution.

2.3.1 Motivations

A psychology-inspired definition states that a motivation represents an individual’s ori-
entation towards particular classes of goals [Morignot and Hayes-Roth, 1996]. Such a
definition, while broad, captures the fact that motivations are not necessarily tied to a
specific set of goals, nor do they directly cause them to be adopted or dropped. That
is to say that more than one specific motivation might be associated with a single or
multiple goals, and they are not directly responsible for their adoption; rather, they
create a setting in which adopting their associated goals is more likely.

From an ethological point of view, motivation is associated with drives and incentives
[Balkenius, 1993; Luck and d’Inverno, 1998; Munroe et al., 2003]. In a simplistic descrip-
tion, drives are internally generated states resulting from the violation of an animal’s
homeostasis, such as the deprivation of food or the excess of a given hormone. Incen-
tives, on the other hand, are externally generated stimuli that increase certain motiva-
tions within the animal, as in the presence of abundant food causing an animal to feed
[Balkenius, 1993]. Motivations have also been described as giving rise to a continuum of
appetitive behaviours leading to consummatory ones. This means that some behaviours
result in the build up of strength of certain motivations related to appetitive behaviour,
and when a motivation has reached a high enough level, consummatory behaviours for
the mitigation of the motivation are triggered. Motivations can also be used to prevent
certain undesirable behaviours from occurring simultaneously, lateral inhibition) [Grand
and Cliff, 1998; Jennings et al., 2006], as in trying to look at a watch while holding a
mug with the same hand.

The aspect of motivations most commonly sought to be captured by computational
architectures is the continuous representation of priorities as a means to determine the
focus of attention at any given time. This is important as it allows an agent with
limited resources to concentrate its efforts on achieving goals that are relevant to it
at specific moments, and to adapt such concentration of effort to the current reality.
Contrasting with the traditional process of goal selection based solely on environmental
state, real biological systems often generate different plans of action under the same
environment. Hence, motivations provide a mechanism to model how internal cues
explain goal generation in parallel with external factors [Jennings et al., 2006]. An
internal cue can be seen as a trigger condition that, when activated, causes an agent

20 Chapter 2 Declarative Agents

to consider the adoption of a set of associated goals. It differs from the simple logical
preconditions discussed previously in that internal cues are a result of the dynamics of
motivation strength, rather than a simple binary condition over the current state of the
world.

Based on the concept of explicitly represented autonomy, research onmotivational states
to guide the reasoning process has been conducted by an increasing number of efforts.
These efforts range from agent architectures specifically underpinned by motivational
states [Luck et al., 2003; Munroe et al., 2004; Norman and Long, 1995] to the adaptation
of existing architectures to cope with motivated behaviour [Burt, 1998; Coddington,
2001; Morignot and Hayes-Roth, 1996].

2.3.2 Models of Motivated Agency

2.3.2.1 Alarms

The Alarms architecture allows agents to generate goals asynchronously to focus re-
sources on the accomplishment of important goals [Norman and Long, 1995]. Asyn-
chronous goal generation entails that new goals can be generated before current ones
are accomplished, so that it is possible for an agent to adopt more goals than it can
effectively work on at the same time. Adopted goals require processing resources for
scheduling and planning, and since any agent has a limit on its processing resources
regardless of its efficiency, there must be an upper bound for the number of goals it can
pursue simultaneously. When this bound is exceeded, the agent will no longer function
effectively. The Alarms architecture defines a motivational mechanism that limits the
number of goals that can be pursued at the same time [Norman and Long, 1995]. An
agent in this model has three basic components: motives, motivated goals and motiva-
tions. The choice of nomenclature for the components in this module is rather confusing,
in particular with regard to the difference between motivations (which are evaluation
functions) and motives (which are triggers for the generation of goals).

• Motives are responsible for causing an agent to act by monitoring the environment
and the internal state of the agent, and generating goals to satisfy a particular
interest represented by the motive. Formally a motive is a function that maps
beliefs to a possibly empty list of motivated goals.

• Motivated Goals are generated by motives. Each motivated goal is a tuple
consisting of a goal and an associated motivation.

• Motivations are heuristic functions whose purpose is to determine the motiva-
tional intensity for any given motivated goal. The heuristic nature of motivations
aims to ensure that the computational effort required to calculate its intensity is

Chapter 2 Declarative Agents 21

Class Interpretation
Physiological Preserve battery level

Safety Avoid stairways and hostile agents
Affiliation Achieve other agents’ goals

Achievement Achieve its own goals
Self-Actualisation Cover unknown areas

Table 2.1: Human motivations from [Morignot and Hayes-Roth, 1996].

negligible compared to the other processes within an agent’s deliberative process.
Formally, a motivation is a function of beliefs into an intensity value.

A motivated agent performs two distinct functions, goal generation and goal activation,
rather than simply responding to a conjunction of beliefs. Rather than using goals to
direct agent behaviour, Alarm agents are guided by a number of motives that generate
motivated goals as a result of changes in the environment. Goal generation is then a
function of motives and beliefs that generates motivated goals.

Activated goals are considered by the agent in its deliberative process, i.e. spending
computation resources on planning for its achievement and executing the actions result-
ing from this planning. A goal is activated if the motivation associated with it exceeds a
certain threshold, and if the agent decides to act upon that goal. When the motivation
threshold of a motivated goal is triggered, the goal associated with it is considered for
planning by the agent. Hence, for a goal to be acted upon, it must have been activated,
and once activated, it must have been selected by the deliberative process to be included
in the planning. Motivation thresholds are dynamically modified to reflect the load of
an agent, and therefore prevent an agent from adopting too many new goals when its
capacity is nearing exhaustion.

2.3.2.2 3M Motivation Taxonomy

Considering that the main purpose of motivations is to orientate an individual towards
particular classes of goals, it is important to identify different classes of goals. One
possible classification of motivations from [Morignot and Hayes-Roth, 1996] is shown in
Table 2.1.

While the taxonomy of Table 2.1 makes sense in a human setting, it contains redun-
dancies that make its application to agent architectures unclear. More specifically, in
order for classes of motivations to be more than an interesting philosophical proposi-
tion, there must be a well-defined role that each specific class of motivation plays within
the reasoning of an agent. For instance, goals generated by safety motivations might
take precedence over any other goals, but in this case, physiological motivations like

22 Chapter 2 Declarative Agents

preserving battery level are just as important, in which case, these two classes of moti-
vation could be reduced to a single one. Moreover, if motivation classes are to perform
a meaningful role in an agent’s deliberation process, then their specification must also
be included in the design of the agent they are to control. In this case, a simple but
comprehensive motivation taxonomy is necessary for a viable design process.

More recent work proposes a taxonomy for motivations called 3M that comprises three
sets of motivations [Munroe and Luck, 2003], as follows.

• Domain motivations encode the roles an agent is to fulfill in a system. They should
enable the agent to accomplish its purpose by stimulating the generation of rele-
vant goals at relevant times.

• Constraint motivations impose restrictions on the use of resources and the impor-
tance placed on their use.

• Social motivations are used to encode regulations on the agent’s interactions, for
instance by evaluating requests for assistance and the importance of a relationship.

Besides the taxonomy, 3M includes a motivational model that associates motivations to
goals in order to influence the decision-making process. In this model, when an agent
has to decide between competing sets of goals to be satisfied, it can refer to the moti-
vational model to swiftly decide which set best serves the agent. The proposed model
uses the concept of motivational cues, which are general characteristics of situations in
the environment that affect the motivations. These motivations then steer the agent
towards achieving particular goals in a control loop illustrated by Figure 2.6. In order
to determine the effect of motivations upon their associated goals, motivations have a
strength value that functions as an heuristic calculation of the worth of a given goal to
the agent, as illustrated in Figure 2.5, which shows the inputs taken by this heuristic
function.

The strength of a motivation not only serves to prioritise one goal over another, it also
helps to determine when it is relevant for an agent to adopt a goal at all, so that an agent
will not waste its efforts in accomplishing irrelevant goals, even when the agent would
otherwise be idle. The influence a motivation exerts on the decision-making process is
proportional to the number of cues associated with it since, if a large number of situations
cause a motivation to be stimulated, it will in turn activate goals more often. After an
agent adopts a goal as a result of an increase in a motivation’s intensity, satisfying this
goal causes a decrease in intensity of the associated motivation, also called mitigation
of a motivation. Following its mitigation, a motivation exerts less influence upon the

Chapter 2 Declarative Agents 23

Requests,
Goals,

Information

Motivation

Resources

Motivational Cues

Value

Figure 2.5: 3M Motivation model.

Motivation

cues
environment and affects

Goal changes

Goal

update
Motivational

(Motivational cues)
Environment

Goal generation

Figure 2.6: A control loop driven by 3M motivations.

agent’s decision process. Agent behaviour is then a cyclic process of becoming motivated
by certain situations and then acting to mitigate them.

A goal is said to be motivationally relevant if the satisfaction of that goal affects one
or more motivational cues. The relevance of a given goal is quantified by the amount
of that this goal does for a motivation. The more a goal mitigates a motivation, the
more work it does. The amount of work done by a goal is determined by the plan
chosen to satisfy the goal, as well as the relation between the motivational cue and the
motivational intensity, i.e. how much a cue increases or decreases motivational intensity.
Since multiple cues might be associated with a single motivation, satisfying a goal might
both mitigate a set of motivations and instigate another one.

24 Chapter 2 Declarative Agents

2.3.2.3 SMART

The framework of Structured and Modular Agents and Relationship Types (SMART)
[d’Inverno and Luck, 2004] is a formalisation of a general purpose model of agents. This
framework provides a well defined hierarchy of entities that includes explicitly defined
agents, both autonomous and non-autonomous, in order to allow rigorous specification of
agents and agent systems as well as their interaction with entities that are not endowed
with goal-driven behaviour. It consists of a four-tiered hierarchy of increasingly complex
elements situated in an environment, in which:

• entities are just a grouping of attributes without functionality;

• objects are entities with abilities;

• agents are objects with goals that direct the agent into performing activities (on
behalf of other agents); and

• autonomous agents are agents with motivations used to support goal generation.

Similar to most BDI-inspired agent models (e.g. Rao and Georgeff’s [Rao and Georgeff,
1995b]), an agent operates by either adopting new goals from a base of known goals or
by acting to fulfill existing ones. In this model, motivation underpins a process of goal
selection based on evaluating new goals against competing or alternate ones, while trying
to maximise utility. Such a process is analogous to what is expected of implementations
of the BDI systems set forth by [Rao and Georgeff, 1995a,b], but without falling into
the pitfall of unbounded computation. Unbounded computation and omniscience are
side effects of the possibly infinite representation of the possible-worlds model used in
these BDI logics. These limitations are circumvented in motivated systems by binding
the utility of a given goal (and associated course of actions) to the motivation that
generated it.

As autonomous agents are those that contain a set of motivations, one would expect a
model of motivated reasoning associated with SMART agents. Nevertheless, SMART is
an abstract framework for autonomous agents, and no specific process of motivation build
up and mitigation is specified, nor are specific definitions of how motivations influence
agent behaviour. Rather, definitions are provided for the elements that must be taken
into account when an agent is to decide which goals to adopt and which actions to select.
More specifically, an autonomous agent uses its motivations as the primary input of its
action selection process; the component that distinguishes an autonomous agent from
a simple one is its motivational state. Simple agents possess goals that are ascribed to
them by other agents that can self-generate their goals. Conversely, autonomous agents
might introduce new goals to be accomplished through a process underpinned by their
set of motivations.

Chapter 2 Declarative Agents 25

2.3.3 Motivation-driven Agent Architectures

Besides abstract models of motivation-generated behaviour, a number of systems have
used the notion of motivation in implementations of autonomous agents, some of them
in a more explicit way than others. In this section we describe a number of motivation-
driven architectures. Some underpin real systems, whereas others are initial proposals
for the modification of existing architectures and the foreseen repercussions of such
modifications.

2.3.3.1 Motivated Blackboard

The architecture of Blackboard agents is composed of two levels running asynchro-
nously: a physical level containing sensors and effectors responsible for interfacing the
agent with the environment; and a cognitive level that contains reasoning components
not directly related to perception or action [Morignot and Hayes-Roth, 1996]. Each
level contains a set of behaviours, a meta-controller to sequence their activation and a
memory. The memory component is a shared data structure analogous to a blackboard,
which is manipulated by the meta-controller that tries, through forward chaining, to
select the appropriate behaviours for execution. A modified version of the architecture
at the meta-controller level includes a function for the stimulation and mitigation of
motivations based on the current state of the environment. Different functions using a
categorisation analogous to that of the 3M taxonomy (Section 2.3.2.2) can be used to
guide the agent into selecting relevant goals, and several types of relation are used to
adjust the motivational dynamics and achieve a proper interplay of motivation and goal
adoption. For example, the safety motivation is represented as an exponential function
of the proximity of danger.

2.3.3.2 Motivations in InteRRaP

[Burt, 1998] proposes to extend the InteRRaP architecture to allow motivated reasoning.
The InteRRaP architecture is a hybrid multi-layered architecture divided into three basic
layers [Müller, 1996]: a behaviour-based layer controlling reactive behaviour, which has
precedence over a local-planning layer that generates single-agent plans, which in turn
has precedence over a social layer can control the other two layers and guide cooperative
behaviour for the agent. The proposed extensions aim to expand InteRRaP with the
means to determine the amount of resources to allocate to a process initially and the
point at which to change it dynamically.

26 Chapter 2 Declarative Agents

2.3.3.3 Creatures

While not an architecture in itself, the Creatures software implements a somewhat de-
tailed simulation of interacting biological systems, which includes a biochemical model
as well as a motivation-based reasoning mechanism [Grand and Cliff, 1998]. The system
simulates the entire life cycle of the artificial creatures including genetic combination
and mutation through sexual reproduction. Creatures are controlled by a neural net-
work that includes a large amount of general purpose neurons, as well as dedicated
lobes for meta-level tasks. One such task is the direction of the attention of the simu-
lated organism, controlled by a so-called pair of lobes, which are essentially dedicated
processing units. Stimuli arriving from objects in the environment are gathered by a
set of neurons, and their intensity and frequency are accumulated over time. Simulated
lateral-inhibition allows these cells to compete for control of the creature’s attention,
resulting in the creature’s gaze (as well as most of its sensory apparatus) being fixed
on this object. Such a mechanism serves to reduce sensory and neural processing to
acceptable levels, since the underlying neural net need only consider one object at a
time. Though not explicitly described as a motivation-based architecture, the process
of directing the attention of the agent to relevant activities is certainly analogous to
motivated action.

2.3.4 Motivation-based planning

Besides usage as a driver of goal generation and adoption by an autonomous agent,
motivations have been proposed as a means to provide additional information to an
agent’s planning process [Coddington, 2001; Coddington and Luck, 2003, 2004] . Here,
the agent architecture revolves around a continual planning process that operates over
a data structure containing both goals to be achieved and actions to be executed. This
data structure is constantly updated with actions and goals being added or removed
either through satisfaction or dropping. The representation of an agent’s capabilities
differs from traditional action descriptions in that it contains a set of pros and cons
specifying how motivations are affected by action execution. In turn, this information
is used to guide both the planning process and the motivation update. The planning
process is then able to use this information to decide which sets of actions (and therefore
the goals intended to be accomplished by them) yield the higher motivational benefit.

2.4 Discussion

The concept of autonomous agent programming is inherently declarative in the sense
that a designer should be able to specify what is to be achieved by an agent and leave
the remaining decisions to the agent. Despite such a declarative nature, the assumptions

Chapter 2 Declarative Agents 27

made by logic systems initially developed to describe the process of autonomous decision
making prevent them from being directly usable in a pragmatic agent architecture. As
a consequence, initial efforts to create autonomous agent architectures have adopted a
procedural approach for the description of the agents. Recent efforts focusing declarative
agent frameworks have attempted to overcome these limitations by using different models
of agent decision making, and can be roughly traced to a couple of endeavours, the widely
known GOAL language [Hindriks et al., 2000] and the less well known X-BDI system
[Móra et al., 1999].

These two systems take a logic-based approach to the description of agent semantics, but
differ in that GOAL focuses on defining such logics and its decision procedures from the
ground up, whereas X-BDI is defined on top of an extended logic programming model
[Alferes and Pereira, 1996]. The Dribble language [van Riemsdĳk et al., 2003] has been
developed taking GOAL and 3APL [Hindriks et al., 1999] as the basis of a new language
in which GOAL is used for reasoning about selecting declarative goals while 3APL is
used to create and modify plans. X-BDI represents one of the first working declarative
agent systems that we know of. Nevertheless, it inherits some of the limitations of the
non-monotonic logic system upon which it is built. X-BDI also contains what could be
seen as a crude prioritisation scheme based on static priorities assigned to the agent’s
goals at design time, which can be compared at some level to the motivational cues seen
later on the chapter.

The declarative agent languages described in Sections 2.2.2, 2.2.3 and 2.2.4, though not
providing many new insights into declarative agent semantics, contain a self-contained
and evolving set of primitives for such agents. The most recent development of the
declarative agent language from [van Riemsdĳk et al., 2005] provides a formalisation of
a language and (its possible semantics) for a declarative BDI agent system. Though van
Riemsdĳk’s family of declarative languages deals extensively with the formalisation of
how goals and beliefs are adopted or dropped, as well as the how to determine whether
a declarative goal has been achieved or has failed, these efforts do no provide a clear
indication of how a pragmatic implementation might be created. If one considers 3APL
to be the basis for an implementation of these concepts [Hindriks et al., 1999], the
ensuing system still relies on a predefined set of procedural plans to achieve a goal, in
which case the introduction of a planning component such as the one in [Zorzo and
Meneguzzi, 2005] becomes an interesting extension.

We believe that one of the main capabilities of a truly declarative agent semantics is the
ability to calculate a course of action without recurring to a plan library, thus allowing
agent descriptions to focus on what is to be achieved by the agent. In this setting, the
autonomous calculation of a course of action is known to be a computationally demand-
ing task, therefore an agent has to choose carefully which goals it is to pursue. We
have seen that Rao and Georgeff’s BDI logic [Rao and Georgeff, 1995b] is not practical
in a real system, as it assumes the agent knows the costs and rewards for all possible

28 Chapter 2 Declarative Agents

courses of action (i.e. an omniscient agent). However, biological agents are capable of
prioritising very effectively despite not being omniscient, and research efforts on motiva-
tions seem to explain how biological agents are able to focus their abilities and limited
resources into achieving goals that are relevant to them, given the current circumstances
[Balkenius, 1993]. Therefore, we have surveyed efforts on modeling such a mechanism
within artificial agents. These efforts generally focus on describing heuristic functions
that associate events in the world with increased or decreased level of motivations and
how goals are activated and prioritised based on these levels. In the Alarms system
described in Section 2.3.2.1, individual motivations are used to trigger and prioritise
the adoption of individual goals, while in the 3M model described in Section 2.3.2.2
motivations can be associated with more than one goal.

These mechanisms allow agents, even in face of a large number of options, to quickly
determine its priorities and proceed to organise its reasoning and actions accordingly
[Munroe and Luck, 2003]. Since motivations provide a quantification scheme associated
with goals, they can be used as drivers and coordinators of external planning in agent
systems, such as those used in X2 − BDI . An example of how to apply the 3M mo-
tivational system into X2 − BDI , would use domain and constraint motivations used
to: organise which sets of goals are to be investigated first (using domain motivations);
and determine how much effort to put into the ensuing planning (using constraint mo-
tivations). This kind of approach would help an agent prioritise the goals which are
important to a specific domain, as well as allowing an agent to discover and pursue
easily achievable goals (opportunities). Finally, we have observed in the surveyed archi-
tectures that the motivation update function appears to be on of the trickiest parts of
developing a motivations-driven agent. By looking at the approach taken by the Crea-
tures system (Section 2.3.3.3) ones sees using a neural network to model such functions.
In this setting, a network would be used to control the stimulation and mitigation of
motivations. Such a network could be trained and evolved until the agent response is
adequate, for instance using a criterion similar to that of [Morignot and Hayes-Roth,
1996]. Trained states could then be saved and reused in similar agent architectures.

Chapter 3

Agent Interaction

We have discussed agents as self-contained, autonomous, problem-solving entities (i.e.
the micro level), but agents are also geared towards high-level interactions both with
the world around them, and with other agents (i.e. the macro level).

There are several issues that are important to agent interactions relating to how an agent
reasons about and influences the mental state of others. Because autonomous agents
have control over their own mental state, agents cannot exercise direct control over other
agents. Since direct control among agents is not possible, there must be other mecha-
nisms to provide some form of control to enable interaction between agents. Autonomous
agents might also share common goals, and their efficiency might increase if they co-
ordinate their efforts. In this situation it is necessary for agents to use mechanisms to
ensure that cooperation occurs in a predictable and reliable way. In order for multiagent
systems to function coherently, agents must use their communication capability to attain
some level of coordination. Here, coherence is a measure of how well a system works
as a unit, and the degree of coordination in a system is the extent to which extraneous
activity is minimised as a result of resource contention and deadlocks/livelocks.

Besides delegating tasks and coordinating joint pursuit of goals, self-interested agents
sharing a common environment and resources require mechanisms for regulation and
to prevent individual agents from taking advantage of others. Regulatory mechanisms
might be completely transparent to the agents they regulate, or provide a reasoning
framework to punish non-abiding agents. In this chapter we review mechanisms to
allow agents to: agree on task/resource allocation (Section 3.1); regulate and direct
actions (Section 3.3); and ensure coordination in joint tasks (Section 3.2).

29

30 Chapter 3 Agent Interaction

3.1 Agreement Mechanisms

In systems containing self-interested agents, it is possible for some of these agents to
have overlapping sets of objectives. Since agents are self-interested, cooperation may
not arise naturally from the interactions between them, as the agents are effectively
competing to further their own goals without regard for the goals of others. When
such agents have a willingness to cooperate for the achievement of a common subset of
goals (or alternatively to sell their capabilities in return for some kind of payment), they
require a means with which to reach agreements that ensure that their contribution
to any cooperative task will be rewarded adequately. There are several mechanisms
for reaching agreements among competing agents, and automated negotiation is the
most commonly used such method for agents with conflicting objectives and a desire to
cooperate [Rahwan et al., 2003].

Negotiation is a process by which a unified decision is reached by two or more agents,
each of which is trying to reach an individual objective [Huhns and Stephens, 1999].
After sharing their initial proposals, involved parties are expected to iteratively improve
them until a mutually acceptable agreement is reached or no further improvements can
be made, in which case no agreement is generated. Though there are many approaches
to cooperation, researchers often characterise them as one of three categories [Kraus,
1997; Rahwan et al., 2003]:

• game-theoretic approaches in which the optimal strategy is determined by an analy-
sis of the interaction between identical participants, seeking an equilibrium state;

• heuristic-based approaches in which approximations of the optimal strategy are
discovered through processes relying on relaxed assumptions about the agents’
rationality and resources; and

• argumentation-based approaches in which the agents exchange higher-level infor-
mation (such as the reasons for turning down a proposal) aiming to influence each
others’ mental state in order to reach better agreements.

In this section we review two negotiation models: the first one (Section 3.1.1) is an
abstract framework that could be used to implement cooperation using either a game-
theoretic or a heuristic approach; while the second model (Section 3.1.2) deals with
argumentation-based negotiation.

3.1.1 An abstract negotiation framework

Bartolini et al. [Bartolini et al., 2002] describe a generic framework for the description
of negotiation mechanisms. The proposed approach is to explicitly specify negotiation

Chapter 3 Agent Interaction 31

rules, to be used in conjunction with a simple interaction protocol, and define negoti-
ation mechanisms using these rules in a structured way. Since the rules of negotiation
are explicitly represented, agents involved in negotiation can reason about the rules
themselves.

Host Participant

Participant

Participant

Negotiation Locale

Admission

Template

Figure 3.1: Elements of an abstract negotiation framework.

The proposed abstract negotiation process includes two negotiation roles: negotiation
participant and negotiation host. The negotiation host is responsible for managing the
negotiation locale, which is a blackboard where negotiation participants exchange infor-
mation; Figure 3.1 illustrates this arrangement of host and participants in a negotiation
locale. Information access in the locale is subject to the visibility rules of the protocol
in question. Participants require admission to the negotiation before any other steps
are taken, which involves checking their credentials. Once admitted to the negotiation,
participants must share a negotiation template, which specifies the different parame-
ters of the negotiation. A locale has an associated negotiation template that defines
these parameters statically for negotiations taking place in that location, and that must
be accepted by all participants wishing to engage in negotiation within that particular
location.

Negotiation in this framework is the process of moving from a negotiation template to one
or more acceptable agreements (multiple agreements are possible in case multiple parties
are involved in negotiation in the same locale). In the process of reaching agreements
(summarised in Figure 3.2), participants exchange proposals, which include constraints
over the parameters specified in the negotiation template, representing the agreements
currently acceptable to them. Proposals are submitted to the negotiation host, which
validates them against two criteria:

• the restriction upon the negotiation parameters must be valid according to the
parameter space defined in the template; and

32 Chapter 3 Agent Interaction

Negotiation Host and Collaborators

Initiate negotiation Infrastructure

Agreement formation

Update Information

Finalize negotiation Infrastructure

Participant

Admission to negotiation

Submit Proposal

Withdraw from negotiation

Withdraw proposal

Negotiation Open

Agreement
formation
may trigger
Termination

Agreement Possible

Update Information

Termination

Admission Granted

Negotiation ended

Figure 3.2: Bartolini’s abstract negotiation process.

• the proposal must be submitted according to the rules of negotiation, which specify,
for instance, which participants are allowed to submit new proposals, when they
may do so, and how new proposals must improve upon previous ones.

3.1.2 Argumentation-based negotiation

According to Rahwan et al. [Rahwan et al., 2003], several researchers believe that
traditional methods of negotiation are limited in the type of agreements that can be
reached due to the restricted type of information exchanged during the negotiation
process. In order to solve this problem, it has been advocated that the likelihood and
quality of agreements can increase if agents exchange arguments to influence each others’
mental state. The exchange of higher-level information in the negotiation process is
known as argumentation-based negotiation (ABN).

In other models of automated negotiation, agents exchange proposals containing offers
of monetary value or a similar concept, but are not allowed to exchange any additional
information; moreover agents are also assumed to have a static mechanism to assess
and compare any two proposals. In real environments, agents do not have complete

Chapter 3 Agent Interaction 33

information, so an important part of the negotiation process is to gather information
about potential agreements and revise preferences accordingly. Game-theoretic and
heuristic approaches assume the agents’ utilities or preferences are fixed and, since a
rational agent only modifies its preferences upon receiving new information (which these
models do not facilitate), these approaches limit the number of possible agreements in
a negotiation.

ABN attempts to improve on previous approaches by allowing agents to exchange non-
monetary information. Moreover, by endowing an agent with the ability to reason about
another agent’s rejection of a given proposal, the former agent is in a better position to
propose better offers.

Rahwan et al. [Rahwan et al., 2003] enumerate a series of components required by an
abstract ABN framework. These are divided into external and internal components,
which deal respectively with environmental constructs and agent reasoning. Required
external components are as follows.

• A communication language and a domain language are required by ABN to allow
for richer communication and the exchanged of argumentation information, as
opposed to communication in other negotiation techniques, which generally deal
with proposals alone.

• Similar to other negotiation techniques, a negotiation protocol is required for spec-
ifying rules for the interaction, exchange of proposals and negotiation termination.
However, ABN-tailored protocols should include rules for avoiding disruption of
the argumentation (by lack of clarity or fairness in an agent’s argumentation), as
well as rules to terminate the dialogue and avoid infinite arguments.

• ABN also requires information stores to keep externally accessible information
during interaction and allow some kind of enforcement of protocol-specified be-
haviours.

Internal components of ABN agents must be able to explicitly exchange more sophisti-
cated non-monetary information aiming to justify proposals and rejections, so they must
be equipped with mechanisms for evaluating arguments and update their mental states
accordingly. They must also be able to generate and select arguments and send them
to other agents to carry on with a negotiation. In order to satisfy these requirements,
Rahwan et al. [Rahwan et al., 2003] proposes components for the following activities.

• Argument and proposal evaluation to analyse incoming proposals aiming to influ-
ence local mental state and decide to which extent an external argument will affect
the current preferences of an agent. This evaluation includes comparing arguments

34 Chapter 3 Agent Interaction

Opponent/

Generation
Argument

Selection
Argument

Generation
Locution

update
query/

arguments
suggested

Database
Proposal

Generation

Proposal

reject
accept/

propose/

Evaluation/

Locutions
Incoming

Locutions
Outgoing

Locution
Interpretation

Interpretation
Argument

Attitudes
Mental

&
Model

Environment

content

query

query

response

update

argument
content

proposal

Figure 3.3: Components of an ABN mechanism.

so as to reject weak ones, which can be done, for example, by evaluating an ar-
gument’s compatibility with the agent’s preferences or the level of trust placed on
the arguing agent [Ramchurn et al., 2003; Sadri et al., 2001].

• Argument proposal generation, used to create new arguments to further the nego-
tiation process. Generation of new arguments is often the result of planning by
the agent aiming to achieve a particular negotiation outcome.

• Argument selection, used by agent after generating new arguments to select the
one that best furthers the agent’s goals in the negotiation. The selection of an
argumentation strategy remains an active area of research [Rahwan et al., 2004].

A summary the conceptual elements in an ABN agent is illustrated in Figure 3.3, the
elements drawn with dashed lines represent additions to a classical negotiating agent.

3.2 Coordination Mechanisms

Research into distributed problem solving has developed several mechanisms for reason-
ing about delegation and commitment among agents. Here, agents strive to optimise
their actions as a group while avoiding unnecessary conflicts between participants and
reducing the amount of redundant work performed in the course of accomplishing a
common goal.

Chapter 3 Agent Interaction 35

Coalitions Generalised

Planning
Global
Partial

Marketplaces
Virtual

Planning
Multiagent

Organizations
Coalitions

Mental States
Commitments

Nets
Contract

Mechanisms
Coordination

Payoff
PGP

Figure 3.4: Coordination Mechanisms.

Many approaches to coordination have been proposed, each of which is based on different
assumptions regarding the type of agent participating in the joint problem-solving and
the type of problem being solved. In this section we focus on four approaches to this
kind of coordination; these approaches and their subcomponents are schematised in
Figure 3.4. The contract net protocol is one of the earliest attempts to coordinate
agents in a highly decentralised manner, and is reviewed in Section 3.2.1. Section 3.2.2
reviews another possible strategy employed by agents whose representation is based
on mental states, which is to use explicit commitments from and towards other agent’s
mental states in order to predict the future behaviour of participating agents. In systems
where there is some kind of economy-based representation for task achievement, agents
with coinciding goals or relevant capabilities may contribute to joint tasks aiming at
monetary rewards proportional to their contribution (Section 3.2.3). Finally, agents
might use planning in order to decide how to contribute towards the achievement of
joint goals while interspersing coordination actions to avoid jeopardising the actions of
other participants, this approach to coordination is reviewed in Section 3.2.4.

3.2.1 The Contract Net Protocol

In the context of distributed problem solving, one of the first approaches to distributed
agent coordination was based on the formation of agreements among pairs of agents;
when a problem is decomposed among multiple agents through a network of such agree-
ments or contracts, a contract net is created [Davis and Smith, 1988]. Agents in this
protocol can assume two possible roles: manager and contractor. Managers are agents
bearing a problem to be solved while contractors are agents with the potential to carry
out tasks delegated to them by manager agents. First, a manager typically decom-
poses a problem and announces tasks to be performed by other agents (as shown in
Figure 3.5(a)). When potential contractors respond to the task announcement, the
manager receives and evaluates the bids issued by prospective contractors (for example

36 Chapter 3 Agent Interaction

the two contractors shown in Figure 3.5(b)), and then awards contracts to the selected
contractors (in Figure 3.5(c) only one of the responding contractors is awarded a con-
tract). After the tasks are finished, the manager receives and synthesises the results.
In turn, a contractor receives task announcements, evaluates its ability to perform the
tasks, responds by either declining or bidding, performs the allotted task if its bid is
accepted, and finally reports its results. Contractors can act as managers and further
break down their allotted tasks, subcontracting to other agents. Since the only respon-
sibility of an agent is to send an individual result to their higher-level manager, the fact
that an agent subcontracts to others is irrelevant to higher-level managers, thus creating
a scalable method of problem distribution.

Announcement

Manager

ContractorContractorContractor

(a) Announcement.

Bids

Manager

ContractorContractorContractor

(b) Bidding.

ContractManager

ContractorContractorContractor

(c) Contract.

Figure 3.5: Steps in the contract net protocol.

3.2.2 Commitments and Mental States

In his philosophical description of a model of practical reasoning, Bratman [Bratman,
1984] states that when an agent settles on what state of affairs to aim for, he com-
mits to achieving it. The model for BDI defined by Cohen and Levesque [Cohen and
Levesque, 1990] follows Bratman’s notion and describes the relationship between mental
states within an agent. These relations allow an agent to commit itself to achieving
specific goals as a result of its own reasoning about what it can perform and what it
wants to achieve. Commitment here refers to an agent selecting a set of viable goals,
and devoting its reasoning to their achievement until the agent either believes it has
achieved the selected goals, the goals are no longer viable, or the motivation underpin-
ning the commitment no longer exists. Here, commitments specify persistent goals and
the conditions for these goals to persist. By extrapolating these relations to the mental
attitudes of neighbouring agents, an agent can reason about the commitments of other
agents, as well as commit itself to performing actions in parallel to (or on behalf of)
other agents as a result of its understanding of the actions others are about to perform.
Under this expanded notion of commitment, Cohen and Levesque [Cohen and Levesque,
1991] define joint commitments stemming from joint persistent goals, which exist when
all of the agents in a team have common individual goals (and commitments) to bring
about a certain state of affairs. In this setting, agents need to uniformly believe their
joint goal is useful and possible, which may not be the case in some situations, e.g. when

Chapter 3 Agent Interaction 37

a single agent discovers the goal to be impossible. To deal with such situations, joint
persistent goals are themselves underpinned by an individual’s weak achievement goals,
which represent a weaker counterpart of individual persistent goals that allow for an
agent to be in an intermediate state of commitment when expecting updates from other
agents.

Cohen and Levesque’s notion of commitment incorporates the rules that describe when
these commitments are to be broken, which Jennings [Jennings, 1993] expands, arguing
that effective coordination mechanisms require separate concepts of commitments and
conventions, where:

• commitments are pledges to undertake a specified course of action; and

• conventions regulate how commitments persist, and what should be done when
they are dropped.

Indeed, Jennings [Jennings, 1993] argues that all coordination mechanisms can ulti-
mately be reduced to joint commitments and their associated social conventions.

3.2.3 Coalitions and Organizations

In an environment shared by multiple agents, it is possible for a subset to have coin-
ciding goals. When agents share common goals, they might group together in order to
solve the common problem jointly. Attempts to solve a common problem by a set of
autonomous agents require them to agree upon individual responsibilities so that agents
do their allotted tasks at the proper time, and refrain from replicating the work of others
unnecessarily. Such coordination of tasks can be achieved by forming agent coalitions
[Zlotkin and Rosenschein, 1994], as well as virtual organisations [Norman et al., 2004].

3.2.3.1 Coalitions

Coalitions are formed by agents when a set of participant agents determines they will
benefit more from doing work jointly than alone. The process of creating a coalition
consists of three processes [Sandholm, 1999]: i) forming the coalition structure (CS); ii)
solving the joint problem; and iii) distributing payoff. Forming the coalition structure
involves determining the relative contributions of the involved agents and determining
the future payoff the agents receive after the problem is solved. This process aims
to determine a stable payoff configuration so that agents will not decide to abandon
the coalition once problem-solving has started. The process of reaching an appropriate
distribution of payoffs is generally analysed in terms of game theory [von Neumann and
Morgenstern, 1944].

38 Chapter 3 Agent Interaction

These three processes are the focus of research aiming to generate coalitions whose
participants are motivated to remain in them; that is, stable coalitions [Yokoo et al.,
2005]. Among the methods proposed for determining stable coalition structures are:

• finding a CS that satisfies the conditions for Nash equilibrium to be achievable
[Sandholm, 1999]; and

• considering CS formation as a Characteristic Function Game (CFGs) [Yokoo et al.,
2005];

3.2.3.2 Payoff

Nash equilibria arise when an optimal collective strategy in a multiple player game is
found such that no player has anything to gain by deviating from this strategy [Nash
Jr., 1950]. By contrast, CFG-based methods for stable CS formation search for a payoff
division that ensures agents are rewarded with a value that keeps them from wanting
to leave their current coalition. There are several strategies for CS formation in CFGs
[Shehory and Kraus, 1995], including methods that are able to ensure a bounded degree
of optimality for the resulting CS [Sandholm et al., 1999]. Since the conditions for
Nash equilibria to exist are very strict and such equilibria can be broken by coordinated
deviation from the strategy in equilibrium, CFG-based methods for ensuring coalitional
stability are often preferred [Sandholm, 1999].

Some CFG-based approaches to the formation of coalition structures assume the cost
of communication and any possible overhead for agent coordination to be negligible.
Under such an assumption, the outcome of merging every pair of coalitions in a system
is as good as, or better than the outcome of individual coalitions, resulting in super
additive games. Thus, in super-additive games, merging every single coalition in the
system into an all encompassing one (the grand coalition) is a natural evolution as
the system progresses. However, super additivity overlooks the fact that in most real
world scenarios, there is an associated cost with communication and coordination, as
well as possible anti-trust penalties [Sandholm, 1999]. In addition, solving the common
problem of the grand coalition might be more complex than solving the smaller, and
possibly unrelated, problems of its subgroups. This increase in complexity means that
the computational overhead of solving the larger problem might also undermine the
timely achievement of the coalition’s objectives.

In CFGs that are not super additive, finding the appropriate distribution of payoffs
that ensures stability is a more complicated problem, which involves finding a CS in
which the reward to agents is maximised while the costs associated with communication
and coordination are minimised. Finding an optimal CS under this criterion, where
agents are guaranteed to receive the best payoff in a given coalition, is known as welfare
maximisation. Two of the most notable welfare maximisation strategies are:

Chapter 3 Agent Interaction 39

• finding a distribution that seeks to maximise social welfare by generating a set of
possible payoffs in which no agent is motivated to depart from the coalition, such
a distribution is said to be within the core of a coalition [Zlotkin and Rosenschein,
1994]; and

• calculating the marginal contribution of an agent to the coalition averaging it by
the order in which the agents joined the coalition, this contribution value is called
the Shapley Value [Shehory and Kraus, 1995].

3.2.3.3 Virtual Marketplaces

Aside from situations in which agents happen to have coinciding goals, some agent sys-
tems operate as virtual marketplaces [Norman et al., 2004], in which agents supply their
problem-solving capabilities in exchange for some kind of compensation. In this kind of
environment, consumer agents announce the need for a particular service or resource,
to which other agents acting as suppliers respond. In order to meet the requirements
announced by consumer agents, supplying agents might team up to provide a service
or resource resulting from the union of their individual capabilities. These agents are
represented as a single entity, termed virtual organisation [Sandholm, 1999], making
transparent to the consumer agent the fact that multiple agents are involved in the
supply of the requested capability.

3.2.4 Multiagent Planning

In order to solve problems in a distributed manner, multiple agents need both group
coherence and competence [Durfee, 2001]. Coherence relates to agents wanting to work
together (addressed in previous sections), while competence relates to agents knowing
how to work together well. Perhaps the best way of solving distributed problems is
through planning, though planning in a distributed fashion requires another problem
to be solved, that of planning on how to work together. This activity of planning to
plan involves decomposing problems into subproblems, allocating these subproblems,
exchanging the obtained solutions and synthesising overall solutions.

Distributed planning is categorised according to whether distribution occurs at the exe-
cution or planning stages, or both [Durfee and Lesser, 1991]. When centralised planning
is employed to produce distributed plans for parallel execution, the problem is for the
coordinator agent to break a plan into separate threads, possibly adding synchronisa-
tion actions throughout the plan in order to ensure that dependency constraints are
observed during plan execution. In order to distribute execution of a centralised plan,
Durfee [Durfee, 2001] proposes the following steps:

40 Chapter 3 Agent Interaction

• create a plan using traditional planning, possibly biasing the planner to favour
parallel actions;

• decompose the ensuing plans trying to minimise ordering constraints between sub-
plans;

• insert synchronisation actions;

• allocate subplans to executing agents; and

• execute the subplans.

The overhead incurred by the communication required for subplan synchronisation must
be taken into account when deciding whether or not to distribute a centralised plan; that
is, there exists a minimum subplan size below which parallelisation is not worthwhile.

Distributed planning for centralised plans is associated with cooperative planning, in
which a complex planning problem is distributed among different specialised agents
which contribute parts of the solution to an overarching plan, in a very similar fashion
to that of result sharing.

Distributed planning for distributed plans is the mode of planning most representative of
problem solving in multi-agent societies [Durfee, 2001]. In this case, a plan representation
for the whole plan is not required to exist at all, as long as the participant agents are
not in conflict during the planning and execution tasks.

Besides the planning process, distributed execution must be carried out in a coordinated
manner. That is, agents must somehow make sure that: agents execute their assigned
actions at the appropriate times; the actions of one agent do not jeopardise the actions of
another agent working for the same goal; and agents do not compete for control of critical
resources. In turn, coordination might be interleaved between continuous planning and
execution, such as in partial global planning [Cox et al., 2005; Durfee, 1988], or might
be guaranteed either before or after the planning process is carried out. Moreover,
when dealing with self-interested agents, agents may be required to negotiate during
distributed planning in order to resolve conflicts. Failure to do so can lead to system
collapse, so negotiation mechanisms that facilitate the resolution of critical conflicts are
an important component of a distributed planning strategy.

One way of ensuring coordination after plans are created is through contingency planning
[Meuleau and Smith, 2003]. In this approach, an agent not only plans to satisfy the
specified problem, it also creates alternative plans to be resorted to in response to
contingencies occurring at execution time. Clearly, this entails more complex plans,
as well as an overhead to the execution and coordination process, which must now
consider the possible threads of plan execution. Aside from contingency planning, agents
can monitor execution progress and replan if problems arise. Nevertheless, too much

Chapter 3 Agent Interaction 41

replanning can become a liability, in which case plan repair could be an advantageous
approach.

Pre-planning coordination, on the other hand, involves defining a set of constraints that
are enforced by the agents in the society during their individual planning processes. If
the appropriate set of constraints is defined, agents can theoretically work on any part
of the problem, since conflicts can be avoided by carefully abiding by these constraints.
Another way of viewing these constraints is as social laws, which encode prohibitions
against particular choices of actions in particular contexts. This in turn implies the
design of combinations of laws that curtail undesirable states, yet are flexible enough to
allow for the desired states to arise from the agents.

3.2.4.1 Partial Global Planning

Partial Global Planning (PGP) [Durfee and Lesser, 1990] is a distributed planning frame-
work that adopts a strategy where coordination is a matter of explicitly planning co-
operative interactions [Durfee and Lesser, 1991]. In this approach all agents maintain
a partial representation of the global plan, and no agent is assumed to be able to see
the entirety of the global plan. Here plans detail a node’s problem-solving strategy and
its expectation about the actions of neighbouring nodes, and although nodes attempt
to follow their partial plan as closely as possible, they can also make changes to their
plan or propose changes to the plans of other nodes. The PGP framework integrates
organisational principles by introducing two types of organisation: the first specifies the
long-term problem-solving roles and responsibilities of nodes (i.e. a plan of actions); the
second, or metalevel organisation, gives nodes a framework for deciding how to solve
coordination problems (i.e. a plan of communication). Nodes are expected to exchange
information about the state of their plans to a certain extent, sharing only high-level
information deemed relevant to the nodes being informed. They can also perform task-
sharing by proposing (and counterproposing) the transfer of a part of their local plans
to other nodes that might be underburdened.

3.2.4.2 Generalised Partial Global Planning

Generalised Partial Global Planning (GPGP) [Lesser et al., 1998] shares with PGP the
idea that agents construct their own local view of the tasks they intend to pursue and
the relationships among them; this local view can be augmented with information from
other agents, allowing agents to create a partial view of the global plan. The generalised
framework extends PGP by including individual coordination mechanisms used in the
creation of such partial views, detecting relations between task structures and ensuring
coherent and coordinated behaviour by making commitments to other agents. In turn,

42 Chapter 3 Agent Interaction

these commitments are used by a domain-independent scheduler included in GPGP to
create a schedule of activities for the agent to follow.

GPGP also incorporates a representation of task structures from the TAEMS [Wag-
ner et al., 1997] framework to drive the coordination mechanisms. This representation
includes information about:

• top-level goals an agent intends to achieve;

• one or more of the ways in which these goals could be achieved;

• a precise quantitative definition of the degree of achievement of goals; and

• task relationships indicating how tasks contribute to the achievement of goals.

GPGP uses the basic TAEMS task structure representation and adds the partial rep-
resentation of the task structures held by other agents as well as local and non-local
commitments to task achievement. Moreover, the quantitative definition of the degree
of achievement for goals and tasks indicate that GPGP deals with worth-oriented do-
mains rather than the boolean representation of achievement often used by planning
algorithms.

3.3 Regulatory Mechanisms

Research in multiagent interactions has generally focused on the coordination of agents
under the assumption that agents do not try to exploit or purposely disrupt the activities
of others for individual gain. Moreover, these methods assume that either all of the
agents in a society take part in the coordination effort, or the actions of those not
included are of no consequence to the ones trying to coordinate endeavours [Durfee,
2001]. The methods used in such efforts often require agents to directly communicate
with their interaction partners to ensure coordination (e.g. multiagent planning and
agent coalitions).

However, in open systems agents are exposed to completely unknown agents, making
it unrealistic for an agent to assume that any other agent is completely trustworthy, or
will be willing to either participate in coordinated activities or refrain from interfering
with them. As a result, coordination mechanisms for open agent systems must deal
with uncertainty regarding the willingness of the involved agents to accomplish their
allotted tasks. These mechanisms should be able to specify and enforce a standard
of behaviour in order for the participating agents to predict and to provide assurance
about the behaviour of others [Lopez y Lopez, 2003], or allow agents to reason about the
reliability of other agents in order to minimise interactions with untrustworthy partners.
Ultimately, regulatory mechanisms are necessary for open systems to ensure a level of

Chapter 3 Agent Interaction 43

Norms

Relationship
Probability
Reputation

Reputation
Social

Mechanisms
Trust

Information
Reputation of

and Trust
Reputation

Modalities
Deontic

Agents
Autonomous

Norms for

Mechanisms
Regulatory

Policies

Identification

Figure 3.6: Regulatory Mechanisms.

reliability so that agents may operate under a minimum degree of certainty. In this
section we survey some of these mechanisms, outlined in Figure 3.6.

3.3.1 Norms

In open dynamic societies, agents are required to work with others that do not necessarily
have the same set of objectives. If left unchecked, self-interested agents will try to
accomplish their individual goals without regard for other agents. In order to minimise
conflict between self-interested agents, systems of prescriptive norms can be used to
specify permissions, prohibitions and responsibilities within a system. These norms are
explicitly represented and reasoned about by agents subordinated by them. Though the
precise semantics of norms varies throughout different research efforts, Lopez y Lopez
[Lopez y Lopez, 2003] identifies six different perspectives.

• regulation of human societies, where research focuses mainly on the sociological
aspects of human normative bodies;

• patterns of behaviour, used to foster coherent group behaviour without the need
for explicit planning of coordination actions;

• constraints on actions, used to specify permitted and forbidden actions [Shoham
and Tennenholtz, 1995];

• social commitments, where norms express obligations among agents;

• mental states, focusing on the influence exerted by norms upon the adoption of
goals by an agent; and

• norm modelling, focusing on the definition of the concept of norms and the speci-
fication of models of norms.

44 Chapter 3 Agent Interaction

Here we focus on models of norms which at some level deal with mental states allowing
for the construction of normative systems on top of a declarative agent architecture.

3.3.1.1 Deontic logics

Dignum [Dignum, 1999] argues that even agents said to be autonomous are assumed
to obey standard protocols, so are predictable in some ways, implying some level of
knowledge of the internal mechanisms of these agents. Here, predictability is the result
of a set of conventions hard-wired into an agent, undermining the actual autonomy of
the agent and consequently its ability to react to a dynamic environment. Dignum states
that in order for an agent to be truly autonomous, it must be able to reason about the
norms to which it should abide, and occasionally violate them if they are in conflict
among themselves or with the agent’s private goals. Dignum’s [Dignum, 1999] research
focuses on defining logical modalities for obligations and permissions (i.e. a deontic
logic), which distinguish between three levels at which agent behaviour is influenced:

• conventions level;

• contract level; and

• private level.

The division of this framework into levels allows the definition of rules for the differ-
ent social interactions of an agent. The conventions level represents obligations that
constitute a default background against which agents interact. These obligations hold
under normal circumstances unless higher priority concerns intervene. Norms in the
conventions level are generally fixed when the system is initialised and represent gen-
eral rules for agents in a system to follow (termed prima facie norms), such as agents
should not overprice their goods. Modalities at this level specify obligations, pro-
hibitions and permissions that hold between a given agent in relation to an undefined
or abstract counterpart (i.e. the agent society). Since there is no specific counterpart
towards which the norm is directed, it is assumed that agents follow the rule either due
to a commonsense benefit, or that there are agents in charge of enforcing conventions.

The contract level represents commitments between agents, in the form of either directed
obligations or authorisations. Contracts express the expectation of one agent towards
another as well as the conditions for these contracts to hold and the consequences of
failing to fulfill them. Directed obligations express a commitment from one agent to
another that either a world state will hold or an action will be executed. Authorisations
express the justification of an agent to perform an action involving another agent; for
example, if an agent is to demand payment from another (implying that the latter agent
is obliged to pay), it must be authorised to do so.

Chapter 3 Agent Interaction 45

The private level is used to translate the influences received from the other levels into
something that directs the agent’s future behaviour. For example, in a BDI setting,
external influences and their conditions can be translated into conditional desires for
the agent.

3.3.1.2 Norms for autonomous agents

With the same stance as Dignum [Dignum, 1999] with regard to the requirements of
norms for autonomous agents, Lopez y Lopez and Luck [Lopez y Lopez and Luck, 2003;
Lopez y Lopez et al., 2004] define a formal model of norms whose constructs are reasoned
about by autonomous agents. In this model, norms are prescriptive in that they specify
how agents should behave, and social as they are used in situations where multiple agents
might come into conflict. Moreover, given the possibility that norms might conflict with
an agent’s individual goals and that punishments are defined for non-compliance, norms
also represent a form of social pressure upon the agent.

Depending on their purpose, norms are classified as obligations, prohibitions, social
commitments and social codes [Lopez y Lopez and Luck, 2003], where:

• obligations and prohibitions are norms aimed at ensuring coordination among
agents in a society, non-compliance of obligations entails punishment, and the
manifestation of behaviours targeted by prohibitions leads to punishment;

• social commitments are norms created as a result of agreements or negotiations
between a group of agents in order to force them to comply with the agreement or
settlement; and

• social codes are norms whose compliance is seen as an end in itself, as it is under-
stood that these are principles accepted in a given society.

Because norms in a given system are rarely isolated from each other, systems of norms
are created to ensure that agents comply with whole sets of norms rather than choosing
individual norms with which to comply. Systems of norms can also be used to maintain
consistency among constituent norms. The association of multiple norms can be attained
by relating the activation of a given norm to the violation (or fulfilment) of another
through activation triggers. Such triggers can be based on agents failing to comply with
a norm (i.e. non-compliance), in which case a secondary norm is activated to punish the
non-compliant agent. Alternatively, agents can be encouraged to comply with certain
norms if other norms are created to trigger rewards to compliant agents. These triggers
may serve the purpose of either punishing norm violators or rewarding norm followers.
In case a violator requires punishment for a transgression, an enforcer norm might be
activated following the transgression. Alternatively, achievement of a prescriptive goal

46 Chapter 3 Agent Interaction

might trigger a reward norm so the compliant agent will be rewarded. Finally, norms
may be used to provide for the evolution of the normative system itself. In this context,
legislation norms are used to permit actions to issue new norms or abolish existing ones.

Since normative systems are maintained within the society employing them through
delegation of punishment, reward and legislative goals, the effect of these systems upon
prospective members of these societies should be reasoned about by the autonomous
agents. When deciding whether to voluntarily join or leave a society regulated by norms,
Lopez y Lopez et al. [Lopez y Lopez et al., 2004] advocates that an autonomous agent
must have an additional set of characteristics to include ways of reasoning about the
advantages and disadvantages of abiding by the norms, thus leading to the possibility of
norm infringement. Transgression of norms might occur for three main reasons [Lopez
y Lopez et al., 2004]:

• individual goals can conflict with society norms;

• norms might conflict among themselves; and

• agents might be members of more than one society.

In light of the possibility of norm infringement and the need for autonomous agents to
reason about normative societies, Lopez y Lopez et al. [Lopez y Lopez et al., 2004]
also define reasoning mechanisms over the effects of norm compliance and violation,
as well as rewards and punishments. This model proposes methods for evaluating the
benefits of joining a society as well as methods for evaluating whether to stay in a
society or to leave it. An agent is seen as staying in a society for two main reasons:
due to unfulfilled goals within the society or social obligations. A social obligation might
be that of complying with agreed upon norms, to reciprocate or help a fellow agent
or even coercion from another member of the society. The autonomy advocated by
this model also includes mechanisms for an agent to voluntarily adopt norms; that is,
an agent recognises itself as an addressee and starts following the appropriate norms.
This mechanism is important, for instance in situations in which societal laws change
dynamically. Finally, the model defines processes through which an agent complies with
the norms by adopting or refraining from adopting intentions to achieve normative goals.

3.3.2 Policies

We have seen that norms are rules explicitly adopted and maintained by agents within
a society in order to preserve stability and predictability. Hence norms can be encoded
within the mental state of an agent and used explicitly by an agent’s reasoning process.
On the other hand, policies tend to be regarded as prescriptive externally imposed rules
that do not emerge from group conventions or patterns of interaction, but are consciously

Chapter 3 Agent Interaction 47

designed and enforced arbitrarily by a centralised authority [Bertino et al., 2005; Xuan
and Lesser, 2002]. Policy-based approaches have three main characteristics [Bradshaw
et al., 2003]:

• they support dynamic runtime changes;

• agents have no choice about the adoption of policies and might not even be aware
that a given set of policies is in force; and

• they are enforced preemptively so as to prevent faulty or malicious agents from
jeopardising the system in the first place, rather than punishing violations or re-
warding compliance after the fact.

Policies have seen more wide adoption by distributed systems devoid of inherent auton-
omy so that compliance does not necessitate any degree of reasoning capability [Bandara
et al., 2004; Bertino et al., 2005; Graham et al., 2004].

3.3.3 Reputation and Trust

In most of the interaction schemes proposed so far, it is often assumed that the agents
involved are inherently trustworthy, i.e. there is no chance that a committed agent
would not fulfill its commitments. But in the real world, as well as in open multi-agent
systems, this assumption quickly fades, and trust implies risk [Castelfranchi and Falcone,
1998]. Trust is present in any form of delegation of tasks, and an agent must trust the
target of delegation. According to Falconi and Castelfranchi trust has two dimensions:
predictability and belief in competence [Falcone and Castelfranchi, 2001].

Since interaction partners have varying degrees of reliability, agents must have a way
of quantifying the trustworthiness of potential partners in order to avoid making arbi-
trary decisions when creating partnerships [Teacy et al., 2005]. Moreover it is necessary
to ensure that agents do not take systematic advantage of others, by ensuring that
exploitation-prone agents are identifiable in a system. Mechanisms for evaluating the
trustworthiness of an agent within electronic marketplaces generally depend either on
using a history of interactions or on recommendations from other agents [Ashri et al.,
2005; Teacy et al., 2005] and key to these mechanisms are the concepts of trust and
reputation. Trust quantifies how reliable one agent perceives another to be, whereas the
acquisition and processing of trust information from third parties regarding an individual
yields that individual’s reputation.

3.3.3.1 Trust mechanisms

Trust refers to the belief one has that another party will do what it says it will or
reciprocate, when faced with the prospects of higher payoffs through defection [Ramchurn

48 Chapter 3 Agent Interaction

et al., 2004]. A high degree of trust in an agent implies that this agent is likely to be
selected for interaction and reciprocated over time, whereas a low degree of trust implies
the agent would be neglected and not reciprocated over time. According to Ramchurn
et al. , trust can be divided into two concepts [Ramchurn et al., 2004]: individual-level
and system-level trust. Individual-level trust can be narrowed down to an agent’s beliefs
about other agents, while system-level trust entails a global mechanism that forces agents
to be trustworthy by the protocols within the system.

An individual agent trying to select the most reliable interaction partner can do one of
the following.

• interact with each agent in the system to learn their behaviour over several en-
counters;

• ask other agents about their perception of the potential partners; or

• characterise known motivations of the other agents.

Individual-level trust can be further classified as: learning and evolution-based, reputa-
tion based; and socio-cognitive based [Ramchurn et al., 2004]. Evolution-based strategies
often rely on game theory to determine the best course of action in the long run for an
agent to interact with others, and the metrics for evolving this trust model are usually en-
coded as a set of equations over the interaction history. An agent using reputation-based
strategies builds a model of another agent’s reputation based on the results of interac-
tions of the target agent with others; this involves gathering and aggregating ratings
while coping with inaccuracies or absence of information. Finally, socio-cognitive strate-
gies involve reasoning about the subjective perception of the candidate for interaction
(e.g. by evaluating its motivations), rather than analysing the outcomes of interactions.
Such a strategy has been proposed by encoding specific beliefs in BDI agents, such as
competence, willingness, persistence and motivation [Falcone and Castelfranchi, 2001].

System-level trust, on the other hand is mostly concerned with creating tamper-proof
methods of agent interaction, such as:

• devising truth-eliciting interaction protocols;

• developing reputation mechanisms to foster trustworthy behaviour; and

• developing security mechanisms that ensure new entrants can be trusted.

Several open-issues are still being addressed regarding trust between agents, such as
ways to detect strategic lying and thus uncover consistent liars, as well as collusion-
detection to avoid multi-agent scams. Trust models should also take into consideration
the context in which agents fail to fulfill their obligations in order to avoid misjudging
them due to environment changes.

Chapter 3 Agent Interaction 49

3.3.3.2 Reputation of information sources

One way of applying reputation-based trust is in the belief revision process of an agent
[Barber and Kim, 2001]. Here, trust refers to the agent’s confidence in the ability and
intention of an information source to deliver correct information, while reputation refers
to the amount of correct information delivered by an agent while interacting with other
agents. Since agents often do not have complete knowledge or ground truth about
the problem domain, different perspectives of the same system state arise, making it
very difficult to ascertain if an information source is unreliable due to maliciousness or
just incompetence. In the absence of ground truth in a system trust can be used to
characterise confidence in information possessed by agents. Since a rational agent is
assumed to desire to have the most reliable information regarding the actual system
state, a good reputation is viewed as an asset stimulating an agent to behave properly
in order to maintain the flow of reliable information. Agents with consistently low
reputations will be isolated from the society at some point, as others will rarely accept
justifications or arguments from agents with low reputation. Barber and Kim term
the isolation of unreliable partners from the society as soft security, as opposed to a
system-level enforced hard security common in normative mechanisms.

3.3.3.3 Reputation through social analysis

An alternative way of handling reputation in a multi-agent system is to analyse the
relationships between individuals in a society, or social network analysis [Sabater and
Sierra, 2002b]. This is the approach taken by the social ReGreT system [Sabater and
Sierra, 2002a]. The intuition behind transferring this method of analysis from human
relations to agent systems is that, since multi-agent systems are much simpler in social
terms, it allows for even better results than those achievable in a human society. The
downside is that the relational data upon which this method depends, which is usu-
ally collected through opinion polls from humans [Sabater and Sierra, 2002a], is much
scarcer. Social ReGreT assumes the majority of agents in a system to be rational and to
behave according to their goals and the type of relationship they hold with other agents.
Relations between agents in Social ReGreT are classified into three types:

• competition arises when two agents pursue the same goals and need the same
(limited) resources, as an agent is assumed to used any mechanism to gain advan-
tage over the competitor, including deception;

• cooperation arises when there is a significant exchange of sincere information
between agents and predisposition to help each other if possible; and

• trade arises when a commercial transaction is under way (trading agents can be
seen as partially cooperating and competing).

50 Chapter 3 Agent Interaction

ReGreT is based on three dimensions of reputation, comprising an individual dimension,
when considering only direct interactions with others to estimate one’s reputation: a
social dimension used by the agent if it employs information from other members of the
society and the social relations; and an ontological dimension, which is a concept used
to represent different types of reputation among individual agents, and how they are
combined to obtain new types of reputation. To support the individual reputation, an
agent maintains database of outcomes that is moderated by the number of stored entries
to assess trust for another agent in a given scenario, and comprises the outcome trust
reputation.

The social dimension is used when direct interactions are not available. This might be
due to an agent being a newcomer to a system, or simply due to the system being too
large for these first hand accounts to be prolific. Depending on the information source,
the social dimension uses three types of reputation: witness reputation, neighbourhood
reputation and system reputation. Witness reputation is based on information com-
ing from other agents about the target agent. This information is moderated by the
reputation of the witnesses themselves, as it might be false, inaccurate or incomplete;
the relationship between witnesses and the target agent is also taken into account (the
social trust [Sabater and Sierra, 2002a]). For example, agents engaged in a coopera-
tive relation imply some degree of complicity, and their information is probably biased.
Neighbourhood reputation refers to the type of partner an agent associates with, and
is calculated based on the reputation of the social neighbours of the target and its re-
lations to them. For example, an agent that commonly associates with low-reputation
agents is likely to be untrustworthy. System reputation uses common knowledge about
the role played by an agent for that institutional structure in order to assign a default
reputation to the agent. The ontological dimension determines the roles of an agent
within an organisation.

The system uses these three dimensions, as well as the reputation types associated with
them, in a hierarchical model, where the outcome reputation takes precedence over the
witness and the neighbourhood reputations followed by the system reputation. An agent
uses a lower priority reputation source when its confidence in the higher level ones is
not high enough. A shortcoming in this model is that the specific levels of trust are
assumed for specific social relations, and therefore cannot be actually detected when it
occurs outside of the defined social patterns.

3.3.3.4 Automated relationship identification

An extended version of the ReGreT reputation model builds on the social ReGreT
[Sabater and Sierra, 2002a] mechanism utilising the SMART agent framework [d’Inverno
and Luck, 2004] to propose a process for agents to dynamically identify relationships in
a dynamic marketplace [Ashri et al., 2005]. Like ReGreT, the model describes general

Chapter 3 Agent Interaction 51

types of relationships that ought to be considered regarding trust, as well as the types of
reasoning that could be used with that information. Moreover, the ontology framework
used in ReGreT is leveraged in order to analyse relationships. Here relationship analysis
includes:

• relationship identification, which identifies relationships between agents by
analysing their individual capabilities and inferring how an agent may come to
rely on another one;

• relationship characterisation, which distinguishes the type of relationships that
are most relevant with regard to trust; and

• relationship interpretation, which interprets the obtained relationship patterns
to derive trust valuations.

The relationship identification model is underpinned by the concept of agent capabilities
from the SMART agent framework, ultimately using this notion to determine what
relations may exist within agents in a given context. After relationships are identified,
they are characterised. Since there is a large number of potential relationships and
combinations of them, along with a myriad of interpretations for them, it is necessary to
narrow down the amount of processing required to interpret the meaning of the identified
relationships. In order to accomplish this, the model includes basic types of relationships
to be used as patterns for evaluation against the dynamically detected ones. Basic
relationship types include trade, dependency, competition, collaboration, and tripartite
relationships. The addition of an automatic model of relationship identification aims to
overcome the limitation of Social ReGreT of relying on predefined relationship patterns.

3.3.3.5 Reputation as probability

Another view of reputation and trust characterises them explicitly in terms of probability
theory. This is the stance taken by the TRAVOS model [Teacy et al., 2005], in which
trust is defined to be the level of subjective probability with which an agent assesses that
another agent will perform a particular action [Teacy et al., 2006]. Similarly to other
models of reputation, an agent uses trust to determine how reliable another agent is to
interact with, and in case there is no history of direct interactions for this assessment
to be made, reputation is inferred by gathering information from third parties. This
information must be assumed to be potentially incomplete, flawed or unreliable as a
result of the attempts of self-interested agents to gain advantage over others. Under
these assumptions, this model identifies three requirements for a trust and reputation
model:

• it must provide a trust metric that represents the level of trust in an agent;

52 Chapter 3 Agent Interaction

• it must reflect an individual’s confidence in its level of trust for another agent; and

• it must not assume that the opinions of others are accurate or based on actual
experience.

In TRAVOS, the level of trust a truster agent places in a trustee is defined as the
probability that the trustee will fulfill its obligation to the truster. Since complete
information cannot be assumed, the actual probability value represents the expected
probability of a successful interaction. This value is calculated using the experience of
the truster, which in turn comprises the set of interaction outcomes observed by the
agent. The expected outcome of an interaction has an associated confidence metric
to account for the uncertainty of the information, as well as its incompleteness. The
confidence metric underpins a decision process that prompts an agent to seek more
evidence when required and gather reputation information from surrounding agents when
this confidence is below a predefined threshold.

In an ideal setting, the experiences gathered from other agents would be as valuable as
the ones witnessed by the agent itself. However, autonomous agents exercising prefer-
ences over a selection of interaction partners might assign a higher value to interactions
with a specific set of agents, overestimating the likelihood of them succeeding. This
entails that the experiences of third parties may be biased, inaccurate, or completely
fabricated, and thus not applicable to the context of the requesting agent. In order to
overcome these hazards, TRAVOS includes a technique to filter inaccurate reputation.
The approach taken differs from several endogenous techniques that assume dishonest
reputation providers will comprise a minority within a society, so ratings that deviate
from mainstream opinion are assumed to be in error and can be filtered out from reputa-
tion estimates. TRAVOS uses an exogenous technique that calculates the probability of
an opinion being accurate by comparing the history of previously provided opinions and
the outcomes of the interactions for which these opinions were requested by the truster.
Once the probabilities for all relevant opinions are gathered, the collected opinions are
adjusted so that overly optimistic or pessimistic opinions are only considered entirely
truthful if its originator is very likely to be accurate. Finally, whatever first hand ex-
periences an agent has about a potential interaction partner are added to the adjusted
experiences gathered from neighbouring agents.

3.4 Discussion

In this chapter we have surveyed what we believe to be the main building blocks for
coherent multi-agent interactions. These building blocks consist of agreement mecha-
nisms to allow agents to decide whether or not to cooperate with others, coordination
mechanisms to ensure that cooperating agents will work together as harmoniously as

Chapter 3 Agent Interaction 53

possible, and finally regulatory mechanisms to keep the effects of malicious behaviour
to a minimum within an agent society.

consult

Agreement Regulatory
Mechanisms

Coordination
Mechanisms

UseUse

Mechanisms

Figure 3.7: Dependencies among agent-interaction mechanisms.

These building blocks were not defined in a vacuum, and some interaction mechanisms
rely on others to address possible problems arising from the interaction of autonomous
and possibly self-interested agents. More specifically, we have seen that agent coopera-
tion may require negotiation steps to ensure that agents agree on individual tasks and
responsibilities to avoid conflicts during joint action. Agents that rely on negotiation
to find suitable partners for interaction might keep track of the outcomes of previous
interactions and use this information to favour dealing with agents that are deemed
as trustworthy. Besides serving as a way to optimise an individual agent’s negotiation
strategy, trust information can also be used by a society as a whole to isolate overly
disruptive individuals. These dependencies are summarised in Figure 3.7.

Research on multiagent interaction has created a series of mechanisms for handling in-
teraction among agents. The interplay between these mechanisms have also been studied
to a certain extent. However, the specific reasons for using one technique over another,
or even to use multiagent techniques at all rather than a centralised approach have
scarcely been investigated. In situations where explicit notions of payoff are used (e.g.
coalitions), the reason to join a group can be defined to be that of payoff maximisation.
For most other mechanisms, their usage and potential benefits are often evaluated by
the system designer in an ad-hoc manner. The disconnection between a technique and
the circumstance for its application is greater regarding regulatory mechanisms. More
specifically, most trust mechanisms do not detail when one approach is more advanta-
geous than other, or to which extent an agent should spend resources (e.g. by storing
information, or requesting it from others) before deciding whether to interact with an-
other agent. Probabilistic approaches to trust and reputation seem to provide some
insights into how to quantify this kind of decision.

Chapter 4

Issues regarding declarative agent
architectures

We have seen that the efforts in developing agent architectures yielded two main models
of agent interpreter: procedural and declarative. Procedural agent architectures are
those in which the achievement of the agent’s design objectives occurs after certain
procedures are executed. In this view goal achievement is implied, as the goal is assumed
to have been accomplished by these procedures. Declarative agent architectures are
those in which the achievement of the agent’s design objectives is brought about after
the agent has explicitly declared a set of properties that should be perceived as true by
the agent. The agent then selects a course of action through some reasoning mechanism
in order to achieve such goals.

Each of these two models of agent architecture is not necessarily better than the other.
In some applications where predictability is more important than autonomy, a proce-
dural approach is more desirable than a declarative one. Autonomy on the other hand
is facilitated by a declarative approach. Though a large number of procedural agent
architectures exist, there are few efforts towards specifying practical declarative agent
architectures. The most recent efforts focus on important logical properties and seman-
tic possibilities for mental states, but their solution to how an agent chooses a course
of action tend to fall back into either a procedural approach or delegating the definition
of plan libraries to the programmer. In these efforts, the declarative nature of goals is
explored only to the extent of verifying goal achievement after the agent has executed
a plan, and upon goal failure, deciding whether or not to try other plans in an agent’s
plan library.

Such an approach to the implementation of declarative goals merely provides a higher
level method for organising procedure calls since the agent is not truly reasoning about
the steps it is taking to achieve its declarative goals. This is also true for multi-agent
interactions in the sense that agents are often bound by their design to participate in

55

56 Chapter 4 Issues regarding declarative agent architectures

a joint problem-solving effort without any consideration of the reasons for doing so or
the actual benefit of joining other agents rather than remaining on its own. In these
situations the analysis of when to perform a particular plan or when to enter multiagent
mode is done by the designer prior to the agent being deployed, so when such an agent is
operating without supervision the reasons for its behaviour amounts more to the dogmas
imposed by the designer than to actual autonomy. If an agent is to behave outside the
boundaries of hard-coded rules it must be able to:

• assess when to forgo established sets of behaviours and construct new plans; and

• assess when to delegate tasks to, and when to accept tasks from, other agents.

Assessing when to use one strategy over another is not a simple task, as it involves weigh-
ing the effort required by these strategies against their perceived benefits. Attempts to
model such an assessment as utility maximisation has lead to decision procedures that
assume an omniscient agent [Rao and Georgeff, 1995b], resulting in models that are un-
suitable for practical applications. On the other hand, research on motivational states
focuses on the utility that an individual agent expects, as opposed to absolute knowledge
about utility, allowing the agent to determine a goals outcome based only on present
and past world-states. Clearly, an agent designer wants an agent to satisfy its design
objectives in a predictable way under ideal circumstances, but he also wants the agent to
be able to fend for itself in unforeseen situations. As we have seen in Section 2.3, truly
autonomous agents are able to generate their own goals, and a model of motivations
can underpin the process of goal generation [Luck et al., 2003]. Using this strategy we
propose motivation as a control mechanism for autonomous declarative agents.

MotivationsMotivations

M
otivation A

ssessm
ent

M
otivation A

ssessm
ent

Delegation
Planner

M
odel of B

 M
otivations

M
odel of A

 M
otivations

Planner

Agent A Agent B

Figure 4.1: Conceptual architecture for motivationally controlled delegation.

By using a quantitative model of motivations along with a compatible representation of
the cost of an agent’s capabilities and resources, an agent should be able to quickly assess
the reward of a given strategic choice. Moreover, if we assume that other agents within
an environment operate using a similar model of motivational control, an agent should
also be capable of querying its neighbours and discover their respective motivational
level towards specific goals. Given such an assessment of the motivations of others, an
agent should be able to decide when to delegate the achievement of certain goals to (as

Chapter 4 Issues regarding declarative agent architectures 57

well as when to accept tasks delegated by) others. For such a model of control to work,
a number of issues must first be addressed, these are related to:

• modelling motivations versus the cost of resources and planning;

• modelling the motivations of others;

• assessing the motivations of others;

• evaluating the reasons for interacting with others; and

• assessing when delegation should be attempted.

If motivations are to be used to tune the operation of a planning component, then
it is necessary to define which parameters of the planning process are to be affected
by motivational intensity. We currently envision a model in which the intensity of a
motivation will determine the amount of processing time an agent should dedicate to
the planning of the goal associated to that motivation. When such processing time is
consumed, the agent stops the planning process and assumes that the goal is not worthy
of being achieved at that time. We consider this to be a weaker failure mode for a given
goal, since the agent is not proving that such goal is impossible. We believe that this
kind of reason for a goal to be dropped constitutes one of the reasons for an agent to
attempt cooperation with other agents (that may be motivated to spend more processing
power planning for the achievement of a joint goal).

Chapter 5

Future Work

Considering the open issues identified in Chapter 4, in this chapter we identify the main
set of issues we intend to focus our research for the next 9-month period. Moreover,
we outline a strategy to carry out this research, including the activities we intend to
execute as well as their associated deliverables; these activities are then organised in a
work plan.

5.1 Activities and Deliverables

• Activity: Study of planning in declarative agents.
Deliverables: A prototype of a planning declarative agent and a conference paper
reporting the results.

• Activity: Study quantitative models of motivations and their integration to agent
resource management and prioritisation.
Deliverables: A modified version of the previous prototype and a conference
paper reporting the results.

• Activity: Study of multiagent planning and its relation to the previous activities.
Deliverables: A report or paper outlining a simple agent architecture using the
studied concepts.

• Activity: Study reasons for agent interaction and task delegation.
Deliverables: A report or paper describing a decision procedure for interaction/-
task delegation.

• Activity: Write mini-thesis.
Deliverables: Mini-thesis and possibly a journal paper with similar content.

59

60 Chapter 5 Future Work

5.2 Work Plan

Period Activity
2006

May Study of planning in declarative agents under way.
Implementation of planning in a declarative agent architecture under way.

June Write and submit paper to either AAMAS 2007 or ĲCAI 2007.
July Study of quantitative models of motivations.
August Study of the integration of motivation models into a planning architecture.

Start work on the prototype integrating motivations.
September Write conference paper (conference TBD.)
October Study of motivated multiagent planning
November Write report/paper
December Study reasons for agent interaction and task delegation.

2007
January Write report/paper
February Write mini-thesis
March

5.3 Contributions

Despite its recognised importance in the development of autonomous agents, architec-
tures of declarative agents are scarce, and declarative architectures suitable for appli-
cation in real domains are non-existent. Existing architectures implement only parts
of what we believe to be truly declarative operation. Moreover, motivation models are
mostly used in toy-examples rather than applied to fully-fledged agent architectures.
Therefore, our main contribution is an investigation of how these concepts can be inte-
grated to create a practical agent architecture. Underlying the integration of motivations
with a declarative semantics are the various issues of the correlation of motivational
states with planning processes and resource allocation, as well as issues regarding the
assessment of potential interaction partners in a multiagent system. We believe that
the analysis of these underlying issues constitutes another important contribution to be
achieved by our work.

Bibliography

J. J. Alferes and L. M. Pereira. Reasoning with Logic Programming. Springer Verlag,
1996.

R. Ashri, S. D. Ramchurn, J. Sabater, M. Luck, and N. R. Jennings. Trust evaluation
through relationship analysis. In AAMAS ’05: Proceedings of the fourth international
joint conference on Autonomous agents and multiagent systems, pages 1005–1011,
New York, NY, USA, 2005. ACM Press. ISBN 1-59593-093-0.

C. Balkenius. The roots of motivation. In Proceedings of the 2nd International Confer-
ence on Simulation of Adaptive Behavior. MIT Press, 1993.

A. Bandara, E. Lupu, J. Moffett, and A. Russo. A goal-based approach to policy
refinement. In Policies for Distributed Systems and Networks, 2004. POLICY 2004.
Proceedings. Fifth IEEE International Workshop on, pages 229–239, 2004.

K. S. Barber and J. Kim. Belief revision process based on trust: Agents evaluating
reputation of information sources. In Proceedings of the workshop on Deception, Fraud,
and Trust in Agent Societies held during the Autonomous Agents Conference, pages
73–82, London, UK, 2001. Springer-Verlag. ISBN 3-540-43069-5.

C. Bartolini, C. Preist, and N. R. Jennings. Architecting for reuse: A software framework
for automated negotiation. In AOSE, pages 88–100, 2002.

E. Bertino, A. Mileo, and A. Provetti. Pdl with preferences. In Policies for Distributed
Systems and Networks, 2005. Sixth IEEE International Workshop on, pages 213–222,
2005.

R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model checking AgentS-
peak. In Proceedings of the 2nd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS-03), pages 409–416, Melbourne, Australia, July 2003.
ACM Press.

J. Bradshaw, A. Uszok, R. Jeffers, N. Suri, P. Hayes, M. Burstein, A. Acquisti, B. Benyo,
M. Breedy, M. Carvalho, D. Diller, M. Johnson, S. Kulkarni, J. Lott, M. Sierhuis, and
R. V. Hoof. Representation and reasoning for daml-based policy and domain services
in kaos and nomads. In AAMAS ’03: Proceedings of the second international joint

61

62 BIBLIOGRAPHY

conference on Autonomous agents and multiagent systems, pages 835–842, New York,
NY, USA, 2003. ACM Press. ISBN 1-58113-683-8.

M. E. Bratman. Two faces of intention. Philosophical Review, 93:375–405, 1984.

M. E. Bratman. Intention, Plans and Practical Reason. Harvard University Press,
Cambridge, MA, 1987.

M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and resource-bounded practical
reasoning. Computational Intelligence, 4(4):349–355, 1988.

L. Braubach, A. Pokahr, W. Lamersdorf, and D. Moldt. Goal representation for BDI
agent systems. In R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni,
editors, Proceedings of the Second International Workshop on Programming Multiagent
Systems Languages and tools (PROMAS 2004), pages 7–9, 2004.

A. Burt. Modelling motivational behaviour in intelligent agents in virtual worlds. In
Proceedings of the 1998 Conference on Virtual Worlds and Simulation, 1998.

P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas. Jack intelligent agents - com-
ponents for intelligent agents in java. AgentLink Newsletter, January 1999. White
paper, http://www.agent-software.com.au.

C. Castelfranchi and R. Falcone. Principles of trust for mas: Cognitive anatomy, social
importance, and quantification. In ICMAS, pages 72–79, 1998.

A. M. Coddington. Self-Motivated Planning in Autonomous Agents. PhD thesis, Uni-
versity College London, 2001.

A. M. Coddington and M. Luck. Towards motivation-based plan evaluation. In I. Russell
and S. Haller, editors, Proceedings of Sixteenth International FLAIRS Conference,
pages 298–302, Florida, USA, 2003.

A. M. Coddington and M. Luck. A motivation-based planning and execution framework.
International Journal on Artificial Intelligence Tools., 10(1):5–25, 2004.

P. R. Cohen and H. J. Levesque. Intention is choice with commitment. Artificial Intel-
ligence, 42(2-3):213–261, 1990.

P. R. Cohen and H. J. Levesque. Teamwork. Noûs, 25(4):487–512, 1991. Special Issue
on Cognitive Science and Artificial Intelligence.

J. S. Cox, E. H. Durfee, and T. Bartold. A distributed framework for solving the
multiagent plan coordination problem. In AAMAS ’05: Proceedings of the fourth
international joint conference on Autonomous agents and multiagent systems, pages
821–827, New York, NY, USA, 2005. ACM Press. ISBN 1-59593-093-0.

M. Dastani, B. van Riemsdĳk, F. Dignum, and J.-J. C. Meyer. A programming language
for cognitive agents goal directed 3apl. In PROMAS, pages 111–130, 2003.

BIBLIOGRAPHY 63

R. Davis and R. G. Smith. Negotiation as a metaphor for distributed problem solving.
pages 333–356, 1988.

W. V. der Hoek and M. Wooldridge. Towards a logic of rational agency. Logic Journal
of the IGPL, 11(2):133–157, March 2003.

F. Dignum. Autonomous agents with norms. Artificial Intelligence and Law, 7(1):69–79,
Mar. 1999.

M. d’Inverno and M. Luck. Understanding Agent Systems. Springer Series on Agent
Technology. Springer Verlag, Berlin, 2nd edition, 2004.

M. d’Inverno and M. Luck. Engineering AgentSpeak(L): A formal computational model.
Journal of Logic and Computation, 8(3):233–260, 1998.

M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A formal specification of dMARS.
In M. P. Singh, A. S. Rao, and M. Wooldridge, editors, Agent Theories, Architectures,
and Languages, volume 1365 of Lecture Notes in Computer Science, pages 155–176.
Springer-Verlag, 1998.

E. Durfee and V. Lesser. Partial global planning: a coordination framework for distrib-
uted hypothesis formation. Systems, Man and Cybernetics, IEEE Transactions on,
21(5):1167–1183, 1991. ISSN 0018-9472.

E. H. Durfee. Distributed problem solving and planning. pages 118–149, 2001.

E. H. Durfee. Coordination of Distributed Problem Solvers. Springer, 1988.

E. H. Durfee and V. R. Lesser. Predictability versus responsiveness: coordinating prob-
lem solvers in dynamic domains. pages 198–203, 1990.

R. Falcone and C. Castelfranchi. Social trust: a cognitive approach. pages 55–90, 2001.

M. Georgeff, B. Pell, M. E. Pollack, M. Tambe, and M. Wooldridge. The belief-desire-
intention model of agency. In J. Müller, M. P. Singh, and A. S. Rao, editors, Pro-
ceedings of the 5th International Workshop on Intelligent Agents V : Agent Theories,
Architectures, and Languages (ATAL-98), volume 1555, pages 1–10. Springer-Verlag:
Heidelberg, Germany, 1999.

M. P. Georgeff and F. F. Ingrand. Decision-making in an embedded reasoning system.
In Proceedings of the 11th International Joint Conference on Artificial Intelligence
(ĲCAI’89), pages 972–978, Detroit, MI, 1989a. Morgan Kaufmann.

M. P. Georgeff and F. F. Ingrand. Monitoring and control of spacecraft systems using
procedural reasoning. In Proceedings of the Space Operations and Robotics Workshop,
page n/a, Houston, TX, July 1989b.

M. P. Georgeff and A. L. Lansky. Procedural knowledge. Proceedings of the IEEE,
Special Issue on Knowledge Representation, 74(10):1383–1898, 1986.

64 BIBLIOGRAPHY

M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. In Proceedings of
the American Association for Artificial Intelligence (AAAI), pages 677–682, Seattle,
WA, 1987. Morgan Kaufmann Publishers.

A. Graham, T. Radhakrishnan, and C. Grossner. Incremental validation of policy-based
systems. In Policies for Distributed Systems and Networks, 2004. POLICY 2004.
Proceedings. Fifth IEEE International Workshop on, pages 240–249, 2004.

S. Grand and D. Cliff. Creatures: Entertainment software agents with artificial life.
Autonomous Agents and Multi-Agent Systems, 1(1):39–57, 1998.

K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. C. Meyer. Agent programming
in 3apl. Autonomous Agents and Multi-Agent Systems, 2(4):357–401, 1999.

K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. C. Meyer. Agent programming
with declarative goals. In ATAL, pages 228–243, 2000.

N. Howden, R. Rönnquist, A. Hodgson, and A. Lucas. Jack ? summary of an agent
infrastructure. In Proceedings of the 5th International Conference on Autonomous
Agents, 2001.

M. J. Huber. JAM: a BDI-theoretic mobile agent architecture. In Proceedings of the 3rd
Annual Conference on Autonomous Agents, pages 236–243. ACM Press, 1999. ISBN
1-58113-066-X.

M. N. Huhns and L. M. Stephens. Multiagent systems and societies of agents. pages
79–120, 1999.

F. F. Ingrand and V. Coutance. Real-time reasoning using procedural reasoning. Tech-
nical Report 93104, LAAS/CNRS, LAAS/CNRS, France, January 2001. Technical
Report.

F. F. Ingrand, M. P. Georgeff, and A. S. Rao. An architecture for real-time reasoning and
system control. IEEE Expert, Knowledge-Based Diagnosis in Process Engineering, 7
(6):33–44, 1992.

N. R. Jennings. On agent-based software engineering. Artificial Intelligence, 117(2):
277–296, 2000.

N. R. Jennings. Commitments and conventions: The foundation of coordination in
multi-agent systems. The Knowledge Engineering Review, 8(3):223–250, 1993.

N. R. Jennings, A. G. Cohn, M. Fox, D. Long, M. Luck, D. T. Michaelides, S. Munroe,
and M. J. Weal. Cognitive Systems: Information Processing Meets Brain Science,
chapter 8. Motivation, Planning and Interaction, pages 163–188. Queen’s Printer and
Controller of HMSO, 2006.

BIBLIOGRAPHY 65

R. A. Kowalski and M. J. Sergot. A logic-based calculus of events. New Generation
Computing, 4(1):67–95, 1986.

S. Kraus. Negotiation and cooperation in multi-agent environments. Artif. Intell., 94
(1-2):79–97, 1997. ISSN 0004-3702.

J. Lee, M. J. Huber, P. G. Kenny, and E. H. Durfee. UM-PRS: An Implementation
of the Procedural Reasoning System for Multirobot Applications. In Conference on
Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS), pages 842–849,
Houston, Texas, 1994.

V. Lesser, K. Decker, N. Carver, D. Neiman, M. N. Prasad, and T. Wagner. Evolution
of the gpgp domain-independent coordination framework. Technical report, Amherst,
MA, USA, 1998.

F. Lopez y Lopez. Social Power and Norms: Impact on agent behaviour. PhD thesis,
University of Southampton, 2003.

F. Lopez y Lopez and M. Luck. Modelling norms for autonomous agents. In Computer
Science, 2003. ENC 2003. Proceedings of the Fourth Mexican International Conference
on, pages 238–245, 2003.

F. Lopez y Lopez, M. Luck, and M. d’Inverno. Normative agent reasoning in dynamic
societies. In AAMAS ’04: Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 732–739, Washington, DC, USA,
2004. IEEE Computer Society. ISBN 1-58113-864-4.

M. Luck and M. d’Inverno. Motivated behavior for goal adoption. In DAI, pages 58–73,
1998.

M. Luck, S. Munroe, and M. d’Inverno. Autonomy: Variable and Generative, chapter
Chapter 2, pages 9–22. Kluwer, 2003.

N. Meuleau and D. E. Smith. Optimal limited contingency planning. In UAI, pages
417–426, 2003.

J. Misra and K. M. Chandy. Parallel Program Design: A Foundation. Addison-Wesley,
1989.

M. C. Móra, J. G. Lopes, R. M. Viccari, and H. Coelho. BDI models and systems:
Reducing the gap. In J. P. Müller, M. P. Singh, and A. S. Rao, editors, Proceedings of
the 5th International Workshop on Intelligent Agents V : Agent Theories, Architec-
tures, and Languages (ATAL-98), volume 1555 of Lecture Notes in Computer Science.
Springer Verlag, Germany, 1999.

P. Morignot and B. Hayes-Roth. Motivated agents. Technical report, Knowledge Systems
Laboratory – Stanford University, 1996.

66 BIBLIOGRAPHY

J. P. Müller. The design of intelligent agents: A layered approach. In The Design of
Intelligent Agents: A Layered Approach, volume 1177 of Lecture Notes in Computer
Science. Springer Verlag, Germany, 1996.

S. Munroe, M. Luck, and M. d’Inverno. Motivation-based selection of negotiation part-
ners. In AAMAS ’04: Proceedings of the Third International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pages 1520–1521, Washington, DC, USA,
2004. IEEE Computer Society. ISBN 1-58113-864-4.

S. J. Munroe and M. Luck. 3m motivational taxonomy. In Agents and Computational
Autonomy, pages 55–67, 2003.

S. J. Munroe, M. Luck, and M. d’Inverno. Towards motivation-based decisions for worth
goals. In Proceedings of Multi-Agent Systems and Applications III, Proceedings of the
3rd International Central and European Conference on Multi-Agent Systems, pages
17–28, 2003.

R. Nair, M. Tambe, and S. Marsella. Integrating belief-desire-intention approaches with
POMDPs: The case of team-oriented programs. In P. Doherty, J. McCarthy, and M.-
A. Williams, editors, Logical Formalization of Commonsense Reasoning 2003 AAAI
Spring Symposium, pages 107–115. AAAI Press, 2003.

J. F. Nash Jr. Equilibrium points in n-person games. Proceedings of the Nationall
Academy of Sciences, 36:48–49, 1950.

N. Nide and S. Takata. Deduction systems for BDI logics using sequent calculus. In
Proceedings of the First International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 928–935. ACM Press, 2002. ISBN 1-58113-480-0.

T. J. Norman and D. Long. Alarms: An implementation of motivated agency. In ATAL,
pages 219–234, 1995.

T. J. Norman, A. Preece, S. Chalmers, N. R. Jennings, M. Luck, V. D. Dang, T. D.
Nguyen, V. Deora, J. Shao, W. A. Gray, and N. J. Fiddian. Agent-based formation
of virtual organisations. Knowledge-Based Systems, 17(2-4):103–111, May 2004.

M. E. Pollack and M. Ringuette. Introducing the tileworld: experimentally evaluating
agent architectures. In T. Dietterich and W. Swartout, editors, Proceedings of the 8th
National Conference on Artificial Intelligence, pages 183–189, Menlo Park, CA, 1990.
AAAI Press.

M. E. Pollack, D. Joslin, A. Nunes, S. Ur, and E. Ephrati. Experimental investigation
of an agent commitment strategy. Technical Report 94–31, University of Pittsburgh,
Pittsburgh, PA 15260, 1994.

I. Rahwan, S. D. Ramchurn, N. R. Jennings, P. Mcburney, S. Parsons, and L. Sonenberg.
Argumentation-based negotiation. Knowl. Eng. Rev., 18(4):343–375, 2003. ISSN 0269-
8889.

BIBLIOGRAPHY 67

I. Rahwan, L. Sonenberg, and F. P. Dignum. On Interest-Based Negotiation, volume
2922. Springer Verlag, Jan. 2004.

S. D. Ramchurn, N. R. Jennings, and C. Sierra. Persuasive negotiation for autonomous
agents: A rhetorical approach. In Proceedings of the ĲCAI Workshop on Computa-
tional Models of Natural Arguments, pages 9–17. AAAI Press, 2003.

S. D. Ramchurn, D. Huynh, and N. R. Jennings. Trust in multi-agent systems. Knowl.
Eng. Rev., 19(1):1–25, 2004. ISSN 0269-8889.

A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In
W. V. de Velde and J. W. Perram, editors, 7th European Workshop on Modelling Au-
tonomous Agents in a Multi-Agent World, volume 1038 of Lecture Notes on Computer
Science, pages 42–55. Springer Verlag, Eindhoven, Netherlands, 1996.

A. S. Rao and M. P. Georgeff. BDI-agents: from theory to practice. In Proceedings of
the First International Conference on Multiagent Systems ICMAS-95, pages 312–319,
San Francisco, 1995a.

A. S. Rao and M. P. Georgeff. Formal models and decision procedures for multi-agent
systems. Technical Report 61, Australian Artificial Intelligence Institute, 171 La Trobe
Street, Melbourne, Australia, 1995b. Technical Note.

J. Sabater and C. Sierra. Social regret, a reputation model based on social relations.
SIGecom Exch., 3(1):44–56, 2002a. ISSN 1551-9031.

J. Sabater and C. Sierra. Reputation and social network analysis in multi-agent systems.
In AAMAS ’02: Proceedings of the first international joint conference on Autonomous
agents and multiagent systems, pages 475–482, New York, NY, USA, 2002b. ACM
Press. ISBN 1-58113-480-0.

F. Sadri, F. Toni, and P. Torroni. Dialogues for negotiation: Agent varieties and dialogue
sequences. In ATAL, pages 405–421, 2001.

T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohmé. Coalition structure
generation with worst case guarantees. Artif. Intell., 111(1-2):209–238, 1999. ISSN
0004-3702.

T. W. Sandholm. Distributed rational decision making. pages 201–258, 1999.

M. Schut and M. Wooldridge. The control of reasoning in resource-bounded agents. The
Knowledge Engineering Review, 16(3), 2001.

M. Shanahan. An abductive event calculus planner. The Journal of Logic Programming,
2000.

O. Shehory and S. Kraus. Coalition formation among autonomous agents: Strategies
and complexity. In From Reaction to Cognition, number 957, pages 57–72, 1995.

68 BIBLIOGRAPHY

Y. Shoham and M. Tennenholtz. On Social Laws for Artificial Agent Societies: Off-Line
Design. Artif. Intell., 73(1-2):231–252, 1995.

W. T. L. Teacy, J. Patel, N. R. Jennings, and M. Luck. Coping with inaccurate repu-
tation sources: experimental analysis of a probabilistic trust model. In AAMAS ’05:
Proceedings of the fourth international joint conference on Autonomous agents and
multiagent systems, pages 997–1004, New York, NY, USA, 2005. ACM Press. ISBN
1-59593-093-0.

W. T. L. Teacy, J. Patel, N. R. Jennings, and M. Luck. Travos: Trust and reputation
in the context of inaccurate information sources. Journal of Autonomous Agents and
Multi-Agent Systems, 12(2), 2006.

B. van Riemsdĳk, W. van der Hoek, and J.-J. C. Meyer. Agent programming in dribble:
from beliefs to goals using plans. In AAMAS ’03: Proceedings of the second interna-
tional joint conference on Autonomous agents and multiagent systems, pages 393–400,
New York, NY, USA, 2003. ACM Press. ISBN 1-58113-683-8.

B. van Riemsdĳk, M. Dastani, F. Dignum, and J.-J. C. Meyer. Dynamics of declarative
goals in agent programming. In DALT, pages 1–18, 2004.

M. B. van Riemsdĳk, M. Dastani, and J.-J. C. Meyer. Semantics of declarative goals
in agent programming. In AAMAS ’05: Proceedings of the fourth international joint
conference on Autonomous agents and multiagent systems, pages 133–140, New York,
NY, USA, 2005. ACM Press. ISBN 1-59593-093-0.

J. von Neumann and O. Morgenstern. Theory of games and economic behavior. Princeton
University Press, 1944.

T. Wagner, A. Garvey, and V. Lesser. Complex goal criteria and its application in
design-to-criteria scheduling. Technical report, Amherst, MA, USA, 1997.

D. E. Wilkins and K. L. Myers. A Common Knowledge Representation for Plan Gener-
ation and Reactive Execution. volume 5, pages 731–761, 1995.

M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative & Procedural
Goals in Intelligent Agent Systems. In D. Fensel, F. Giunchiglia, D. L. McGuinness,
and M.-A. Williams, editors, Proceedings of the Eights International Conference on
Principles and Knowledge Representation and Reasoning (KR-02), pages 470–481,
Toulouse, France, April 2002. Morgan Kaufmann.

M. Wooldridge. Reasoning about Rational Agents. The MIT Press, 2000a.

M. Wooldridge. The Computational Complexity of Agent Design Problems. In E. Durfee,
editor, Proceedings of the Fourth International Conference on Multi-Agent Systems
(ICMAS 2000), pages 341–348. IEEE Press, 2000b.

BIBLIOGRAPHY 69

P. Xuan and V. Lesser. Multi-agent policies: from centralized ones to decentralized ones.
In AAMAS ’02: Proceedings of the first international joint conference on Autonomous
agents and multiagent systems, pages 1098–1105, New York, NY, USA, 2002. ACM
Press.

M. Yokoo, V. Conitzer, T. Sandholm, N. Ohta, and A. Iwasaki. Coalitional games in
open anonymous environments. In AAAI, pages 509–515, 2005.

G. Zlotkin and J. S. Rosenschein. Coalition, cryptography and stability: Mechanisms
for coalition formation in task oriented domains. In Proceedings of the National Con-
ference on Artificial Intelligence (AAAI), pages 432–437, 1994.

A. F. Zorzo and F. R. Meneguzzi. An agent model for fault-tolerant systems. In SAC
’05: Proceedings of the 2005 ACM symposium on Applied computing, pages 60–65,
New York, NY, USA, 2005. ACM Press. ISBN 1-58113-964-0.

