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Abstract

This paper describes the Intelligence Control Engine (ICE), a lightweight Al engine
aimed at the implementation of autonomous agents for computer games. The engine
thus described comprises a simple agent language that can be compiled into an object-
oriented programming language, as well as a set of libraries to bind the agent into a
game. Usage of such engine is described as well as examples of operation.
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1. Introduction

One of the first commercial games to use no-
tions of artificial intelligence was Pacman [11].
In this game the player controls an avatar
(i.e. aplayer’s representative within the game
world), that must escape four “ghosts” in a
labyrinth. One of its most appealing features
was that these ghosts did not have the same
individual behavior, rather, each one had a
distinct plan of how to chase down and attack
the player using different path search strate-
gies.

From Pacman to the present, artificial in-
telligence has evolved and has gained increas-
ing strength and importance within game pro-
jects, so far as having dedicated Al program-
mers within development teams right at the
beginning of the game development process.
Developers have been allocating an increas-
ingly larger amount of processor time for Al
processes, which demonstrates a shift in fo-
cus within the gaming industry. These favor-
able changes with regards to Al have been oc-
curring mainly due to an increasing demand
for what is commonly known as game “playa-
bility”. Therefore, many Al techniques had
been employed in the game context. One of
the most popular are the pathfinding algo-
rithms, since it is vital that the game’s mo-
bile elements can navigate through its ter-
rain in a reasonable fashion. The most used
algorithm of this sort is the A*, which al-
ready has various implementations and opti-

mizations within games. Another important
notion which has become increasingly popular
is A-Life, which seeks to model a life form be-
havior. A famous game that used such tech-
nique was The Sims, which simulates the life
of a human being, or a family, through a sim-
ulated social interaction between virtual char-
acters, thus, developing custom personalities
and behaviors. Agent techniques are com-
monly used bearing a few restrictions, nev-
ertheless few games are known to have been
developed using agent techniques without re-
lying on “ad-hoc” modifications.

This work describes a game behavior ker-
nel based on agents called ICE (Intelligence
Control Engine). This paper is organized in
the following sections: Section [2] presents re-
lated works, Section B shows the proposed
architecture, Section [ presents the ICE lan-
guage, Section Bl describes a few case studies
and Section [6lshows the concluding remarks.

2. Related Work

The development of generic Al libraries and
engines has been recently described as being
the next big “thing” in game development [§]
as Al is an important aspect of any commer-
cial game. Efforts on the conception and im-
plementation of such engines have been made
both at the academic level [I0/T2/3] and aim-
ing at the gaming industry [9]. While research
on the academic side clearly aimed at theoret-
ical soundness while neglecting agent auton-



omy, the work targeted for computer game Al
has focused on momentarily responses and al-
gorithm performance and adaptability.

Among the academic agent architectures
the most widely known are the descendants of
the PRS agent systems, the latest implemen-
tation of which is called AgentSpeak [10,[].
These architectures focus on procedural rea-
soning to allow implemented systems to re-
act in a timely, though not very flexible man-
ner. An interesting implementation approach
is the SOAR architecture [5], which using its
own theoretical model, allows the modeling
of agent systems using a variety of cognitive
notions like emotional states.

Regarding agents in game programming,
the Excalibur project [9] is an ongoing effort
into the heuristic implementation of auton-
omy into game Al as well as the standardiza-
tion of Al algorithms in a way similar to what
currently exists regarding graphics. An exam-
ple of commercial Al toolkit initially aimed
at game development is SimBionic [4], which
provides a graphical interface for the develop-
ment of Finite State Machine-based behavior,
as well as an executing environment to be in-
tegrated into a game architecture.

3. Architecture

The ICE environment is essentially a multi-
agents system. According to generic defini-
tions, agents perceive its surrounding world
through sensors, and act in it through actu-
ators. Therefore, the main and theoretically
unique interface required between agents are
actions generated by actuators and percep-
tions received by sensors.

Under a simplified analysis, this interface
can be seen as a message passing system, the
implementation of which is similar to most
simulation systems. Thus, the ICE architec-
ture is composed of a component in charge of
this sort of message exchange. This compo-
nent is called Ether, referencing the mythical
substance that revolves the universe, it is used
as an environment by all game agents, accord-
ing to Figure [Il its importance is detailed in
Section [3.2]

The action mapping into perceptions is
accomplished by the Ether component, based
on the ICE configuration for the creation of
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Figure 1: ICE Architecture.

the game environment. This comprises the
ICE kernel, since it is through this component
that the communication between agents will
occur. Embedded in the Ether reside agents
that represent game entities, and are com-
posed by two layers: a low level component,
that represents an reactive agent model, and
a high level component, that represents the
BDI agent model.

This game entities, existing thus far only
in its logical representation, must be repre-
sented, somehow, to the player. Although
the agent’s cognition and interaction are the
main goal of the ICE environment, an inter-
face with the game engine must exist. This
interaction is needed in order to represent vi-
sually to the user the game entities states, a
fundamental pre-requisite for the player in-
teraction with the architecture. In order to
allow such communication between the game
logic (i.e. ICE environment) and the visual-
ization layer, the Ether must provide an in-
terface that allows the game engine to extract
the need information to generate the visual-
ization.

3.1. ICE Agents

The agent architecture proposed as the ICE
model will consist in a hybrid model, contain-
ing reactive agent-based components, which
we will call RA, and BDI agents (Belief, De-
sire and Intention) based components, there-
fore called BDIA. Each entity representation
described with ICE in a game world shall have
an RA component in the lowest level, and op-
tionally, a BDIA component.

The reason for this composition of game
entities will become clear after an analysis of
each component’s features. The RA compo-
nent, giving its purely reactive feature, will
make a quick implementation possible, since
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Figure 2: Overview of an ICE agent.

its behavior will be defined in a similar man-
ner than conditional clauses (if, then). Also,
it will be used to describe effects whose be-
havior can easily be described at prior by the
developer. Generally, this is a typical behav-
ior for inanimate entities, or even the ones
who do not display intelligent behavior. As
an example, a chair may break if it perceives
it have 20 points of damage, or also a zombie,
who walks from right to the left until it finds
a living being, and then attacks it.

The BDIA component, based in [I3] BDI
architecture, has the goal of describing more
complex behavior generally displayed by in-
telligent beings. This component may have
a planning capability, thus allowing a higher
degree of abstraction by the developer. Ob-
viously, the BDIA component will also dis-
play a higher degree of processing time how-
ever, since this is an optional component, it
may be left to entities of higher importance,
such as a soldier. This will allow the pre-
dictability of the computational cost; on the
same time allow balancing the cognitive capa-
bilities of the game components. Internally,
the agents might be equipped with a struc-
ture that resolves conflicts in the architec-
ture’s hybridism. The communication flow of
such structure is displayed in Figure [3]

As soon as the agent receives a perception
from the ambient, it will be delivered to the
RA component, which will check in its rules
if there is a defined reaction for the current
perception. When an action is executed by
an agent, this action will be delivered to a
function that will revise the beliefs.

The BDIA component considers the up-
dated beliefs to decide if the current objective
is still viable or it is already fulfilled. If re-
consideration is needed, the intention genera-
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Figure 3: Internal Agent Architecture.

tor will, based on the user-defined objectives,
analyze the beliefs and select the viable de-
sires. Having the selected desires, the inten-
tions generator will sort out these desires with
some kind of user-defined priority function
and will begin the planning to solve them.
In the ICE agents, the intentions match the
planning steps, in other words, concrete ac-
tions. Since the intentions are the planning
steps, they can be represented as queue of ac-
tions to be executed. Therefore, when the
reactive component (RA) generate an action,
this will be placed in front of the intention
queue, giving a higher priority to this com-
ponent, compared to the BDIA. This priority
system is appropriate to the RA expected se-
mantic, in other words, the ability to quickly
react to changes in the ambient. As an ex-
ample a soldier, which we will call Hans, just
planned and decided the needed actions to
defend his base when an enemy suddenly hits
him. Hans must react by lowering his health
attribute, and this change must take place
immediately rather than wait for the accom-
plishment of the whole defense plan.

ICE also allows the agent to process its
planning in parallel to the execution of pre-
viously planned actions. This is possible be-
cause the intention generator, which makes
the planning, can insert its results in the exe-
cution while the agent extracts and executes
the actions in front of the queue. The RA
component also allows that reactions may be
defined for critical situations, where a recon-
sideration pause and a re-planning would be



unacceptable in terms of waiting time. An
aspect that should be considered is the possi-
bility of a conflict between steps of a selected
plan and a reaction. To solve this problem,
a few hybrid architectures have a conflict de-
tector. The ICE architecture allows the usage
of such component, however, in the current
implementation, this conflict detector compo-
nent is not available. Therefore, the removal
of possible conflicts is up to the user.

One of the agent’s most fundamental fea-
tures is its independency from the environ-
ment, since there is no way to predict the
agent behavior through its interface. In a
general sense, the ICE agents may or may not
have objectives, since the planning and cogni-
tion process must be exclusive to entities who
have this features. It is important to remem-
ber that the process of choosing objectives,
selecting commitments and planning its exe-
cution is a costly process and should not be
executed by most of the agents embedded in
the world.

3.2. Ether: the agent environment

The ICE architecture clearly splits the work
of the game from the work of the agents. This
division was conceived to provide a higher ab-
straction level to the game developer (who
will develop the game engine), since he does
not, or should not, have the immediate knowl-
edge in how to manipulate the agents. There-
fore, the Ether is such an important layer in
the architecture.

Ether is the kernel of the multi-agent sys-
tem and corresponds to the message passing
system between the agents in the ICE archi-
tecture. Since the only conceptual agent in-
terfaces are the actions from the actuators
and the perceptions received by the sensors,
Ether is in charge of receiving the agent’s ac-
tions, processing them and sending the per-
ceptions back to their agents. According to
[12], Ether can be classified as inaccessible,
non-deterministic, episodic, dynamic and dis-
creet. Besides “routing” the agent’s percep-
tions, Ether works as an ambient representa-
tion. It will map the desired worlds constants
for the agents.

Ether also implements the exchange of
two message types between the ICE agents:

actions and perceptions. Action messages,
which are sent by an agent to the Ether, have
the goal of informing the multi-agent system
which function an agent plans to execute. When
the Ether receives this message, it should find
out what agents can be affected by this mes-
sage and, send then a perception message,
showing what happened in the environment.
The Ether functionality is directly linked to
the game engine. As the game program exe-
cutes its main loop where the critical process-
ing take place, such as showing images, polling
input devices and effecting the game logic,
a time slice will be designated to Ether for
message processing. This will make possi-
ble to control the logical processing time. In
the same way as the game engine, Ether can
change the processing time of the ICE agents,
giving them time slices. Therefore, the agent
action processing can be balanced in such way
as the elements outside the player’s line-of-
sight, considered “out of bounds”, can process
less than elements near the player.

4. Agent-Oriented Language

The development of successful games is an ex-
perimental process, even based on trial and
error at times [7]. In order to ease the process
of experimentation it is important that vari-
ous game elements be parameterized outside
program code so that behavior is separated
from the code. This separation is achieved in
the ICE architecture through a behavior def-
inition language based in hybrid agents that
merge definition elements from BDI and re-
active agents. Therefore, the language should
provide adequate constructs to describe char-
acteristics from both architectures. This lan-
guage is called IADL (ICE Agent Description
Language) and will be described throughout
this item using a grammar in which the pro-
duction rules relative to each characteristic
will be presented in the corresponding item.
Some grammar rules are not described in this
paper, whereas the entire grammar is avail-
able in [6].

4.1. Language constructs

4.1.1. The Agent

The syntax defined for an agent description is
very similar to that used for a class descrip-



tion in object orientation, bearing in mind the
change in paradigm.

In order to supply the agent’s BDI charac-
teristics, a set of beliefs relevant to the agent
should be defined, beyond that, a set of objec-
tives corresponding to the agent desires should
be defined. The agent intentions are not de-
fined in the language, given the fact that these
are defined through the desires and beliefs, at
run time. Since planning is not currently the
focus of this project, the set of plans shall
be specified through the language. Regard-
ing the reactive characteristic, it is contem-
plated through a set of perception-triggered
reactions. Common to both agent models
used in this project is the definition of a set of
actions for possible execution. These charac-
teristics are materialized in the following rule:
<agent> —> IDENTIFIER {

<beliefs >
<actions>
<objectives>

<plans>
<reactions>

}

4.1.2. Types

Agent specifications using first-order logic are
usually complex and excessively slow [12], this
last fact especially important in the context
of computer games. The group therefore has
chosen the definition using simple types, sim-
ilar to those used in contemporary program-
ming languages such as C++ and Java. Be-
yond simple types, two complex type possi-
bilities have been added to the language: the
construction of composite types, similar to C
structs, and the construction of type lists.

4.1.8. Actions

A common element to both agent models used
in this hybrid architecture is the notion of ac-
tion, which defines the environment modifica-
tion ability of an entity. Actions are defined
through the “action:” section in the agent de-
finition.

Parameters are specified for each action
and modify its effects. Beyond that the ef-
fects of each action over the beliefs are spec-
ified. Regarding action effects two semantic
alternatives were considered:

In the first alternative the agent executes
its action and waits for a return from the envi-

ronment regarding the effects of the same. In
this alternative the effects of an action are not
described within the agent, letting only the
perceptions received from the environment in-
form its results to the agent. This alternative
implies that the action-to-perception mapping
function located in the Ether is more com-
plex. This alternative makes the implemen-
tation harder, although its results are more
interesting.

In the second alternative, which makes
the agent behave like a “schizophrenic agent”,
the agent assumes that the effects of its ac-
tions are always true and immediately after
the their execution, it alters its beliefs base
to reflect such effects. In this alternative the
agent will discover whether he failed or not if
a perception informs him of this fact by up-
dating its beliefs.

The alternative chosen for ICE agents was
that of the schizophrenic agent, because it is
the simplest one to implement and allows the
Ether component to be simpler and more ef-
ficient. Besides that, it allows the agent to
work pro-actively, taking into account its ac-
tions result expectancy. In the event of failure
detection he can choose a new objective.

The constructs provided in the grammar
are the following:

<actions> —> action:
<action declaration list>

<action declaration> —>
IDENTIFIER(<parameter_declaration_ list

>){

<action effects>

4.1.4. Beliefs
The first BDIA component related structure
to be described by the language is the defin-
ition of the beliefs. They compose the world
model as seen by the agent and are defined
in the form of identifiers that use the types
defined in Section 1.2l The beliefs repre-
sent, therefore, what the agent in question
knows, or believes about the state of the world
around him. Beliefs do not necessarily repre-
sent the truth about the facts, as they could
be outdated, or even completely different from
the reality. This can happen when the world
changes and the agent does not perceive the
change. Or even in situations where the Ether



was deliberately constructed to introduce fake
information.

<beliefs > —> belief:
<belief_declaration_ list >

<belief_ declaration> —>
<type> <belief_declarator_list>

<belief declarator> —>
IDENTIFIER = <expression> |
IDENTIFIER

4.1.5. Objetives

The proactive behavior of BDIA is defined by
its objectives. In IADL, the objectives are
defined through a set of values that are to be
met by the beliefs. These values are declared
by the “pre” construct through an expression
where the belief states desired are connected
by logical operators. When this expression
is evaluated as true the objective in question
will have been achieved. The objectives are
defined through the following grammar con-
structs:

<objectives> —> objectives:
<objective__declaration_ list>

<objective__declaration> —>
<objetive name>(<parameters>)
pre(<conditions >)
pos(<conditions >)

4.1.6. Plans

Considering the fact that the construction of
a complete planner is not the main objective
of this project, the planning of each agent will
be achieved through a pre-set plan library.
Each agent has a set of plans, each of which
has an objective it intendeds to achieve, a set
of conditions regarding the beliefs that deter-
mine the execution viability of the plan, and
a priority value that determines the prefer-
ence order with which the planner will choose
the plan to be adopted in case more than one
way of achieving an objective is possible. The
defined language provides the following con-
structs for plan definition:

<plans> —> <plans><plan_declarator> |
<plan_declarator> |

<plan__declarator> —>
plan IDENTIFIER(<objective >)
if(<conditions >)
priority INTEGER_CONSTANT {
<action call list>
}

pos(<conditions >)

4.1.7. Reactions

The RA component functionality is defined
by a set of reactions. Each reaction is defined
by an identifier for the reaction, the name of
the perception that will trigger it and the re-
sponse action in case the specified perception
is received. The reserved word “reconsider”
is intended to denote the lack of the necessity
to reconsider the objectives if the reaction is
activated. This functionality is defined in the
language through the following constructs:

<reactions> —> <reactions><reaction >; |
<reaction> |

<reaction> —> <reaction_ modifier>
IDENTIFIER if (IDENTIFIER)
<action_ call>

<reaction_ modifier> —> reconsider |
4.2. Example of language use

In this section, a simple agent described us-
ing IADL is presented to exemplify its usage.
The agent describes a simple soldier. He has
knowledge of how much ammunition he has,
the distance covered, in which direction he is
facing and whether he is hiding or not. He
makes simple actions, like moving, shooting
and taking cover. His purpose is the follow-
ing: if he has ammunition, he tries to kill the
player, if not, he tries to hide.

agent Soldier{

belief:

int direction=0, ammo=5;

bool cover = false;

int distance = 0, lastTurn = —1;
action:

shoot (){

——ammo;
}

turn(int dir){
direction 4= dir;
lastTurn = dir;

}

move(int size){
distance 4= size;

}

takeCover () {
cover = true;

}

objective:
kill ()
pre (ammo>0)
pos(false)
hide ()
pre (ammo==0)



pos(false)

plan huntLeft (kill)

if(lastTurn = 1) priority 1 {
move (1) ;
turn(—1);

}

plan huntRight (kill)
if (lastTurn = (—1)) priority 1
move (1) ;
turn (1) ;

}

plan run(hide)
if (true) priority 1 {
move (5) ;
takeCover () ;

}

reaction turnLeft if(noiseLeft)
turn(—1);

reaction turnRight if(noiseRight)
turn (1) ;

reaction shootFront if(noiseFront)
shoot () ;

5. Case studies

As a mean to validate the ICE architecture
and language, a few case studies were pro-
posed. In this section we describe one of them,
which is an unimplemented conceptual exam-
ple, that should provide an illustration of the
language used.

5.1. Command base

The command base agent can be considered
as an operative center in a strategy game. In
this context, the base is in charge of ordering
units to gather resources, or defend the base,
and it still can heal a damaged unit. Upon
notice of the scarcity of resources, the base
can order a unit to start gathering it to keep
its supply. When the base is under attack, it
can request support from nearby units to help
fend off the attack. In case a unit is badly
damaged, it can order a retreat in order to be
healed. In the TADL language, such agent is
described as the following:

composite Unit {

bool orderResource;

bool orderDefend;
bool orderRecover;

int health;
s
agent Base {
belief:

int resources=100;
int damage=0;
bool defend = false;
Unit unit;
Unit soldier;
action:
orderResource (Unitcollector) {
collector .orderResource =
true;
collector .orderDefend =
false;
collector .orderRecover =
false;

}

orderDefend (Unit soldier) {

soldier .orderResource =
false;

soldier .orderDefend =

soldier .orderRecover =

true;
false

}

orderRecover (Unit soldier) {
soldier .orderResource =
false;
soldier .orderDefend = false;
soldier .orderRecover = true;

}

objective:

saveLife ()
pre(defend = true)
pos(false);

getResources ()
pre(resources < 20)
pos(false);

saveUnit (Unit unit)
pre(unit.health < 5)
pos(false);

plan defense(saveLife)
if(true) priority 1 {
orderDefend (soldier);

}

plan resources(getResources)

if (true) priority 1 {
orderResource(collector);

}

plan help (saveUnit)
if(true) priority 1 {
orderRecover (unit);

}

}

6. Concluding Remarks

This paper has described a Al engine and its
corresponding implementation along with ex-
amples of its usage. ICE is by no means the
only alternative to generalized behaviorial de-
scription available, as was shown by Section
2l Nevertheless it provides a lightweight Al
engine implementation coupled with a non-



scripted agent language that can be used in
the development of individual game entity be-
havior decoupling this aspect of content de-
velopment from the target language. Cur-
rently the ICE compiler only generates C++
code, but a Java class generation module is
currently being developed and is expected to
provide an interesting extension to our work.
Compared to existing Al toolkits and archi-
tectures, ICE lacks the development tools of
SimBionic [4] and the sophisticated motiva-
tional processing of SOAR [5], on the other
hand, ICE agents provide an efficient imple-
mentation of a simple BDI architecture that
can be integrated into a gaming project with-
out the overhead of a runtime environment.
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