
Predictive Indoor Navigation using Commercial
Smart-phones ∗

Balajee Kannan†
GE Global Research
One Research Circle
Niskayuna, NY, USA

balajee.kannan@ge.com

Felipe Meneguzzi
PUCRS

Av. Ipiranga 6681
Porto Alegre, RS, Brasil

felipe.meneguzzi@pucrs.br

M. Bernardine Dias
Katia Sycara

Carnegie Mellon University
5000 Forbes Ave.

Pittsburgh, PA, USA
{mbdias,katia}@cs.cmu.edu

ABSTRACT
Low-cost navigation solutions for indoor environments have
a variety of real-world applications ranging from emergency
evacuation to mobility aids for people with disabilities. Chal-
lenges for commercial indoor navigation solutions include
robust localization, intuitive recognition of user navigation
goals, and efficient route-planning and re-planning techniques
for resource-constrained platforms like smart-phones and mo-
bile phones. In this paper, we present an architecture for
indoor navigation using an Android smartphone that in-
tegrates observed behavior for recognizing user navigation
goals and estimating future paths without direct input from
the user. Our architecture contains three core components:
plan recognition, map representation and route planning, and
effective localization. To evaluate the feasibility of our so-
lution, we develop a prototype application on a commercial
smart-phone and tested it in multiple indoor environments.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Proactive Assistance, Plan Recognition

1. INTRODUCTION
Current mobile phone technology has evolved to a point

where affordable smart-phones with a variety of sensors are

∗This work was partially sponsored by the Google Core AI gift
from Google Inc. This paper does not necessarily reflect the opin-
ion or policy of the sponsors; no official endorsement should be
inferred. The authors also thank members of the rCommerce Lab-
oratory at Carnegie Mellon University for their valuable contri-
bution during development and testing, as well as the RI Summer
Scholars program for making the author’s collaboration possible.
†This work was done when author Balajee Kannan was a
member of Robotics Institute, Carnegie Mellon University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13 March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$15.00.

readily available to the public. While outdoor navigation is a
well established technological field, analogous techniques for
indoor environments are still in their infancy. The problem
of indoor navigation is further complicated when applied
to the resource-constrained domain of commercial smart-
phones. Limited computing power, restrictive memory ac-
cess and the diversity of platform requires innovative adapta-
tion of navigation algorithms to achieve a practical solution.

In this paper, we describe an architecture for indoor nav-
igation using commercial smart-phones that integrates be-
havior recognition, multi-sensor indoor localization, and path-
planning to pro-actively provide directions without direct
input from users. The rest of the paper is organized as fol-
lows. In Section 2 we briefly review research efforts related
to this paper. In Section 3 we describe the application archi-
tecture and detail the individual components, subsequently
describing the experimentation results in Section 4. Finally,
in Section 5, we conclude the paper with a summary of the
results and outline future work directions.

2. RELATED WORK
Given a model of a user’s planning process and a series

of observations about recent actions, plan recognition and
prediction is the process of identifying the plan a user is cur-
rently executing and predicting future steps [1]. Our system
uses a model of plan recognition based on recent work on
predicting human planning under the assumption of near-
optimal rationality [11] within a Markov Decision Process
(MDP). An MDP is a discrete-time stochastic control pro-
cess where at each time step a rational agent transitions
state based partially on its choice of action and partially on
a random component. In order to use this model for in-
tention prediction, previous work [14] has altered the MDP
solution equations to generate a stochastic policy, whereas
traditional MDP solutions consist of an optimal policy. In-
stead of returning the optimal action for each state of the
world, a stochastic policy returns the probability with which
an imperfectly rational agent selects an action. This ap-
proach assumes that a user, although rational, does not al-
ways select the optimal action, but rather selects an action
with a probability proportional to its optimality.

Hierarchical maps are a popular technique to represent
environments for dynamic domains such as robotics [4] and
transit planning networks [6]. This representation reduces
the search space to the sufficient sub-graph that is needed
for a particular search. As the search goes down the hi-
erarchy of the graph, once a node of interest, based on a

defined heuristic, is selected, the other nodes, with their
whole sub-graphs and related arcs, are discarded. Accord-
ingly, it reduces the computational cost from exponential to
linear in the best case [4]. For route planning applications
on a smart-phone, the speed and efficiency of the algorithms
are restricted by the on-board computation capabilities. An
effective route planner should have both high throughput
and low delays in terms of query processing, and should be
capable of fast dynamic re-planning. Prior work [8] in dy-
namic path-planning using the D∗ algorithm is highly per-
tinent to the domain of indoor navigation, as it is capable
of planning paths in changing environments and enabling
rapid re-planning if changes in travel costs are discovered.
Daniel and Cagigas [4] introduce a new hierarchical exten-
sion of the D∗ algorithm for robot path-planning, where
a down-top strategy and a set of pre-calculated paths are
used to improve performance. The outlined approach has
the drawbacks of needing pre-computed paths and operat-
ing on a uniform granularity of information representation
across the different nodes of the graph. Our algorithm ex-
tends the hierarchal D∗ approach and outlines a top-down
multi-level planner for varying map granularities.

GSM signal strengths have been shown to accurately de-
termine which floor of a building the user is in [12], while
Wifi-based RSSI fingerprinting [3, 10] can be used to es-
timate pose with an accuracy range of 3-10 meters. De-
spite the relatively high-quality of solution, a major draw-
back to most RSSI-based existing solutions is that they are
geared towards devices with significant computation capa-
bilities and high-fidelity sensors. Furthermore, RSSI fin-
gerprinting techniques use a pre-built signal-strength map
of the environment. Most current methods for building an
RSSI-to-position database are tedious, labor-intensive, and
require a large number of samples, as well as extensive re-
calibration. Unlike RSSI methods, a dead-reckoning sys-
tem [7] comprising of accelerometer, magnetometer, and gy-
roscope sensors can provide fast and accurate estimation
of local pose. While effective over short distances, dead-
reckoning solutions have the drawback of being local esti-
mation techniques that have to be seeded with an accurate
initial position for valid estimation and has unbounded sen-
sory error over time and distance.

3. PREDICTIVE INDOOR NAVIGATION
Our integrated predictive indoor navigation architecture

consists of three major components: user prediction; path-
planning and map management; indoor localization, as il-
lustrated in Figure 1. To achieve effective localization in the
absence of GPS, we combine complementary localization al-

Navigation App

Indoor
Localization

Path
Planning

User
Prediction

Wifi Signal

Compass

Accelerometer

Floor
Map

Map
Management

New AnnotationsDirections

Destination
Waypoints

Belief
State

Particles

RSSF
Database

Robot
Map

UI

Map
Annotations

Figure 1: System Architecture

.24 - Corridor

.14 - Room 1602A

.57 - Room 1602

.05 - Room 1604Particle Error Bubble

Particles

Figure 2: Particle Dispersion and Belief State.

gorithms of dead reckoning and Wifi signal strength finger-
printing. These measurements along with pre-built maps of
the environment are combined using a particle filter for ro-
bust pose estimation. Towards effective route planning, we
use a hierarchical map representation combined with an iter-
ative path-planning algorithm for providing fast and efficient
user specific routes. The plan recognizer uses a decision-
theoretic planner to identify a user’s high-level destination
goals. Based on the observed state of a user’s current loca-
tion, the recognizer identifies potential future plans using a
probabilistic tree of possible states, selects the path the user
is most likely to take, and subsequently transforms it into
an end user destination. These modules run independently
and continuously exchange information as new data comes
into the system. The data flow in the system originates with
the localization module receiving information from the var-
ious sensors. The raw data, from Wifi and dead reckoning,
is combined using a particle filter to provide an estimate
of the user’s location indicating the dispersion of probabil-
ity of the user’s presence within an area of the building.
Once generated, the set of particles along with an uncer-
tainty estimate is used to construct a belief-state, represent-
ing the probability distribution of the user’s location within
a building. The belief state is generated by calculating the
proportion of the particles that are within any given room,
generating a vector containing, the probability of the user
being located in that room. This is illustrated in Figure 2.
The belief state is then sent to the destination prediction
module, which uses a probabilistic MDP policy to calculate
the possible future paths that the user might take, sending
the most likely destination to the path-planning component
along with the high-level waypoints between the user’s cur-
rent location and it’s destination. The path-planning com-
ponent, in turn, uses the predicted destination as the end
node for its path-planning algorithm, generating a new set of
directions for the user. The User Interface (UI) component
provides a visual representation of the collated information
regarding current position, predicted destination, and the
generated route overlaid in a floor map.

3.1 Decision-theoretic Path Prediction
Formally, an MDP is a tuple Σ = 〈S,A, P,R〉, where S

is a finite set of states, A is a finite set of actions, P is
a state-transition function, and R is a reward function [5].
The state-transition function defines the probability with
which actions take the agent from one state into another.

Given {s, s′} ∈ S and a ∈ A, Pa(s′|s) denotes the probabil-
ity of transitioning from state s to state s′ when executing
action a. The reward function assigns values to particular
states1. Thus, a rational agent must choose actions that
maximize the long-term expected reward of its actions. A
policy π is a total function π : S → A mapping states into
actions, which allows an agent to decide which action to take
at each state. One can calculate the value V π of a state for
an agent following a certain policy π, and given a certain
discount factor γ, as follows (where a = π(s)):

V π(s) = R(s) + γ
∑
s′∈S

Pa(s′|s)V π(s′)

An optimal policy π∗(s) is one that maximizes this value,
and can be found by various means, such as the value it-
eration algorithm. Value iteration uses the following two
Bellman equations [2], where V ∗ and Q∗ are the equations
for the maximum reward of an action and a state: Q∗(s, a) =
R(s)+V ∗(P (s, a)), and V ∗(s) = maxaQ

∗(s, a). These equa-
tions are used iteratively as update rules until they converge,
yielding an optimal policy where π∗(s) = argmaxaQ

∗(s, a).
As the optimal policy describes the choice of a perfectly

rational decision maker, it is too inflexible to model a hu-
man’s movement indoors. Consequently, we take inspiration
from previous work [14, 11] to generate a stochastic policy
π≈ : S × A → R that returns the probability with which an
imperfectly rational agent selects an action. The intuition
behind the notion of stochastic policy is that, although a hu-
man is not perfectly rational, (s)he will select an action close
to optimal, with a probability proportional to the reward
value of this action against the alternatives. For example, if
humans are faced with two choices with rewards 10 and 10.1,
it is fair to assume that they will choose either one of the al-
ternatives about half of the time, whereas if the two choices
have rewards 10 and 1, they will choose the higher reward
much more often. Using this approach, we solve the MDP
problem using the policy iteration algorithm without modi-
fication to obtain an optimal policy, while keeping track of
the long-term values of each state. From Q-values obtained
by value iteration we calculate a stochastic policy as follows:

π≈(a|s) =
Q∗(s, a)∑

a′∈AQ
∗(s, a′)

We assume that the state transition function depends on
the topology of the indoor environment, whereas the reward
function depends on individual profiles of human users. In
this way, individual profiles can be created either manually,
with a user specifying “favorite locations”, or through learn-
ing by gathering data on a user’s daily routine and applying
an expectation maximization algorithm on this data [14].

The process of predicting future activities starts with a
belief state containing probabilities of the agent being in a
certain state. Formally, the belief state is a function from
the MDP states into probability values B : S → [0, 1], where
B(s) returns the probability that the user is in state s. From
this belief state and the obtained stochastic policy, we cre-
ate a multi-rooted tree representing the possible future state
sequences starting from likely state. The root node of this
tree is connected to the states whose probability in the be-
lief state are above a minimum threshold, as illustrated in

1In some representations, rewards are assigned to state-
action pairs, but it is trivial to convert from one to the other.

Algorithm 1 Predicting future user paths.

1: function predictFuturePaths(B, π≈, thr ,maxD)
2: n← newTreeNode(nil, nil, 1, 0)
3: for all s such that B(s) > thr do
4: n′ ← newTreeNode(nil, s, B(s), 0)
5: createPlanTree(n′, π≈, s, thr , 1,maxD , ∅)
6: end for
7: return n
8: end function
9: procedure createPlanTree(n, π≈, s, thr , d, maxD ,

visited)
10: if d ≤ maxD then
11: for all a ∈ A such that π≈(s, a) ≥ thr do
12: p← π≈(s, a)
13: node n′ ← newTreeNode(a, s, p, d)
14: n.addChild(n′)
15: v′ ← visited ∪ s
16: for all s′ such that (Pa(s, s′) > 0)∧

(s′.getV alue > s.getV alue)∧
(s′ 6∈ visited) do

17: createPlanTree(n′, π≈, s′, thr , d + 1,
maxD, v′)

18: end for
19: end for
20: end if
21: end procedure

Algorithm 1. The algorithm takes as input a belief state B,
a stochastic policy π≈, a probability threshold thr denoting
the minimum probability for a state to be considered rele-
vant for plan prediction and a maximum plan depth maxD
denoting the maximum number of future steps to predict.

The possible sequence of next states is computed recur-
sively, by querying the actions a user is likely to take. This is
illustrated in the createPlanTree procedure, which starts
by checking that the maximum plan depth has not been
reached, followed by selecting all actions that the user would
choose with a probability higher than a set threshold. These
actions lead to potential next states, and for each possible
next state, this procedure repeats recursively. Notice that,
in order to avoid creating loops in the predicted paths, we
keep track of the nodes already visited. The successor states
are computed assuming the user follows the gradient of in-
creasing rewards towards an objective.

The tree resulting from the createPlanTree procedure
contains a set of the most likely paths a user might take
by following a stochastic policy describing his/her imperfect
rationality. In order to provide a target destination to the
path-planning algorithm, we need to select a single path that
the user is most likely to take. Our approach, illustrated in
Algorithm 2, consists of selecting the non-cyclic path with
the largest long-term reward. The first level of the tree gen-
erated from Algorithm 1 contains a number of subtrees with
starting states comprising the most likely current user states.
Moreover, for each state s in the MDP model, we keep the
long-term expected value V ∗(s) computed through value it-
eration. Given these possible initial states, and the value of
subsequent states, the approach we follow is to calculate the
maximum reward of each path, and weigh this reward by
the probability of the user being in the state stored in each
node at level 1 in the tree. The leaf node from the highest
reward path then becomes the predicted destination.

For example, consider a policy πa generated for a sample
environment whereby the rooms are highlighted in the map
subsection shown in Figure 3b have a reward of 10, and all

Algorithm 2 Predicted user’s destination.

1: function computeDestination(PlanTree,V ∗)
2: maxR← 0
3: for all path P = [n0, ..., nm] ∈ PlanTree do
4: r ← n0.p ∗

∑nm
n1

V ∗(n.s)

5: if r > maxR then
6: maxR← r
7: bestPath← P
8: end if
9: end for

10: return nm ∈ bestPath
11: end function

...

R1602 0.332103

R1602B 0.03321
R1602C 0.05166
R1602D 0.03321

R1604 0.217712

R1600 0.136531

R1602A 0.00369

...

...

(a) Belief state. (b) High reward rooms.

Figure 3: Example inputs.

other rooms have no reward. Additionally, we define a prob-
ability threshold value of 0.1 and a maximum depth of 10
future steps. Moreover, consider a belief state Bb with the
probability of the user being in the rooms as highlighted in
Figure 3a. Consequently, only the states having a proba-
bility higher than 0.1 are added to the tree (i.e. R1602 and
R1604), which is then expanded using createPlanTree
function. This expansion considers all actions that a user
might choose to reach other rooms results in the tree of Fig-
ure 4, in which high reward paths are highlighted in green.

In order to select the most likely path predicted for the
user, we sum the reward of every node on each path and
weigh it by the probability of the state upon which it starts.
In our example, Path 1’s root is R1602 and Path 2’s root
is R1604. Note that based on Figure 3a, these states were
picked because they have a probability value higher than the
defined threshold. Since R1604 has the lower probability
between the two, the expected reward of the path starting
on that state is less than for the alternative path, R1602C
is selected as the predicted state.

3.2 Hierarchical Path-planning
We use a hierarchal representation to encapsulate the en-

root

R1602 - 0 : prob = 0.332

R1602D - 0R1602A - 0R1604 - 0 : prob = 0.218

R1604C - 10 R1604B - 0 R1604A - 0 R1600 - 0 : prob = 0.137

R1611 - 0 R1609 - 0 R1612 - 0

R1502 - 0R1602B - 0 R1602C - 10

Figure 4: Predicted plan tree, given belief state of Figure 3a.

!"#$%&'

(%)*+),-'

.*//0'

1//#'

20)+'

(a) Hierarchical map representation (b) Grid-based path-
planner for sample
environment

Figure 5: Hierarchal path-planning

vironment at two levels of granularity, as follows (see Fig-
ure 5a): Low-level maps are used to represent individual
rooms in a large building with enhanced spatial detail, with-
out representing the spatial relationships to locations in other
rooms. High-level maps are then used to represent larger
areas of a building without representing the exact spatial
relationship of locations within rooms and corridors. Thus,
the high-level maps are used to construct abstract plans to
navigate between floors and rooms of a building whereas
the higher resolution of the low-level maps are for precise
navigation within rooms and hallways. Topologically, high-
level maps are represented as a graph and low-level maps as
a grid structure connected to the leaf nodes of the graph,
each of which employed by a separate and iterative planner:
a high-level planner and a grid planner. The high-level A*-
based planner handles building-wide connections accounting
for exits, transitions points between floors (stairs, elevators),
and planning across multiple floors. Further, the planner
provides a restricted path for the grid planner, constraining
the search space and reducing the computational overhead.

Similarly to many path-planning that treat a grid-based
map as a graph, we leverage a D∗-type algorithm. D∗lite is
a dynamic path-planner capable of handling changing envi-
ronments in an efficient, optimal, and complete manner that
searches for an optimal path from the destination to the start
node. The grid planner (D∗lite) operates at the individual
floor level and is used to find a fine-grained path to either
the destination (if it is on the same floor) or an exit (if the
destination is on another floor). This improves efficiency as
the destination node is fixed, but the start node varies with
the change in user’s location. Specific to our system, at the
lowest level of the hierarchy there are rooms corresponding
to vertices used in D∗lite; rooms are connected by doorways,
which correspond to the edges used in D∗lite. The hierarchy
extends upwards to the floor level and building level, with
floors and buildings corresponding to the vertices while ex-
its (staircases and elevators) and roads corresponding to the
edges at each respective level.

High-level Planner Based on user-location and the in-
tended destination, the planner quickly searches the graph
hierarchy, above the user and destination levels, until it finds
a connecting node. After a route is established, the planner
recursively searches for the shortest path through the net-
work of edges and vertices moving down one step at a time
to verify connections.

Grid Planner Once the high-level planner is run and re-
stricted path generated, we then run an instance of the grid
planner. By constraining the search space of the grid plan-

ner to only the generated path, we reduce the computational
overhead of the grid planner. The planner has two core lists,
OPEN and CLOSED, that determine whether the node has
been added to the tree and subsequently evaluated. Opti-
mality is determined by identifying the node, M , in OPEN
that minimizes a defined cost function, f(M), while ensur-
ing all neighboring nodes to M are not blocked by a barrier.
In the event that two nodes have an equal cost, a shortest-
distance-to-goal heuristic is used for node selection. Algo-
rithm 3 details the node selection criteria.

We further optimize the grid planner for the smart-phone
platform by modifying the re-planning step of the algorithm
by actively time-stamping the nodes that are moved into
the OPEN or CLOSED lists. When re-planning after an
arbitrary time T , we can quickly roll back nodes with a
CLOSED time-stamp greater than a T , re-assign them to
the OPEN set, remove all node with an OPEN time-stamp
greater than T , and re-run the planners. This significantly
reduces the computational overhead for re-planning. The
adaptations to the search space and re-planning allows us
to significantly speed-up the process of path-planning, espe-
cially across multiple floors.

Consider the following illustrative example. If the high-
level planner determines that the user is on floor 1 of a
building but the identified destination is on floor 3 of the
same building, it will search the hierarchal graph until it
finds that they are both in the same building (the common
node). It will then verify the path at the next lowest level
by identifying the connecting stairwell or elevator between
floors 1 and 3. The high-level planner continues to run at
the lowest level (the room level) until it finds the connection
through the shortest number of rooms. It then restricts the
search space of the grid planner to rooms along that path,
providing a starting node and a destination node as well as
a restricted path of rooms in which the algorithm can run.

3.3 Indoor Localization
We build on the general ideas of dead-reckoning and RSSI

fingerprinting, from which we derive a baseline implementa-
tion using a particle filter and a k-nearest neighbor approach.
A gait-based motion model combined with a heading estima-
tor provides a pre-filtered dead-reckoning sensor estimate to
the particle filter (PF) (see Figure 6). Simultaneously, pose

Algorithm 3 Path-Planning Algorithm Pseudo-code

1: function PlanPath(Start,Goal)
2: OPEN ← Goal % If Goal is initially empty, exit
3: while (OPEN is not empty) do
4: Node N← OPEN.getBestNode()
5: Move N from OPEN to CLOSED
6: for all (Node K : N.getNeighbors()) do
7: if K = Start then
8: N.predecessor← K
9: cost(K)← cost(N) + distance(N,K)

10: return true % Path Found
11: else if K is not in OPEN or CLOSED then
12: N.predecessor← K
13: OPEN← K
14: cost(K)← cost(N) + distance(N,K)
15: end if
16: end for
17: end while
18: return false % No Path
19: end function

Figure 6: Localization System Architecture

is estimated based on fingerprinting between observed Wifi
signal strength readings and pre-collected database of RSSI
estimates. The combined sensor data is fused and filtered
using a PF which results in a smooth and continuous pose
estimation state. At runtime, Wifi signal strength finger-
printing is used to initialize the system and provide a rough
global location estimate. The dead reckoning is performed
in a pre-processing step, and all the particles in the filter
are periodically updated based on a model of the variance
of the dead reckoning estimate. The details of the localiza-
tion technique are outlined in earlier work [9]. While the
notion of combining Wifi fingerprinting with dead-reckoning
using either a Particle filter or Kalman filter has been ex-
plored priorly [13], the uniqueness of our approach lies in
the implementation of the complementary nature of the solu-
tion as well as in the efficient adaptation to the smart-phone
platform. The adaptations allow for a fast and high-quality
solution at a relatively low computation cost.

To perform the RSSI fingerprinting, it is necessary to cre-
ate a database of signal strength information from the envi-
ronment correlated to a free space map of the environment.
Collecting this information by hand is laborious and error-
prone, so we developed an automated solution that uses a
robot equipped with a SICK LMS200 laser rangefinder and
fiber optic gyroscope to collect the signal measurements. A
phone is placed on the robot and the robot is tele-operated
through the environment. The phone collects signal strength
information over the course of the run, and at discrete inter-
vals (1m) the readings from the phone are correlated with
measured robot positions. Additionally, the robot builds a
map of the free space in the environment using the laser
rangefinder. The result is an accurate, high density sample
of signal strength information in a short amount of time.
Moreover, the shape and structure of the built laser map
allows us to incorporate an additional heuristic to speed
up our pose estimation algorithm. Particles from the PF
that lie outside the bounds of the free space map are auto-
matically discarded, allowing us to constrain the size of our
comparison database during execution.

3.4 Implementation on a mobile platform
We developed a stand-alone application implementing the

outlined system for an Android-based smart-phone. The pri-
mary issue encountered during development was load bal-
ancing between the different system components. Conse-
quently, the resource intensive components of the system
were developed as background services integrated using the

main application that displays the user interface. The rel-
atively simplistic interface provides the user with options
to toggle path-prediction, select a destination, add anno-
tations, manually re-plan the route, etc. Data communi-
cation between the different modules is handled via An-
droid’s broadcast system. Using this system, a service sends
a broadcast update that can be accessed by any registered
application. This push-based data service affords an added
layer of robustness to the system, in the event of computa-
tion back-log. In such an implementation, each of the differ-
ent modules acts as an independent application depending
only on periodic communication to further its own state.
The prediction component contains a high-computation al-
gorithm, namely the solution of the MDP problem in or-
der to generate the stochastic policy needed for future path
prediction. Under normal operation, the results of an MDP
solver are not necessarily degraded by the amount it takes to
finish processing. However, in situations where annotations
change at a high rate, the lack of a correct MDP policy sub-
stantially degrades the user experience, since proactive navi-
gation directions will be either non-existent, or outdated. To
overcome this challenge, we have designed a remote MDP
solver that can be used by the mobile application on re-
quest. Whenever the remote MDP-solver is available,value
iteration is run on the server, speeding up prediction.

3.5 Automated Map Translation
We use the Scalable Vector Graphics (SVG) graphic repre-

sentation (a W3C standard) for the floor plans of the build-
ing to model the indoor environment and extract a logical
layout of the building. Using SVG we extract an intercon-
nected network of rooms based on their adjacency informa-
tion, which useful to both the path-planner and the desti-
nation prediction modules. As we have seen in Section 3.1,
an MDP problem is composed of a set of states, a set of
actions, a transition function and a reward function. Thus,
we generate the set of states for the MDP using the result-
ing set of rooms from the vector map representation, as well
as the set of actions within the MDP using the connections
between the rooms, with each doorway representing the ac-
tion of moving from one room to another through it, and
vice-versa. The transition function from this set of actions
and states is generated by using a small ε “error” rate, rep-
resenting a user’s indecision between moving from one room
to the other, so that the probability of a user transitioning
from one room to another is 1− ε.

4. EXPERIMENTS AND RESULTS
We tested the system on a single floor of an indoor en-

vironment (see Figure 7) to analyze the feasibility of the
implemented solution. Three sets of experiments involving
navigation from a defined start to multiple destination lo-
cations were performed. Each set of experiments was re-
peated multiple times for consistency, for a total of 20 runs.
There were approximately 20 Wifi access points (Figure 3b)
observed in the environments. The dead-reckoning informa-
tion was obtained at a faster rate (30Hz) than the Wifi sig-
nal measurement (1 HZ). An RSSI database was constructed
prior to experimentation using a Pioneer 3DX robot, along
with a laser map of the environment. In Experiment 1, the
user heads towards destination 1 (room 1602 in Figure 7),
while in experiment 2, the user heads towards destination 2
(room 1513). Finally, in experiment 3, the user starts head-

ing towards destination 2, but changes intent and heads to
destination 1 during the course of the experiment. These
routes are illustrated in Figure 7. Once the prediction mod-
ule identifies the user destination intent, it is communicated
to the path-planning module.

Table 1 outlines the profiled times for loading the en-
vironment map and for running path-planner on it. For
path-planning, we compute a path stretched across the en-
tire map. From the table we can see that the time taken to
process a new map of relatively high-granularity is around
47s. Looking at the path-planning component we can see
that while it takes a relatively large amount of time for the
initial plan, future re-planning is significantly faster. We
make the assumption that the base topography remains the
same, so a connected graph is built once, and after the initial
processing load times and re-planning drop dramatically.

In order to focus on analyzing the architecture, data from
runs suffering from significant magnetic distortion was dis-
regarded. The time to convergence is the time taken by the
prediction module from initialization to when the first pre-
diction was communicated to the user. The prediction is
communicated as a destination location and the associated
route. The prediction time includes time for map loading,
initial pose estimation, belief state identification and intent
recognition. After the initial recognition, subsequent recog-
nitions happen at a significantly faster rate, thereby reduc-
ing overhead. For Experiment 1, the system predicted 3
state changes, where each state change correlates to an al-
ternate destination than what is currently highlighted. For
our experiments, the system toggled between destinations 1
and 2. The initial recognition of a state change took about
43s, while re-computation took approximately 4s. For ex-
periment 2, there were 3 state changes with a prediction time
of 53.47s. Finally, for experiment 3, the system averaged a
prediction time of 30.3s and an average re-computation of
4.8s. Interestingly, the system recomputed destination loca-
tions for experiments 1 and 3, there were no re-computations
required for experiment 2. We believe this is due to a higher
uncertainty in the position estimation: as there are multi-
ple routes possible to destination 1, there is a higher degree
of uncertainty in the position estimate. Additional analy-
sis shows the position with the highest mean error for the
different runs to lie in the section of the corridor that con-
stitutes a major part of paths for experiments 1 and 3, while
this section of the corridor constitutes only a small portion
of experiment 2 path. Despite the added complexity of pre-
dicting and planning, our re-planning algorithm is able to
significantly reduce re-planning time, highlighting the effec-
tiveness of our map-representation and path-planning, as
shown in Table 2. We can see that the localization algo-
rithm, on average, is able to converge to within 1 meter of
the actual starting location for all three experiment types.
Paths 1 and 3 are approximately 15m long, while in experi-
ment 2 the user travels a total of 32m to destination. More-

Table 1: Map loading and path-planning times

With local-
ization and
prediction

Process
Time
(s)

Load
Time
(s)

Grid Plan-
ning (ms)

Grid Re-
planning
(ms)

Yes 46.90 3.58 749 22.8
No 46.90 3.44 408 23

Route 2
Route 3

Route 1

Legend

Figure 7: Indoor Test Environment I with Selected Destinations and User Routes

Table 2: Experimental Results

Exp Path
(m)

Start
ε (m)

Final
ε (m)

Mean ε of most
prob. loc. (m)

Prediction
Time (s)

1 16.5 0.71 3.42 2.20 43
2 31.67 0.94 4.26 2.49 53.47
3 15.46 0.90 3.34 2.71 30.324

over, the mean error for the localization over the course of
the different experiments is approximately 3m and in most
cases the system is also able to converge to a final destina-
tion position within an error bound of approximately 5m.
Finally, we note that the estimate of final position is of a
value greater than the calculated mean error, this is likely
to be because the selected destination locations lie outside
the boundaries of generated robot map. Consequently, there
exists a smaller sample of data points correlating to the des-
tination locations in our RSSI database and the system is
not able to converge to the final location with a higher de-
gree of certainty.

5. CONCLUSION AND FUTURE WORK
In this paper we have developed an unique architecture for

GPS-free indoor navigation and path prediction that uses a
combination of multiple sensor data and probabilistic plan-
ning models to provide seamless navigation aid. To explore
the feasibility of our approach we implemented a prototype
solution on commercial mobile phones. The developed ap-
plication was tested in indoor environments and was found
to accurately predict intended destination and to effectively
navigate the user to the identified destination with mini-
mal user interaction. To our knowledge, this is the first
architecture that attempts to integrate the core navigation
components of path-planning and localization with intent
prediction on a commercial smart-phone.

Although the current instantiation of our architecture has
yielded promising results, there are a number of extensions
that could be incorporated into the implementation. To en-
hance the indoor localization component, we intend to look
at methods to combine the robot map with the building floor
plan to improve the robustness and to pro-actively account
for magnetic distortions. To address degradation of the built
RSSI database, we will collect signal samples over multiple
runs, locations, and during different times of day, and ana-
lyze it to identify the rate of decay so that it can improve
the quality of the location estimate.

6. ADDITIONAL AUTHORS
Additional authors: Chet Gnegy (University of Pittsburgh,

email: cng11@pitt.edu), Evan Glasgow (University of Texas,

email:eglasgow@utdallas.edu); and Piotr Yordanov (Amer-
ican University of Beirut, email:pay03@aub.edu.lb)

7. REFERENCES[1] M. G. Armentano and A. Amandi. Plan recognition
for interface agents. Artificial Intelligence Review,
28(2):131–162, 2007.

[2] R. E. Bellman. Dynamic Programming. Dover
Publications, Incorporated, 2003.

[3] A. Bernardos, J. Casar, and P. Tarrio. Real time
calibration for rss indoor positioning systems. In
Indoor Positioning and Indoor Navigation, pages 1 –7,
sept. 2010.

[4] D. Cagigas. Hierarchical algorithm with
materialization of costs for robot path planning.
Robotics and Autonomous Systems, 52(2-3):190 – 208,
2005.

[5] M. Ghallab, D. Nau, and P. Traverso. Automated
Planning: Theory and Practice. Elsevier, 2004.

[6] J. Hoffmann. Towards efficient belief update for
planning-based web service composition. In Proc. 18th
European Conference on Artificial Intelligence, pages
558–562, 2008.

[7] Y. Jin, H.-S. Toh, W.-S. Soh, and W.-C. Wong. A
robust dead-reckoning pedestrian tracking system with
low cost sensors. In Proc. 6th IEEE Int. Conf. on
Pervasive Computing and Communications, 2011.

[8] G. Korsah, A. Stentz, and M. Dias. Dd* lite: Efficient
incremental search with state dominance. Technical
Report CMU-RI-TR-07-12, Robotics Institute,
Pittsburgh, PA, May 2007.

[9] N. Kothari, B. Kannan, E. D. Glasgow, and M. B.
Dias. Robust indoor localization on a commercial
smart-phone. In Procedia Computer Science, pages
1114–1120. Elseiver, 2012.

[10] X. Luo, W. J. O’Brien, and C. L. Julien. Comparative
evaluation of received signal strength index (rssi)
based indoor localization techniques for construction
jobsites. Advanced Engineering Informatics,
25(2):355–363, 2011.

[11] J. Oh, F. Meneguzzi, and K. Sycara. Antipa: an agent
architecture for intelligent information assistance. In
Proc. 19th European Conference on Artificial
Intelligence, pages 1055–1056, 2010.

[12] V. Otsason, A. Varshavsky, A. LaMarca, and
E. de Lara. Accurate gsm indoor localization. In
Ubiquitous Computing, volume 3660 of LNCS, pages
903–903, 2005.

[13] H. Wang, H. Lenz, A. Szabo, J. Bamberger, and
U. Hanebeck. Wlan-based pedestrian tracking using
particle filters and low-cost mems sensors. In 4th
Workshop on Positioning, Navigation and
Communication, pages 1 –7, 2007.

[14] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey.
Maximum entropy inverse reinforcement learning. In
Proc. 23rd National Conference on Artificial
Intelligence, pages 1433–1438. AAAI Press, 2008.

	Introduction
	Related Work
	Predictive Indoor Navigation
	Decision-theoretic Path Prediction
	Hierarchical Path-planning
	Indoor Localization
	Implementation on a mobile platform
	Automated Map Translation

	Experiments and Results
	Conclusion And Future Work
	Additional Authors
	References

