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ABSTRACT

Settlers of Catan is one of the main representatives of modern strate-
gic board games and there are few autonomous agents available to
play it due to its challenging features such as stochasticity, imper-
fect information, and 4-player structure. In this paper, we extend
previous work on UCT search to develop an automated player for
Settlers of Catan. Specifically, we develop a move pruning heuris-
tic for this game and introduce the ability to trade with the other
players using the UCT algorithm. We empirically compare our new
player with a baseline agent for Settlers of Catan as well as the state
of the art and show that our algorithm generates superior strategies
while taking fewer samples of the game.

Keywords: Artificial Intelligence, Monte Carlo Tree Search, Set-
tlers of Catan.

1 INTRODUCTION

Board games are of great interest to the Artificial Intelligence com-
munity. The study of classical games such as Chess and Checkers
motivated great developments in the area, as many AI techniques
have been developed to improve the performance of an AI in these
classic games. While dealing well with traditional games, these
techniques are often unsatisfactory for modern strategic games,
commonly called Eurogames, because of the greater complexity
of these games when compared to traditional board games [11].
Newly developed techniques [12] have significantly improved the
performance of an AI in the classic Chinese game Go, bringing
new possibilities for the development of competitive agents for Eu-
rogames.

Settlers of Catan [10] is a good representative of the Eurogame
archetype, with gameplay elements that make it challenging for tra-
ditional tree search algorithms, such as Minimax: imperfect infor-
mation, randomly determined moves, more than 2 players and ne-
gotiation between players. Most autonomous agent players avail-
able for this game have game-specific heuristics and have a low
win-rate against human players.

Previous work showed that Upper Confidence Bounds for Trees
(UCT) [9], a variant of Monte Carlo tree search prominently used
in games such as Go [7], yields a high win rate when applied to Set-
tlers of Catan with simplified rules against agents from the JSettlers
implementation of the game [13]. JSettlers [14] is an open-source
Java implementation of Settlers of Catan that includes implementa-
tions of AI agents that are frequently used as benchmarks for new
game playing strategies [13, 8]. However, the strategies generated
by this previous UCT implementation do not negotiate with other
players [13] and was only tested on Settlers of Catan with simpli-
fied rules [13]. Given the importance of trade as a gameplay ele-
ment and the challenges of implementing effective players of the
game with unmodified rules, we aim to develop UTC-based strate-
gies capable of overcoming these limitations and surpassing exist-
ing techniques for playing Settlers of Catan.
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Thus this paper provides three main contributions. First, we
modify the base UCT algorithm to use domain knowledge and opti-
mize it to improve its win rate in Settlers of Catan without relaxing
the game rules. Second, we develop a method for trading with other
players using UCT, by implementing a trade-optimistic search and
compare it to our solution using the base UCT algorithm with no
trading. Finally, we also show how the agent can be improved by
using Ensemble UCT [6], a parallel variation of the base UCT al-
gorithm that improves win rates and response time.

2 BACKGROUND

In Settlers of Catan, each player controls a group of settlers who
intend to colonize an island. The game is a race for points: the first
player to obtain 10 victory points wins. To obtain victory points,
players must gather resources and build their colonies on the is-
land. In the section below, we explain the fundamental rules of the
game in some detail. For a more detailed explanation of rules, we
encourage the reader to check the official rules [10].

2.1 Game Rules
The game board, illustrated in Figure 1, represents the island and
its ocean through hexagons. Every hexagon can be either one of
six different types of terrain, or part of the ocean. Each terrain
type produces its own type of resource: fields produce grain, hills
produce brick, mountains produce ore, forest produces lumber, and
pasture produces wool. There is one special terrain that don’t pro-
duce resources: the desert. Finally, on top of each terrain, there is
a token with a number between 2 and 12, representing the possible
outcomes out of 2 six-sided dice.

Figure 1: The board of Settlers of Catan. This image include player
settlements, roads, cities and other elements.

2.1.1 Buildings
There are 3 types of buildings: settlements, cities and roads. Each
building has a price in resources and can give players victory points:



roads cost 1 brick and 1 lumber and give no victory points; Settle-
ments cost 1 brick, 1 lumber, 1 wool, and 1 grain, and are worth
1 victory point; Cities cost 3 ores and 2 grains, and are worth 2
victory points.

Players can build settlements or cities on the intersection be-
tween 3 terrain hexagons in order to obtain the resources produced
by them. These resources can then be used to buy more buildings.
Players can only place settlements and roads adjacent to another
one of their roads, and cities can only be placed on top of one of
their settlements.

2.1.2 Resource production

Resource production occurs in the beginning of each player’s turn
by rolling the 2 six-sided dice. Resources are then produced based
on the outcome of the roll and the value depicted on top of the
terrains on the board: any player with a settlement or city adjacent
to a terrain with the same number as the dice roll, produces that
terrain’s resources, adding them to their hand. Settlements produce
1 resource per dice roll and cities produce 2 resources.

When a dice roll results in total of 7, all players that have more
than 7 resources in their hand must discard half of them and move
the robber. The robber is a special piece that blocks a terrain from
producing during a dice roll. The robber starts the game at the
desert terrain. Once the player rolls 7 and moves the robber to a
terrain, that player can steal a random resource from other player
whose settlement or city is adjacent to the robber’s terrain.

2.1.3 Development cards and extra points

Players can also buy a card from the deck of development cards
with resources. Each card costs 1 ore, 1 wool, and 1 grain. This
deck have 5 types of cards in it, each one of these has different
effects on the game: Knight cards can be used to move the robber;
Road Building cards can be used to place 2 roads on the board;
Monopoly cards can steal all resources from a specific type from
all other players; Year of Plenty cards obtain any 2 resources; and
Victory Point cards are worth 1 victory point at the end of the game.

There are 2 achievements that give victory points to the players
during the game: The player with the longest continuous road gets 2
victory points, and the player with the largest army (largest number
of knights cards used) also gets 2 victory points. These achieve-
ments are disputed during the match and cannot be shared between
two players.

2.1.4 Trading

Players can trade resources with the game’s bank or with other play-
ers. Trade rates are 4 to 1 with the bank and negotiable with other
players. Players can only make trade offers during their turn. If a
player decides to make no trade offer during its turn, then no other
player can trade. Players can react to a trade offer by accepting it,
declining it, or making a counter-offer.

There are ports in the game board that give players access to
better trade rates with the bank. Players must place settlements
or cities adjacent to these ports access points in order to use their
trade rates. Each port have 2 access points. Ports are divided in
2 categories: generic ports have 3 to 1 rate for any resource, and
special ports have a rate of 2 specific resources to 1. In the game
board, there is a special port for each resource type and 4 generic
ports, totalizing 9 ports.

2.2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [5] is a modern algorithm that
estimates the best move by iteratively constructing a search tree
whose nodes represent the game states and edges represent the ac-
tions that lead from one state to another. Each node in the tree holds
an estimated reward value Q(v) and visit count N(v).

At each iteration, the algorithm executes 4 steps, represented in
Figure 2 [3]: Selection, Expansion, Simulation, and Backpropaga-
tion. The algorithm returns the estimated best move when a com-
putational budget (i.e. time, iteration count or memory constraint)
is reached.

Figure 2: The 4 steps of the MCTS algorithm [3].

• The algorithm starts with the selection step, initially travers-
ing the constructed search tree, using a tree policy πT , this
policy is dynamic and adapts as the tree grows. The algorithm
traverses the tree from the root node using the πT policy to
select child nodes until it reaches a node with untried actions.

• The expansion step selects the node reached in the last step
and choose an untried action at random to create a new child
node.

• The simulation step uses a rollout policy πR from the node
created in the last step to select actions until it reaches a ter-
minal state.

• The backpropagation step propagates the rewards obtained in
the last step from the node created from the expansion step up
to the root node of the search tree, updating the visited nodes
Q(v) and N(v) values.

2.3 Upper Confidence Bounds for Trees
UCT is a variation of MCTS that uses UCB1 [1], a method that
solves the multi-armed bandit problem, as its tree policy πT , bal-
ancing exploration and exploitation during the selection step. With
this modification, UCT is shown to outperform the base MCTS al-
gorithm on many games [3].

The action choice used in UCB1 is implemented using Equa-
tion 1, where X j is the average reward obtained by choosing the
action j, n j is the number of times that action j was selected, n is
number of visits the current node has been visited and Cp is a ex-
ploration value. The X j term encourages exploitation, whereas the

Cp

√
lnn
n j

term encourages exploration.

argmax
j

(
X j +Cp

√
lnn
n j

)
(1)

The exploration value Cp can be adjusted to bias the selection
towards exploration or exploitation. With Cp = 0, the exploration
term is never taken into account and the selection is only based on
exploitation. There is no predefined value for Cp, and it should be
tuned for each implementation based on experimentation [3].

2.3.1 UCT Variations
Ensemble UCT [6] is a parallel variation of the UCT algorithm that
can speed up the UCT search as well as improve its performance,
with evidence that it can also outperform plain UCT in the game



of Go [4]. This algorithm parallelizes the UCT search using root
parallelization [4]: from a common root node, the algorithm creates
p independent UCT trees, each in a separate thread, and expand
them in parallel until a computational budget is reached. Then, the
algorithm merges all root nodes and its children into a single tree.
The nodes of the merged tree hold the total estimated reward N(v)E

and total visit count Q(v)E , calculated by Equation 2, where Q(v)i

and N(v)i are the estimated reward and visit count of that node in
tree i.

N(v)E =
p

∑
i=1

N(v)i, and, Q(v)E =
p

∑
i=1

Q(v)i (2)

The best move is chosen from the root of the merged tree, using
the same selection policy as UCT. Figure 3 illustrates the process
done by this algorithm.

Figure 3: Ensemble UCT algorithm steps.

Sparse UCT [2] is a variation of the UCT algorithm that repre-
sents stochastic moves in the search tree as multiple nodes, where
each node represents one possible outcome from taking that move.
During the selection step of the algorithm, these nodes are chosen
at random, and are also expanded at random during the expansion
step of the algorithm, to simulate stochastic results.

3 HEURISTICS FOR UCT IN SETTLERS OF CATAN

The use of domain knowledge was shown to improve the gameplay
strength of UCT agents in many games [3]. In this section we de-
scribe the strategies we developed to improve the win rate of our
UCT agent in the game of Settlers of Catan.

First, we describe our move pruning strategy that uses domain
knowledge to reduce the algorithm’s search space and compare it
to a strategy developed in previous work. Afterwards, we intro-
duce our trade-optimistic search method used by our agent to trade
resources with other players.

3.1 Move pruning
The search space of Settlers of Catan is huge, with many legal
moves per turn, and players can make multiple moves per turn. Pre-
vious work by Szita et al. [13] showed that an UCT agent can use
domain knowledge to bias the tree search, decreasing the amount of
rollouts spent by selecting suboptimal moves, increasing its playing
strength.

3.1.1 Move pruning in previous work

In their work, Szita et al. introduce the concept of virtual wins to
bias the tree search: at the start of the expansion step, their agent ini-
tialize both Q(v) and N(v) of the new child node to a predetermined
virtual value. This value is set according to the move selected in the
selection step: 20 for settlement-building, and 10 for city-building.
Other moves don’t receive virutal wins. By initializing both Q(v)
and N(v) of these nodes to a greater value than other nodes in the
tree, their agent explore them more often.

Their results show that their virtual wins heuristic increased
their agents playing strength in a game of Settlers of Catan with
rule changes [13], and that prioritize settlement-building and city-
building is a viable strategy in Settlers of Catan. A possible ex-
planation for the success of this strategy is that these moves give
players more resource production and victory points, making them
often preferable when compared to other moves available.

Nevertheless, we find in our tests that biasing the tree search with
virtual wins is not enough: the agent usually spends too many re-
sources in road-building and other actions, leaving few resources
for settlement-building and city-building. Since these are the most
expensive moves available, players must manage their resources
carefully to be able to afford them. Spending resources on other
moves can delay the opportunity of building cities and settlements,
but accumulating resources in order to afford these moves can be
risky, because of the discard rule, so waiting for the right moment
to take these moves requires some measure of luck. A player can
play safe by always making these moves when they are affordable.

3.1.2 Our solution

In order to deal with this problem, we developed a move pruning
heuristic that cuts all other moves whenever building a city or a
settlement is possible, so that our agent take fewer risks and the
penalty of losing half its resources impact it as little as possible.
Our move pruning strategy also prioritizes cities over settlements
since cities are worth two victory points and yields twice the re-
source production of a settlement, increasing the average resources
gathered per turn, and consequently the amount of moves available
to the agent per turn, as early as possible.

We use this same method in the πR policy of the UCT algorithm
to prune available actions, which are then selected at random. Ran-
dom move selection increase rollout response time, allowing our
agent to perform many rollouts at a given time, if a more complex
heuristic were to be considered, rollout speed would be affected.
In our experiments, we show that our move pruning strategy have
better win rates compared to the virtual wins strategy when playing
Settlers of Catan without rule changes.

3.1.3 Implementation

Our move pruning method is shown in Algorithm 1, along with its
usage by the UCT algorithm during the tree’s expansion step, repre-
sented by the EXPAND function on line 1, where: v is the node to be
expanded, a is an action, A(v) is a list of untried actions from state
s(v), v′ is a child node, A(v′) is the list of available actions from
state s(v′), and a(v′) is the action that led to state s(v′). Our method
MOVEPRUNING is represented on line 8, where: s is a game
state, Aa is a list of actions, and auxiliary functions GETPOSSI-
BLECITIES, GETPOSSIBLESETTLEMENTS, and GETOTHERPOS-
SIBLEACTIONS, return a list of actions available from state s.

3.2 Trade-optimistic search

Previous implementations of UCT for Settlers of Catan did not con-
sider trading with other players [13], a gameplay element that can
boost the playing capabilities of an agent in this game. Trading with
other players in Settlers of Catan is a challenging problem since it
can benefit an opposing player, and estimating the impact of a trade
can be difficult without knowing the opponents resources. However
by not trying to trade at all, a player could be starved of resources
for many turns, lowering its chances of remaining competitive in
the game. Our solution deals with two trading cases separately:
reacting to other players trade offers, and making trade offers for
other players.

Our agent can react to trade offers with a regular UCT search
with two options from the root node: accept or decline the trade
offer, without making counter-offers. Finding the counter-offer that



Algorithm 1 Move pruning method
1: function EXPAND( v ) returns a node
2: choose a ∈ untried actions from A(v)
3: add a new child v′ to v
4: with s(v′) = APPLYACTION( s(v) , a )
5: and a(v′) = a
6: and A(v′) = MOVEPRUNING( s(v′) )
7: return v′

8: function MOVEPRUNING( s ) returns a list o f actions
9: A = empty

10: A← GETPOSSIBLECITIES( s )
11: if A is not empty then
12: return A
13: A← GETPOSSIBLESETTLEMENTS( s )
14: if A is not empty then
15: return A
16: return GETOTHERPOSSIBLEACTIONS( s )

is most likely to be accepted by our opponent while being bene-
ficial for our agent is difficult, since we don’t know exactly what
resources our opponent have in its hand, so we decided to leave this
feature out of our trading strategy. We find that this approach is
acceptable for reacting to trade offers.

3.2.1 Trade offering through optimistic search

We propose an optimistic method for creating trade offers that uses
the UCT search to estimate what trades are most beneficial to our
agent. After rolling the dices, our agent simulates the ability to af-
ford any available move by trading spare resources with other play-
ers: our agent labels moves that are not currently affordable, but
could be afforded via trading, as trade-optimistic moves, and con-
sider them as affordable moves during the UCT search. If our agent
can’t afford a move and this move is not affordable via trading, it is
not considered during the UCT search. If the UCT search selects a
trade-optimistic move as the best move to be taken, our agent make
trade offers to other players in order to afford that move.

In this method, our agent only makes trade offers with 1 to 1
resource rate. Trades with this rate are more likely to be accepted
by other players, and even if not all trades are successful, our agent
is still closer to afford the chosen trade-optimistic move. These
trade offers are directed to all other players, to increase our agent’s
chances of obtaining all the resources needed to afford the selected
trade-optimistic move. Therefore, our agents consider that a move
is affordable via trading if it has the same amount of resources in
its hand than the amount of resources needed to afford that move,
even if they are not of the correct type. For example, if our agent
have 2 resources in its hand out of the 5 needed build a city (i.e.
2 ores), it would need another 3 spare resources, from any type, in
order to consider city-building as a trade-optimistic move: to get
the remaining 3 resources needed to build a city (i.e. 1 ore and 2
grains), our agent needs to make 3 trades.

3.2.2 Implementation

Algorithm 2 shows our trade-optimistic search method in pseu-
docode, as well as how it utilizes the UCT search. Before start-
ing the UCT search, on line 27, our agent adds the trade-optimistic
moves to the list of moves available from the root node of the UCT
tree. These trade-optimistic moves are obtained by calling function
GETTRADEOPTIMISTICMOVES, where: v is a node, p is the cur-
rent player, R(p) are the resources of player p, and R(a) is the price
of a. Equation ∑R(p)>=∑R(a) is used on line 38 of this function,
to check if an action a is affordable via trading, by comparing the
number of resources in the current player’s hand with the number of

resources needed in order to afford a, without considering resource
types.

With the updated list of moves available, the UCT search is per-
formed. If the UCT search selects a trade-optimistic move as the
best move to be taken, our agent puts all trades needed in order to
afford the chosen move in a trade queue, on line 10. These trades
are obtained by calling function GETTRADESNEEDED, where: p is
the current player, a is a trade-optimistic move, ∆R is a list with the
resources player p needs in order to afford a, R(p) are the resources
of player p, R(a) is the price of a, AT is a list of trade offers, and
aT is a trade offer action.

Our agent tries all trades in the queue. Even if one trade fails,
it continues to try trades from the queue until the queue is empty,
as shown on line 6. After all trade offers were made, our agent do
another UCT search, without any trade-optimistic moves, by call-
ing function TRADEUCT with parameter opt = False. This sec-
ond UCT search is needed since it don’t consider trade-optimistic
moves, and if any trades were successful, the resources of our agent
will have changed, invalidating the results of the first UCT search.
Our agent ignores any counter-offers from other players, so that the
trade queue strategy is preserved. Trading with other players is tried
only once per turn, to avoid trading loops: this control is made with
the local flag canTrade.

Algorithm 2 Trade-optimistic search
1: var queue = empty
2: var canTrade = False

3: function GETBESTMOVE( s0 ) returns an action
4: if queue is not empty then
5: canTrade← size(queue)<= 1
6: return DEQUEUE(queue)
7: a← TRADEUCT( s0 , canTrade )
8: if a is trade-optimistic then
9: trades← GETTRADESNEEDED(p(s0), a)

10: ENQUEUE(queue, trades)
11: return DEQUEUE(queue)
12: else
13: canTrade← True
14: return a

15: function GETTRADESNEEDED( p, a ) returns a list o f
actions

16: AT = empty
17: ∆R← GETMISSINGRESOURCES(R(p), R(a))
18: for each resource r ∈ needed resources ∆r
19: create trade action aT
20: with give(aT ) = random resource from R(p)
21: and get(aT ) = random resource from ∆R
22: AT ← AT +aT
23: return AT

4 IMPLEMENTATION AND EXPERIMENTS

Our implementation consists of: a client for the JSettlers server;
our base UCT agent implementation and its variations; and our own
Settlers of Catan simulator that is used to simulate the game during
UCT rollouts more efficiently than the JSettlers server implemen-
tation. We implemented all of our algorithms using Python 2.7 and
designed the code to be easy to modify and adapt for new strategies
and experiments without sacrificing performance.

In the following sections, we detail our implementation, the ex-
periments we carried out and their results. We first explain how we
implemented UCT so that its tree correctly represent the possible
states in Settlers of Catan. We also include technical details of our



Algorithm 2 Trade-optimistic search (continued)
24: function TRADEUCT( s0 , opt ) returns an action
25: create root node v0 with state s0
26: if opt is True then
27: Aopt ← GETTRADEOPTIMISTICMOVES(v0)
28: A(v0)← A(v0) + Aopt

29: while within computational budget do
30: vn← TREEPOLICY( v0 )
31: 4← SIMULATIONPOLICY( s(vn) )
32: BACKUP( vn ,4 )
33: return a(BESTCHILD(v0))

34: function GETTRADEOPTIMISTICMOVES( v ) returns a list
o f actions

35: p← GETCURRENTPLAYER(s(v))
36: Aopt = empty
37: for each action a ∈ legal actions AL from s(v)
38: if p can’t afford a and ∑R(p)>= ∑R(a)
39: Aopt ← Aopt +a
40: return Aopt

implementation, including limitations and possible upgrades. Fi-
nally, we detail how we developed our experiments and compare
results obtained in each experiment.

4.1 UCT Agent implementation
Our UCT agent was designed to be a standalone agent, capable of
playing Settlers of Catan matches in the JSettlers server against hu-
mans or other agents through our JSettlers client. We designed it to
deal with the game’s imperfect information and stochastic moves,
so it can play Settlers of Catan without any modification or simpli-
fication of its rules.

Our agent keeps track of resources obtained by opponents during
the game, until one of the following events occurs to an opponent:
it discards half resources; it steals a resource; or it has a resource
stolen. In these cases, our agent labels that player’s resources as
unknown. It uses this information to deal with imperfect informa-
tion before the UCT search: any unknown resource an opponent
has in its hand is determined at random at the root node: unknown
cards are given a random value. Since this process of randomly
guessing unknown cards can affect the quality of the estimate made
by the algorithm, we also considered the possibility of using the
Sparse UCT approach of adding all possible resource combinations
for unknown resources to the tree. Nevertheless, given the stochas-
tic nature of the sampling performed by UCT, adding all possible
resources to the tree will increase the tree branching factor, and our
agent would consequently need more rollouts to make strategic de-
cisions.

We implemented Sparse UCT [2]to represent the stochastic re-
sults of dice rolls, so that all possible dice roll results are taken into
account during the construction and exploration of the search tree.
Instead of using a uniform random function to select dice results
or expand nodes from a dice roll, we use the same simulation of
dice roll used in our simulator, to correctly simulate dice results.
The only downside of implementing Sparce UCT in our search tree
is that each dice roll move spawns multiple nodes, which increase
the search tree’s branching factor and, consequently, the amount of
rollouts needed to make strategic decisions.

4.2 Client and Simulator implementation
In order to test our agents with the JSettlers agent, we implemented
a client that is able to connect to the JSettlers server and start a game
with three other JSettlers agents. Figure 4 shows the interface of the
JSettlers server during a match.

Figure 4: Screenshot of a match between our agent playing a game
against 3 JSettlers agents in a JSettlers server.

Our client sends and receives messages from the JSettlers server:
it updates the current game state with data received from server, and
sends our agent’s actions back to the server. The JSettlers server
don’t send all game information to our client, imperfect informa-
tion(i.e. other player’s resources) are kept hidden in its messages.

We also implemented an very efficient Settlers of Catan simula-
tor in our client to perform the UCT rollouts. It represents game
states and simulates the game through an action system, each ac-
tion represents a move in the game and its used by the simulator
to modify game states. Games are simulated by selecting legal ac-
tions at random from a given state and applying them to that state,
repeating this process until a terminal state is reached. Our agent
utilizes this simulation method to perform UCT rollouts, using our
move pruning method to prune legal moves.

Our simulator is able to simulate approximately 65 games per
second in a modern PC, which in our experiments was an Intel i7-
4702MQ CPU, with 4 cores at 2.2Ghz, and 16 Gigabytes of RAM.
Our Ensemble UCT agent with 1,000 rollouts is almost as fast as
the JSettlers agent. However, we found in our tests that running
10,000 rollouts per UCT search can be very slow, especially without
the Ensemble UCT parallelization. Therefore, we decided to limit
rollouts to 10,000 for our agent.

4.3 Experiments and results
We tested various different agent configurations in games where our
agent plays against three JSettlers agents. We carried experiments
on the following agent configurations:

• PlainUCT: Default UCT algorithm without any heuristic.

• VW-UCT: UCT algorithm with virtual wins, like described
by [13].

• MP-UCT: UCT using our move pruning heuristic.

• MP-EnsembleUCT: Ensemble UCT using our move pruning
heuristic. This agent runs n rollouts divided to a number of
parallel UCT trees p, where each tree runs its share of the
total rollout count.



• MPT-EnsembleUCT: This agent is the same as the MP-
EnsembleUCT, but its capable of trading via our trade-
optimistic search method.

Since previous work [13] shows that seating order can introduce an
unknown bias to the agents performance, we randomized seating
order for all tests to mitigate any seating bias.

4.3.1 Pruning heuristics comparison
First, we compared the win rate of PlainUCT, VW-UCT, and MP-
UCT, using 1,000 rollouts with: 0; 0.25; 0.5; 0.75; and 1.0 as the
exploration value Cp. PlainUCT use no heuristic to prune or select
moves, and serves as a baseline for the other two agents. Figure 5
illustrates the results of this experiment with the error bars showing
the standard deviation of win rate over 100 matches against three
JSettlers agents.
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Figure 5: Comparison between agent win rates in games against
three JSettlers agents, with varying exploration values.

Our results show that all three agents benefit from more exploita-
tion, with exploration values between 0 and 0.25. For the following
experiments, we used 0.25 exploration value for all agents, since
both MP-EnsembleUCT and MPT-EnsembleUCT are based on our
MP-UCT, which had better win rates with Cp = 0.25.

These results also show that, compared to the virtual wins heuris-
tic used by the VW-UCT agent, our MP-UCT agent can achieve
superior win rates in games against 3 J-Settlers agents: with Cp =
0.25, our agent have about 10% more wins than the VW-UCT agent
with the same configurations. With about 26% win rate, the MP-
UCT agent with 1,000 rollouts per search has roughly the same
playing strength of a JSettlers agent, since at this win rate, it has
won about as much games as its three JSettlers opponents.

The performance of the VW-UCT agent in our results is slightly
different than that observed in previous work [13], with about 10%
less wins. We believe that this difference is due to the different set-
tings in our test: their tests were made on Settlers of Catan with
rule changes (i.e. no imperfect information), while our tests were
conducted on games with complete rules. There are also implemen-
tation differences that might led to slightly different results.

4.3.2 MP-UCT variations comparison
The following experiments focus on the different variations of
our MP-UCT agent: MP-EnsembleUCT and MPT-EnsembleUCT,
capable of trading. We compared these agents performance in

matches against three JSettlers agents, and the results of these
matches are summarized in Table 1: with win rate expressed in per-
cent ± at a 95% confidence interval. We compared the three agents
with 1,000 rollouts and 10,000 rollouts. The first column of Table 1
shows what agent was tested, followed the number of rollouts used
by that agent, and the win rate of that agent in our experiments. For
the ensemble agents, we used parallel UCT count p = 10, so it runs
10 parallel UCT searches of 100 rollouts for 1,000 rollouts, and 10
parallel UCT searches of 1,000 rollouts for 10,000 rollouts, to make
the ensemble tree. All agents were tested using Cp = 0.25.

Table 1 shows that MP-EnsembleUCT agent has about 7%
higher win rates than the base MP-UCT agent at 1,000 rollouts, and
roughly 3% higher win rates at 10,000 rollout count. We believe
that this advantage shows that by combining various independent
UCT searches, each with different trajectories through the search
tree, the ensemble tree have less variance then a single UCT tree
with only one set of trajectories [6]. We believe that this differ-
ence is more pronounced with fewer rollouts, and as rollout count
rises, the trajectories of the separate search trees tend to converge to
a similar path. The major advantage of MP-EnsembleUCT comes
with the agent’s response time: MP-EnsembleUCT with p = 10 and
10,000 rollouts was about 3 times faster than the base MP-UCT
agent with 10,000 rollouts in our test machine. Precise speed ad-
vantages were not measured as they can vary from one machine to
another.

Our results also show that with 10,000 rollouts, these three
agents are clearly superior to the JSettlers agent. Our trading agent
MPT-EnsembleUCT, in particular, have an expressive superiority,
winning 58.2% of all games played with 10,000 rollouts. Even at
a low rollout count, with 1,000 rollouts, this agent was able to win
40% of all games, a slightly better result than the 38.4% win rate of
the base MP-UCT agent with 10,000 rollouts. This shows that our
trade-optimistic search method did boost the playing strength of the
MP-UCT agent considerably. It should be noted that against players
that don’t consider trading, the MPT-EnsembleUCT agent’s playing
strength will be the same as the MP-EnsembleUCT agent, since the
trading capability is the only difference between both agents.

Finally, Figure 6 illustrates the win-rates of every agent configu-
ration in games against three JSettlers agents, using 1,000 rollouts
per search and exploration value Cp = 0.25. In this comparison,
it becomes clear that our heuristics can greatly improve the base
UCT agent playing strength, even at the low rollout count of 1,000,
specially MPT-EnsembleUCT, that has a great advantage over the
others, since it is the only variation that considers trading.

Agent UCT rollouts Win Rate
MP-UCT 1,000 26.1%±7.14%

MP-EnsembleUCT 1,000 32.8%±6.31%
MPT-EnsembleUCT 1,000 40.0%±6.81%

MP-UCT 10,000 38.4%±8.64%
MP-EnsembleUCT 10,000 41.3%±7.66%

MPT-EnsembleUCT 10,000 58.2%±7.09%

Table 1: Agent win rate comparison in games against three JSettlers
agents.

5 CONCLUSIONS AND FUTURE WORK

We developed two domain-dependent heuristics, the move prun-
ing, that uses domain knowledge to prune the game tree, and the
trade-optimistic search that utilizes the UCT algorithm in order to
trade in Catan. These heuristics provide substantial improvements
to MCTS-based methods for the Settlers of Catan Game without
rule changes.



PlainUCT VW-UCT MP-UCT MP-
EnsembleUCT

MPT-
EnsembleUCT

UCT agent configuration

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%
w

in
 r

a
te

win rate X agent configuration

Figure 6: Comparison between agent win rates in games against
three JSettlers agents, with 1,000 rollouts per search.

Previous work found that UCT could effectively play Settlers
of Catan with rule changes (i.e. with no imperfect information)
and that heuristic strategies (virtual wins), could improve an UCT
agent performance in-game. Our results show that in games with-
out rule simplifications (i.e. with imperfect information: unknown
opponents resource cards and development cards), our own move
pruning heuristic strategy outperforms the virtual wins strategy.

However, our move pruning strategy is very restrictive and there
are cases were it leads to suboptimal moves, especially near the end
of the game. If the agent is competing for the largest road with
another player and both are tied with eight or more victory points,
this strategy will favor cities and settlements over roads, leading
our agent to lose the largest road points. We intend to develop a
less rigid heuristic in the future as well as to increase the number of
games that our simulator is able to execute per second, so that our
agent can execute more rollouts per UCT search. We also intent
to find the exact exploration value that maximizes our agent’s win
rate. In our tests, we set the exploration value Cp = 0.25, but the
real optimum value could be different. Our results show that this
value is between 0.0 and 0.25.

In our experiments, the Ensemble UCT agent had slightly better
win rates compared to the regular UCT agent, while having better
response times. Because of this, we find that this version of UCT
is better suited for Settlers of Catan than the base UCT algorithm.
In future work, we intend to investigate how to reach an optimal
configuration of this algorithm for this game, such as the number of
parallel trees p for 1,000 and 10,000 rollouts.

Finally, our results show that our trade-optimistic search heuris-
tic increases the competitive strength of our agent against JSettlers
agents, increasing our agents win rate and average points per game.
These results show that an effective trading strategy can have signif-
icant impact in an agent gameplay capabilities and is fundamental
for the game of Settlers of Catan.

There are features, such as making counter-offers, that could be
implemented into our heuristic, and we intend to further develop
this heuristic in the future. We also intend to investigate the per-
formance of this trading strategy against other agents and human
players in future work.
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