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Abstract

Configuring databases for efficient querying is a complex
task, often carried out by a database administrator. Solving
the problem of building indexes that truly optimize database
access requires a substantial amount of database and do-
main knowledge, the lack of which often results in wasted
space and memory for irrelevant indexes, possibly jeopardiz-
ing database performance for querying and certainly degrad-
ing performance for updating. We develop an architecture to
solve the problem of automatically indexing a database by
using reinforcement learning to optimize queries by indexing
data throughout the lifetime of a database. In our experimen-
tal evaluation, our architecture shows superior performance
compared to related work on reinforcement learning and ge-
netic algorithms, maintaining near-optimal index configura-
tions and efficiently scaling to large databases.

1 Introduction
Despite the multitude of tools available to manage and gain
insights from very large datasets, indexing databases that
store such data remains a challenge with multiple opportu-
nities for improvement [27]. Slow information retrieval in
databases entails not only wasted time for a business but also
indicates a high computational cost being paid. Unnecessary
indexed columns, or columns that should be indexed but are
not, directly impact the query performance of a database.
Nevertheless, achieving the best indexing configuration for
a database is not a trivial task [4, 5]. To do so, we have to
learn from queries that are running, take into account their
performance, the system resources, and the storage budget
so that we can find the best index candidates [18].

In an ideal scenario, all frequently queried columns
should be indexed to optimize query performance. Since cre-
ating and maintaining indexes incur a cost in terms of stor-
age as well as in computation whenever database insertions
or updates take place in indexed columns [21], choosing an
optimal set of indexes for querying purposes is not enough
to ensure optimal performance, so we must reach a trade-
off between query and insert/update performance. Thus, this
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is a fundamental task that needs to be performed continu-
ously, as the indexing configuration directly impacts on a
database’s overall performance.

We developed an architecture for automated and dynamic
database indexing that evaluates query and insert/update per-
formance to make decisions on whether to create or drop
indexes using Reinforcement Learning (RL). We performed
experiments using a scalable benchmark database, where we
empirically evaluate our architecture results in comparison
to standard baseline index configurations, database advisor
tools, genetic algorithms, and other reinforcement learning
methods applied to database indexing. The architecture we
implemented to automatically manage indexes through re-
inforcement learning successfully converged in its training
to a configuration that outperforms all baselines and related
work, both in performance and in storage usage by indexes.

2 Background
2.1 Reinforcement Learning
Reinforcement learning aims to learn optimal agent poli-
cies in stochastic environments modeled as Markov Deci-
sion Processes (MDPs) [2]. It is a trial-and-error learning
method, where an agent interacts and transitions through
states of an MDP environment model by taking actions and
observing rewards [23, Ch. 1]. MDP are formally defined as
a tuple M = 〈S,A,P,R, γ〉, where S is the state space,
A is the action space, P is a transition probability function
which defines the dynamics of the MDP,R is a reward func-
tion and γ ∈ [0, 1] is a discount factor [23, Ch. 3].

In order to solve an MDP, an agent needs to know the
state-transition and the reward functions. However, in most
realistic applications, modeling knowledge about the state-
transition or the reward function is either impossible or im-
practical, so an agent interacts with the environment tak-
ing sequential actions to collect information and explore the
search space by trial and error [23, Ch. 1]. The Q-learning
algorithm is the natural choice for solving such MDPs [23,
Ch. 16]. This method learns the values of state-action pairs,
denoted by Q(s, a), representing the value of taking action
a in a state s [23, Ch. 6].

Assuming that states can be described in terms of features
that are well informative, such problem can be handled by



using linear function approximation, which is to use a pa-
rameterized representation for the state-action value func-
tion other than a look-up table [25]. The simplest differen-
tiable function approximator is through a linear combination
of features, though there are other ways of approximating
functions such as using neural networks [23, Ch. 9, p. 195].

2.2 Indexing in Relational Databases
An important technique to file organization in a DBMS is in-
dexing [21, Ch. 8, p. 274], and is usually managed by a DBA.
However, index selection without the need of a domain ex-
pert is a long-time research subject and remains a challenge
due to the problem complexity [27, 5, 4]. The idea is that,
given the database schema and the workload it receives, we
can define the problem of finding an efficient index config-
uration that optimizes database operations [21, Ch. 20, p.
664]. The complexity stems from the potential number of
attributes that can be indexed and all of its subsets.

While DBMSs strive to provide automatic index tuning,
the usual scenario is that performance statistics for optimiz-
ing queries and index recommendations are offered, but the
DBA makes the decision on whether to apply the changes
or not. Most recent versions of DBMSs such as Oracle [13]
and Azure SQL Database [19] can automatically adjust in-
dexes. However, it is not the case that the underlying system
is openly described.

A general way of evaluating DBMS performance is
through benchmarking. Since DBMSs are complex pieces
of software, and each has its own techniques for optimiza-
tion, external organizations have defined protocols to eval-
uate their performance [21, Ch. 20, p. 682]. The goals of
benchmarks are to provide measures that are portable to dif-
ferent DBMSs and evaluate a wider range of aspects of the
system, e.g., transactions per second and price-performance
ratio [21, Ch. 20, p. 683].

2.3 TPC-H Benchmark
The tools provided by TPC-H include a database genera-
tor (DBGen) able to create up to 100 TB of data to load
in a DBMS, and a query generator (QGen) that creates
22 queries with different levels of complexity. Using the
database and workload generated using these tools, TPC-
H specifies a benchmark that consists of inserting records,
executing queries, and deleting records in the database to
measure the performance of these operations.

The TPC-H Performance metric is expressed in Queries-
per-Hour (QphH@Size), which is achieved by computing
the Power@Size and the Throughput@Sizemetrics [24].
The resulting values are related to its scale factor (@Size),
i.e., the database size in gigabytes. The Power@Size eval-
uates how fast the DBMS computes the answers to single
queries. This metric is computed using Equation 1:

Power@Size =
3600

24

√
π22
i=1QI(i, 0)× π2

j=1RI(j, 0)
× SF (1)

where 3600 is the number of seconds per hour and QI(i, s)
is the execution time for each one of the queries i. RI(j, s)

is the execution time of refresh functions j (insert/update) in
the query stream s, and SF is the scale factor or database
size, ranging from 1 to 100, 000 according to its @Size.

The Throughput@Size measures the ability of the sys-
tem to process the most queries in the least amount of time,
taking advantage of I/O and CPU parallelism [24]. It com-
putes the performance of the system against a multi-user
workload performed in an elapsed time, using Equation 2:

Throughput@Size =
S × 22

TS

× 3600× SF (2)

where S is the number of query streams executed, and TS is
the total time required to run the test for s streams.

QphH@Size =
√
Power@Size× Throughput@Size (3)

Equation 3 shows the Query-per-Hour Performance
(QphH@Size) metric, which is obtained from the geomet-
ric mean of the previous two metrics and reflects multiple
aspects of the capability of a database to process queries.
The QphH@Size metric is the final output metric of the
benchmark and summarizes both single-user and multiple-
user overall database performance.

3 Architecture
In this section, we introduce our database indexing architec-
ture to automatically choose indexes in relational databases,
which we refer to as SmartIX. The main motivation of Smar-
tIX is to abstract the database administrator’s task that in-
volves a frequent analysis of all candidate columns and ver-
ifying which ones are likely to improve the database index
configuration. For this purpose, we use reinforcement learn-
ing to explore the space of possible index configurations in
the database, aiming to find an optimal strategy over a long
time horizon while improving the performance of an agent
in the environment.

The SmartIX architecture is composed of a reinforcement
learning agent, an environment model of a database, and a
DBMS interface to apply agent actions to the database. The
reinforcement learning agent is responsible for the decision
making process. The agent interacts with an environment
model of the database, which computes system transitions
and rewards that the agent receives for its decisions. To make
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changes persistent, there is a DBMS interface that is respon-
sible for communicating with the DBMS to create or drop
indexes and get statistics of the current index configuration.

3.1 Agent
Our agent is based on the Deep Q-Network agent proposed
by [11], depicted in Algorithm 1. The algorithm consists of
a Q-learning method that uses a neural network for function
approximation trained using experience replay. The neural
network is used to approximate the action-value function
and is trained using mini-batches of experience randomly
sampled from the replay memory. At each time step, the
agent performs one transition in the environment. That is,
the agent chooses an action using an epsilon-greedy explo-
ration function at the current state, the action is then applied
in the environment, and the environment returns a reward
signal and the next state. Finally, each transition in the envi-
ronment is stored in the replay buffer, and the agent performs
a mini-batch update in the action-value function.

3.2 Environment
The environment component is responsible for computing
transitions in the system and computing the reward function.
To successfully apply a transition, we implement a model of
the database environment, modeling states that contain fea-
tures that are relevant to the agent learning, and a transition
function that is able to modify the state with regard to the
action an agent chooses. Each transition in the environment
outputs a reward signal that is fed back to the agent along
with the next state, and the reward function has to be infor-
mative enough so that the agent learns which actions yield
better decisions at each state.

State representation The state is the formal representa-
tion of the environment information used by the agent in the
learning process. Thus, deciding which information should
be used to define a state of the environment is critical for
task performance. The amount of information encoded in a
state imposes a trade-off for reinforcement learning agents.
Specifically, that if the state encodes too little information,
then the agent might not learn a useful policy, whereas if the
state encodes too much information, there is a risk that the
learning algorithm needs too many samples of the environ-
ment that it does not converge to a policy.

For the database indexing problem, the state representa-
tion is defined as a feature vector ~S = ~I · ~Q, which is a

Algorithm 1 Database indexing agent. Adapted from [11].
1: Random initialization of the value function
2: Empty initialization of a replay memory D
3: s← DB initial index configuration
4: for each step do
5: a← epsilon greedy(s)
6: s′, r ← execute(a)
7: Store experience e = 〈s, a, r, s′〉 in D
8: Sample random mini-batch of experiences e ∼ D
9: Perform experience replay using mini-batch

10: s← s′

result of a concatenation of the feature vectors ~I and ~Q. The
feature vector ~I encodes information regarding the current
index configuration of the database, with length |~I| = C,
where C is a constant of the total number of columns in the
database schema. Each element in the feature vector ~I holds
a binary value, containing 1 or 0, depending on whether the
column that corresponds to that position in the vector is in-
dexed or not. The second part of our state representation is
a feature vector ~Q, also with length | ~Q| = C, which en-
codes information regarding which indexes were used in last
queries received by the database. To organize such informa-
tion, we set a constant value of H that defines the horizon of
queries that we keep track of. To each of the last queries in
a horizon H , we verify whether any of the indexes currently
created in the database are used to run such queries. Each po-
sition in the vector ~Q corresponds to a column and holds a
binary value that is assigned 1 if such column is indexed and
used in the last H queries, else 0. Finally, we concatenate ~I
and ~Q to generate the state vector ~S with length |~S| = 2C.

Actions In our environment, we define the possible actions
as a set A of size C + 1. Each one of the C actions refers
to one column in the database schema. These actions are
implemented as a “flip” to create or drop an index in the cur-
rent column. Therefore, for each action, there are two pos-
sible behaviors: CREATE INDEX or DROP INDEX on the cor-
responding column. The last action is a “do nothing” action,
that enables the agent not to modify the index configuration
in case it is not necessary at the current state.

Reward Deciding the reward function is critical for the
quality of the ensuing learned policy. On the one hand, we
want the agent to learn that indexes that are used by the
queries in the workload must be maintained in order to op-
timize such queries. On the other hand, indexes that are
not being used by queries must not be maintained as they
consume system resources and are not useful to the current
workload. Therefore, we compute the reward signal based
on the next state’s feature vector ~S after an action is applied,
since our state representation encodes information both on
the current index configuration and on the indexes used in
the last queries, i.e. information contained in vectors ~I and
~Q. Our reward function is computed using Equation 4:

R(op, use) = (1− op)((1− use)(1) + (use)(−5))
+(op)((1− use)(−5) + (use)(1))

(4)

where op = Ic and use = Qc. That is, the first parameter
op holds 0 if the last action represents a dropped index in
column c, or 1 if created an index. The latter parameter, use,
holds 0 if an index in column c is not being used by the last
H horizon queries, and 1 otherwise.

Therefore, our reward function returns a value of +1 if
an index is created and it actually benefits the current work-
load, or if an index is dropped and it is not beneficial to the
current workload. Otherwise, the function returns −5 to pe-
nalize the agent if an index is dropped and it is beneficial to
the current workload, or an index is created and it does not
benefit the current workload. The choice of values +1 and



−5 is empirical. However, we want the penalization value to
be at least twice smaller than the +1 value, so that the val-
ues do not get canceled when accumulating with each other.
Finally, if the action corresponds to a “do nothing” opera-
tion, the environment simply returns a reward of 0, without
computing Equation 4.

4 Experiments
4.1 Experimental setup
Database setup Due to its usage in literature for measur-
ing database performance, we choose to run experiments us-
ing the database schema and data provided by the TPC-H
benchmark. The tools provided by TPC-H include a data
generator (DBGen), which is able to create up to 100TB
of data to load in a DBMS, and a query generator (QGen)
that creates 22 queries with different levels of complexity.
The database of these experiments is populated with 1GB of
data. To run benchmarks using each baseline index configu-
ration, we implemented the TPC-H benchmark protocol us-
ing a Python script that runs queries, fetches execution time,
and computes the performance metrics.

To provide statistics on the database, we show in Ta-
ble 1 the number of columns that each table contains and an
analysis on the indexing possibilities. For that, we mapped
for each table in the TPC-H database the total number of
columns, the columns that are already indexed (primary
and foreign keys, indexed by default), and the remaining
columns that are available for indexing.

By summing the number of indexable columns in each
table, we have a total of 45 columns that are available for
indexing. Since a column is either indexed or not, there
are two possibilities for each of the remaining 45 index-
able columns. This scenario indicates that we have exactly
35, 184, 372, 088, 832 (245), i.e. more than 35 trillion, pos-
sible configurations of simple indexes. Thus, this is also the
number of states that can be assumed by the database index-
ing configuration and therefore explored by the algorithms.

For comparison purposes, we run a brute force procedure
to identify which columns compose the ground truth opti-
mal index configuration among all possibilities. That is, we
identify for each index possibility whether it is used to com-
pute at least one query within the 22 TPC-H queries. To
check whether an index is used or not, we use the EXPLAIN
command to view the execution plan of each query. Fi-
nally, we have 6 columns from the TPC-H that compose our

Table 1: TPC-H database - Table stats and indexes
Table Total Indexed Indexable
REGION 3 1 2
NATION 4 2 2
PART 9 1 8
SUPPLIER 7 2 5
PARTSUPP 5 2 3
CUSTOMER 8 2 6
ORDERS 9 2 7
LINEITEM 16 4 12

Totals 61 16 45

ground truth optimal indexes: C ACCTBAL, L SHIPDATE,
O ORDERDATE, P BRAND, P CONTAINER, P SIZE.

Baselines The baselines comprise different indexing con-
figurations using different indexing approaches, including
commercial and open-source database advisors, and re-
lated work on genetic algorithms and reinforcement learn-
ing methods. Each baseline index configuration is a result
of training or analyzing the same workload of queries, from
the TPC-H benchmark, in order to make an even compar-
ison between the approaches. The following list briefly in-
troduces each of them. Default: indexes only on primary
and foreign keys; All indexed: all columns indexed. Ran-
dom: indexes randomly explored by an agent; EDB 2019
and POWA 2019: indexes obtained using a comercial and
an open-source advisor tool, respectively. ITLCS 2018 and
GADIS 2019: indexes obtained using genetic algorithms re-
lated work; NoDBA 2018 and rCOREIL 2016: indexes ob-
tained using reinforcement learning related work.

The EDB 2019, POWA 2019, and ITLCS 2018 index
configurations are a result of a study conducted by Pe-
drozo, Nievola, and Ribeiro [17]. The authors [17] em-
ploy these methods to verify which indexes are suggested
by each method to each of the 22 queries in the TPC-H
workload, whose indexes constitute the respective configu-
rations we use in this analysis. The index configurations of
GADIS 2019, NoDBA 2018, and rCOREIL 2016 are a result
of experiments we ran using source-code provided by the
authors. We execute the author’s algorithms without modi-
fying any hyper-parameter except configuring the database
connection. The index configuration we use in this analysis
is the one in which each algorithm converged to, when the al-
gorithm stops modifying the index configuration or reaches
the end of training.

4.2 Agent training
Training the reinforcement learning agent consists of time
steps of agent-environment interaction and value function
updates until it converges to a policy as desired. In our
case, to approximate the value function, we use a simple
multi-layer perceptron neural network with two hidden lay-
ers and ReLU activation, and an Adam optimizer with mean-
squared error loss, both PyTorch 1.5.1 implementations us-
ing default hyperparameters [15]. The input and output di-
mensions depend on the number of columns available to in-
dex in the database schema, as shown in Section 3.2.

The hyperparameters used while training are set as fol-
lows. The first, learning rate α = 0.0001 and discount fac-
tor γ = 0.9, are used in the update equation of the value
function. The next are related to experience replay, where
replay memory size = 10000 defines the number of experi-
ences the agent is capable of storing, and replay batch size =
1024 defines the number of samples the agent uses at each
time step to update the value function. The last are related
to the epsilon-greedy exploration function, where we de-
fine an epsilon initial = 1 as maximum epsilon value, an
epsilon final = 0.01 as epsilon minimum value, a percent-
age in which epsilon decays = 1%, and the interval of
time steps at each decay = 128.
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Figure 2: Training statistics.

We train our agent for the course of 64 thousand time
steps in the environment. Training statistics are gathered ev-
ery 128 steps and are shown in Figure 2. Sub-figure 2a shows
the total reward accumulated by the agent at each 128 steps
in the environment, which consistently improves over time
and stabilizes after the 400th x-axis value. Sub-figure 2b
shows the accumulated loss at each 128 steps in the envi-
ronment, i.e. the errors in predictions of the value function
during experience replay, and illustrates how it decreases to-
wards zero as parameters are adjusted and the agent approx-
imates the true value function.

To evaluate the agent behavior and the index configura-
tion in which the agent is converging to, we plot in Figure 2c
each of the index configurations explored by the agent in the
64 thousand training steps. Each index configuration is rep-
resented in terms of total indexes and total optimal indexes
a configuration contains. Total indexes is simply a count on
the number of indexes in the configuration, while total opti-
mal indexes is a count on the number of ground truth optimal
indexes in the configuration. The lines are smoothed using a
running mean of the last 5 values, and a fixed red dashed
line across the x-axis represents the configuration in which
the agent should converge to. As we can see, both the total
amount of indexes and the total optimal indexes converge
towards the ground truth optimal indexes. That is, the agent
learns both to keep the optimal indexes in the configuration,
as well as to drop irrelevant indexes for the workload.

4.3 Performance Comparison
We now evaluate each baseline index configuration in com-
parison to the one in which our agent converged to in the
last episode of training. We show the TPC-H performance
metric (QphH, i.e. the query-per-hour metric) and the index
size of each configuration. Figure 3a shows the query-per-
hour metric of each configuration (higher values denote bet-
ter performance). The plotted values consist of a trimmed
mean of 12 executions of the TPC-H benchmark for each
index configuration, removing the highest and the lowest re-
sult and averaging the 10 remaining results. Figure 3b shows
the disk space required for the indexes in each configuration
(index size in MB), which allows us to analyze the trade-off
in the number of indexes and the resources needed to main-
tain it. In an ideal scenario, the index size is just the bare
minimum to maintain the indexes that are necessary to sup-
port query performance.

Yet SmartIX achieves the best query-per-hour-metric, the

two genetic algorithms [12] and [17] have both very similar
query-per-hour and index size metrics in comparison to our
agent. GADIS [12] itself uses a similar state-space model to
SmartIX, with individuals being represented as binary vec-
tors of the indexable columns. The fitness function GADIS
optimizes is the actual query-per-hour metric, and it runs the
whole TPC-H benchmark every time it needs to compute
the fitness function. Therefore, it is expected that it finds an
individual with a high performance metric, although it is un-
realistic for real-world applications in production due to the
computational cost of running the benchmark.

Indexing all columns is among the highest query-per-hour
results and can seem to be a natural alternative to solve the
indexing problem. However, it results in the highest amount
of disk used to maintain indexes stored. Such alternative
is less efficient in a query-per-hour metric as the bench-
mark not only takes into account the performance of SE-
LECT queries, but also INSERT and DELETE operations,
whose performance is affected by the presence of indexes
due to the overhead of updating and maintaining the struc-
ture when records change [21, Ch. 8, p. 290-291]. It has the
lowest ratio due to the storage it needs to maintain indexes.

While rCOREIL [1] is the most competitive among the re-
inforcement learning baselines, the amount of storage used
to maintain its indexes is the highest among all baselines
(except for having all columns indexed). rCOREIL does not
handle whether primary and foreign key indexes are already
created, causing it to create duplicate indexes. The policy
iteration algorithm used in rCOREIL is a dynamic program-
ming method used in reinforcement learning, which is char-
acterized by complete sweeps in the state space at each
iteration in order to update the value function. Since dy-
namic programming methods are not suitable to large state
spaces [23, Ch. 4, p. 87], this can become a problem in
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Figure 4: Agent behavior with a fixed workload.

databases that contain a larger number of columns to index.
Among the database advisors, the commercial tool

EDB [6] achieves the highest query-per-hour metric in com-
parison to the open-source tool POWA [20], while its in-
dexes use virtually the same disk space. Other baselines
and related work can optimize the index configuration with
lightweight index sizes, but are not competitive in compar-
ison to the previously discussed methods in terms of the
query-per-hour performance metric. Finally, among all the
baselines, the index configuration obtained using SmartIX
not only yields the best query-per-hour metric but also the
smallest index size (except for the default configuration),
i.e. it finds the balance between performance and storage,
as shown in the ratio plot.

5 Dynamic configurations
This section aims to evaluate the behavior of algorithms
that generate policies, i.e. generate a function that guides
an agent’s behavior. The three algorithms that generate poli-
cies are SmartIX, rCOREIL, and NoDBA. The three are
reinforcement learning algorithms, although using different
strategies (see Sec. 6). While rCOREIL and SmartIX show
a more interesting and dynamic behavior, the NoDBA algo-
rithm shows a fixed behavior and keeps only three columns
indexed over the whole time horizon, without changing the
index configuration over time (see its limitations in Sec. 6).
Therefore, we do not include NoDBA in the following anal-
ysis and focus the discussion on rCOREIL and SmartIX.

5.1 Fixed workload

We now evaluate the index configuration of rCOREIL and
SmartIX over time while the database receives a fixed work-
load of queries. Figure 4 shows the behavior of rCOREIL
and SmartIX, respectively. Notice that rCOREIL takes some
time to create the first indexes in the database, after receiv-
ing about 150 queries, while SmartIX creates indexes at the
very beginning of the workload. On the one hand, rCOR-
EIL shows a fixed behavior maintains all ground truth opti-
mal indexes, but it creates a total of 22 indexes, 16 of those
being unnecessary indexes and the remaining 6 are optimal
indexes. On the other hand, SmartIX shows a dynamic be-
havior and consistently maintains 5 out of the 6 ground truth
optimal indexes, and it does not maintain unnecessary in-
dexes throughout most of the received workload.
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Figure 5: Agent behavior with a shifting workload.

5.2 Shifting workload
We now evaluate the algorithm’s behavior while receiving a
workload that shifts over time. To do so, we divide the 22
TPC-H queries into two sets of 11 queries, where for each
set there is a different ground truth set of indexes. That is,
out of the 6 ground truth indexes from the previous fixed
workload, we now separate the workload to have 3 indexes
that are optimal first set of queries, and 3 other indexes that
are optimal for the second set of queries. Therefore, we aim
to evaluate whether the algorithms can adapt the index con-
figuration over time when the workload shifts and a different
set of indexes is needed according to each of the workloads.

The behavior of each algorithm is shown in Figure 5. The
vertical dashed lines placed along the x-axis represent the
time step where the workload shifts from one set of queries
to another, and therefore the set of ground truth optimal in-
dexes also changes. On the one hand, notice that rCOREIL
shows a similar behavior from the one in the previous fixed
workload experiment, in which it takes some time to create
the first indexes, and then maintains a fixed index config-
uration, not adapting as the workload shifts. On the other
hand, SmartIX shows a more dynamic behavior with regard
to the shifts in the workload. Notice that, at the beginning
of each set of queries in the workload, there is a peak in the
total indexes, which decreases as soon as the index configu-
ration adapts to the new workload and SmartIX drops the un-
necessary indexes with regard to the current workload. Even
though rCOREIL maintains all 3 ground truth indexes over
time, it still maintains 16 unnecessary indexes, while Smar-
tIX consistently maintains 2 out of 3 ground truth optimal
indexes and adapts as the workload shifts.

5.3 Scaling up database size
In the previous sections, we showed that the SmartIX archi-
tecture can consistently achieve near-optimal index configu-
rations in a database of size 1GB. In this section, we report
experiments on indexing larger databases, where we transfer
the policy trained in the 1GB database to perform indexing
in databases with size 10GB and 100GB. We plot the behav-
ior of our agent in Figure 6.

As we can see, the agent shows a similar behavior to the
one using a 1GB database size reported in previous experi-
ments. The reason is that both the state features and the re-
ward function are not influenced by the database size. The
only information relevant to the state and the reward func-
tion is the current index configuration and the workload be-
ing received. Therefore, we can successfully transfer the
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Figure 6: Agent behavior in larger databases.

value function learned in smaller databases to index larger
databases, consuming fewer resources to train the agent.

6 Related Work
Machine learning techniques are used in a variety of tasks
related to database management systems and automated
database administration [26]. One example is the work from
Kraska et al. [8], which outperforms traditional index struc-
tures used in current DBMS by replacing them with learned
index models, having significant advantages under particu-
lar assumptions. Pavlo et. al [16] developed Peloton, which
autonomously optimizes the system for incoming workloads
and uses predictions to prepare the system for future work-
loads. In this section, though, we further discuss related
work that focused on developing methods for optimizing
queries through automatic index tuning. Specifically, we fo-
cus our analysis on work that based their approach on rein-
forcement learning techniques.

Basu et al. [1] developed a technique for index tuning
based on a cost model that is learned with reinforcement
learning. However, once the cost model is known, it be-
comes trivial to find the configuration that minimizes the
cost through dynamic programming, such as the policy itera-
tion method used by the authors. They use DBTune [3] to re-
duce the state space by considering only indexes that are rec-
ommended by the DBMS. Our approach, on the other hand,
focuses on finding the optimal index configuration without
having complete knowledge of the environment and without
heuristics of the DBMS to reduce the state space.

Sharma et al. [22] use a cross-entropy deep reinforce-
ment learning method to administer databases automatically.
Their set of actions, however, only include the creation of
indexes, and a budget of 3 indexes is set to deal with space
constraints and index maintenance costs. Indexes are only
dropped once an episode is finished. A strong limitation in
their evaluation process is to only use the LINEITEM table
to query, which does not exploit how indexes on other tables
can optimize the database performance, and consequently
reduces the state space of the problem. Furthermore, they
do not use the TPC-H benchmark performance measure to
evaluate performance but use query execution time.

Reinforcement learning can also optimize queries by pre-
dicting query plans: Marcus et al. [10] proposed a proof-of-
concept to determine the join ordering for a fixed database;
Ortiz et al. [14] developed a learning state representation to
predict the cardinality of a query. These approaches could
possibly be used alongside ours, generating better plans to

query execution while we focus on maintaining indexes that
these queries can benefit from.

7 Conclusion
In this research, we developed the SmartIX architecture for
automated database indexing using reinforcement learning.
The experimental results show that our agent consistently
outperforms the baseline index configurations and related
work on genetic algorithms and reinforcement learning. Our
agent is able to find the trade-off concerning the disk space
the index configuration occupies and the performance metric
it achieves. The state representation and the reward function
allows us to successfully index larger databases while train-
ing in smaller databases and consuming fewer resources.

Regarding the limitations of our architecture, we do not
yet deal with composite indexes due to the resulting state
space of all possible indexes that use two or more columns.
Our experiments show results using workloads that are read-
intensive (i.e. intensively fetching data from the database),
which is exactly the type of workload that benefits from in-
dexes. However, experiments using write-heavy workloads
(i.e. intensively writing data to the database) can be inter-
esting to verify whether the agent learns to avoid indexes
in write-intensive tables. Considering these limitations, in
future work, we plan to: (1) investigate techniques that al-
low us to deal with composite indexes; (2) improve the re-
ward function to provide feedback in case of write-intensive
workloads; (3) investigate pattern recognition techniques to
predict incoming queries to index ahead of time; and (4)
evaluate SmartIX on big data ecosystems (e.g. Hadoop).

Our contributions include: (1) a formalization of a reward
function shaped for the database indexing problem, indepen-
dent of DBMS’s statistics, that allows the agent to adapt the
index configuration according to the workload; (2) an envi-
ronment representation for database indexing that is inde-
pendent of schema or DBMS; and (3) a reinforcement learn-
ing agent that efficiently scales to large databases, while
trained in small databases consuming fewer resources. The
model in this paper is novel in comparison to early work
previously published at the Applied Intelligence journal [9].

In closing, we envision this kind of architecture being de-
ployed in cloud platforms such as Heroku and similar plat-
forms that often provide database infrastructure for various
clients’ applications. The reality is that these clients do not
prioritize, or it is not in their scope of interest to focus on
database management. Especially in the case of early-stage
start-ups, the aim to shorten time-to-market and quickly ship
code motivates externalizing complexity on third party so-
lutions [7]. From an overall platform performance point of
view, having efficient database management results in an op-
timized use of hardware and software resources. Thus, in the
absence of a database administrator, the SmartIX architec-
ture is a potential stand-in solution, as experiments show that
it provides at least equivalent and often superior indexing
choices compared to baseline indexing recommendations.
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